
Managing Domain Analysis in Software Product Lines with Decision
Tables: An Approach for Decision Representation, Anomaly Detection

and Resolution

Nicola Boffoli a, Pasquale Ardimento b and Alessandro Nicola Rana
Department of Informatics, University of Bari, Via Orabona 4, Bari, Italy

Keywords: Software Product Lines, Product Derivation, Domain Analysis, Decision Tables, Verification and Validation.

Abstract: This paper proposes an approach to managing domain analysis in Software Product Lines (SPLs) using Deci-
sion Tables (DTs) that are adapted to the unique characteristics of SPLs. The adapted DTs enable clear and
explicit representation of the intricate decisions involved in deriving each software product. Additionally, a
method is presented for detecting and resolving anomalies that may disrupt proper product derivation. The
effectiveness of the approach is evaluated through a case study, which suggests that it has the potential to
significantly reduce development time and costs for SPLs. Future research directions include investigating the
integration of SAT solvers or other methods to improve specific cases of scalability and conducting empirical
validation to further assess the effectiveness of the proposed approach.

1 INTRODUCTION

Nowadays companies interested in the development
of software applications have to be competitive and
highly responsive in a way that they can follow the
market trends and the customers’ needs to realize
flexible products, then they are not specialized on
the realization of only one product but they are fo-
cused in the development of a large set of prod-
ucts. In this sense Software Product Line Engineering
(SPLE) (Clements and Northrop, 2001), (Pohl et al.,
2005), (Krueger, 2006) is a powerful instrument, this
is a paradigm based on the combination of platforms
and mass customization. It is useful to decrease the
complexity in developing software-intensive systems
and software products by starting from existing ones.
Good use of Software Product Line (SPL) implies a
thorough understanding of customers needs, organi-
zational context and human behaviors. This knowl-
edge must be elicited and documented to be suc-
cessfully handled in the product derivation process.
Therefore, companies have to manage on one hand
all the possible organizational and functional features
that the target product must satisfy, on the other hand
all the actions needed to implement specific function-
alities in a flexible manner. This implies the manage-

a https://orcid.org/0000-0001-9899-6747
b https://orcid.org/0000-0001-6134-2993

ment of different decisions and even a single wrong
decision can easily affect the correct tuning of the
product. Sometimes the knowledge necessary to de-
rive new products from a SPL is not clearly explained
as it could be described in terms of operations to be
executed, functions to be performed and data struc-
tures to be used but there is not so much emphasis
on rules and constraints. This will give too much
freedom of choice to developers and it will lead to
the realization of products non-compliants with the
functional and non-functional requirements. In this
sense, modeling explicitly and correctly the neces-
sary knowledge when developing new applications
through a SPL is an important challenge.

In this area, numerous advances have been
achieved through practices such as the Feature Ori-
ented Domain Analysis (FODA). The main contribu-
tion of FODA (Kang et al., 1990) already in the 90s
shed light on the most critical tasks in the context of
the analysis of feature models (FM), and their possi-
ble automation, through which it is possible to model
the variability of the products of an SPL and subse-
quently investigate the presence of any anomalies and
errors in their representation.

In the following years, the FMs have been the sub-
ject of studies aimed mainly at guaranteeing:

• the validity of FM (aka satisfiability) was immedi-
ately identified as a basic need (Mannion, 2002),

182
Boffoli, N., Ardimento, P. and Rana, A.
Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly Detection and Resolution.
DOI: 10.5220/0011975700003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 182-192
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



(Maßen and Lichter, 2003), (Wang et al., 2005),
(Czarnecki and Kim, 2005),(Batory et al., 2006),
(Benavides et al., 2013), (Drave et al., 2019),
(Galindo and Benavides, 2020), (Horcas et al.,
2021), (Le et al., 2021);

• the internal consistency of FM, often caused by
the presence of ”dead features” (Trinidad et al.,
2006);

• the simplification of the FM, which provides
for the possibility of normalizing this model
(Van Deursen and Klint, 2002), (Zhang et al.,
2004), (von der Maßen and Lichter, 2004);.

In the pure domain of Domain Analysis, the research
is mature and solutions and practices can be consid-
ered reliable and consolidated. However, there is still
a decision-making area that requires in-depth analysis
and support, sometimes analyzing exclusively the fea-
tures and their models can be reductive and/or insuf-
ficient. Very often it is necessary to have a combined
vision between:

• all the features of the model that combine to iden-
tify the individual products of an SPLs

• all the mechanisms of variability (VM) that must
be operationally adopted to generate very single
product of an SPLs.

This view can lead to the detection of anomalies due
to a much wider range of illegal situations: detection
not only of ”dead features”, but also of incompatible
variation mechanisms and specially the detection of
anomalies due to the combination of some features
of the model with particular cases of variation mech-
anisms. Broadly speaking, this type of investigation
can guide to:

• the correction of the starting feature model

• the refinement of the applicable variation mecha-
nisms

• to the rearrangement of the relationships that link
the choice of a set of features to a set of variation
mechanisms to be performed in order to generate
a specific product of an SPLs
For this purpose, the authors propose an approach

based on the use of a framework based on the use of
decision tables (DTs) (Maes and Van Dijk, 1988) and
(Vanthienen et al., 1998).

Decision Tables (DTs) have been proven to be an
effective tool in modeling complex decision-making
situations. They provide strategic support for knowl-
edge elicitation by addressing the complexity of the
domain and assisting decision-makers in considering
the values of business conditions that involve multi-
ple sets of rules. Previous research, such as the stud-
ies presented in (Boffoli et al., 2013), (Boffoli et al.,

2014), and (Ardimento et al., 2016), have shown the
potential of using DTs as a knowledge modeling for-
malism. The authors of these documents have high-
lighted the usefulness of DTs in supporting the model-
ing of complex decision situations, despite their orig-
inal purpose of supporting programming activities.
Therefore, DTs can be used as an approach for un-
derstanding and modeling business logic.

The main objective of this paper is to show the
potential of using the Decision Table (DT) approach
in modeling the decisions that support software engi-
neers during the domain analysis and product deriva-
tion stages of a Software Product Line (SPL). The au-
thors propose using DTs as a tool to bridge the gap
between the Domain Analysis and Product Derivation
processes and support each step towards the creation
of final products.

By understanding that software engineers have to
follow certain rules to develop an application, which
dictate how variation mechanisms are activated to im-
plement functionalities of the final product, based on
certain conditions (such as product requirements and
production constraints), it is possible to model this
process through DTs. This allows for a clear connec-
tion between the combination of conditions and the
activation of variation mechanisms for the creation of
a specific software application.

Additionally, by taking advantage of the valida-
tion and verification capabilities of DTs, the authors
aim to show that it is possible to prevent, detect, and
fix anomalies in the modeled knowledge, even within
the context of SPLs. This is achieved by exploiting
the unique characteristics of DTs and their ability to
model knowledge in SPLs context. Anomalies can oc-
cur in the combination of feature values, the methods
used to activate variation mechanisms, or the connec-
tion between them. By detecting and correcting these
anomalies, DTs provide software engineers with ac-
curate, consistent, complete, non-redundant, and eas-
ily understandable information, which is crucial in the
product derivation process.

The structure of the paper is as follows: In Section
2, we will present the background of DTs and intro-
duce the running example. Section 3 will focus on
adapting the DT approach to the context of SPLs and
providing a guide for modeling the knowledge nec-
essary for the product development process. In Sec-
tion 4, we will show how the knowledge validation
and verification provided by DTs can be applied in
the context of SPLs. Section 5 will discuss poten-
tial limitations and challenges. Finally, in Section 6,
we will draw conclusions and offer recommendations
for future work. Throughout the paper, we will use a
running example to illustrate the effectiveness of the
proposed approach in an ad-hoc SPL scenario.

Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly
Detection and Resolution

183



2 BACKGROUND

he purpose of this section is two-fold. First, we will
provide a thorough overview of the foundations of de-
cision tables, including their structure, elements, and
principles. This will serve as a foundation for under-
standing the rest of the paper. In the second part of
this section, we will introduce a running example that
will be used throughout the remainder of the paper.
This example will provide a concrete illustration of
how decision tables can be applied in a specific SPL
scenario and help to support the concepts discussed in
the rest of the paper.

2.1 Foundations of Decision Tables

Decision tables (DTs) are a powerful tool for repre-
senting decision-making processes in a clear and or-
ganized manner. Using tabular notation, they match
the state of a set of conditions with a corresponding
set of actions, as outlined in (Maes and Van Dijk,
1988) and (Vanthienen et al., 1998)). Main advan-
tages of DTs approach, including:

• The formalization of knowledge and provision of
a compact and customizable view.

• The ease of maintenance for business rules as they
evolve.

A decision table (DT) is composed of four different
quadrants:

• Quadrant 1: the condition subjects. It lists all the
possible factors that may influence the set of ac-
tions to be performed.

• Quadrant 2: the conditional states. It lists all the
variations of the defined condition subjects that
have meaning.

• Quadrant 3: the action subjects. It lists all the
possible actions that could be performed.

• Quadrant 4: the action values. It defines the re-
lationship between a specific combination of con-
ditional states and the corresponding actions to be
taken.

About the fourth quadrant it is worth noting that rela-
tionships can be expressed either through the quadrant
or through an equivalent set of business rules. Indeed,
it is often used as a way to graphically represent the
required set of business rules.

As depicted in Fig.1, a generic DT is illustrated,
featuring the four quadrants and a clear representa-
tion of how information should be structured using
this schema.

Anyway, ensuring the accuracy of DTs is vital
to making sound business decisions. Any anomalies

Figure 1: The schema of a decision table.

present in the decision-making process can lead to the
construction of DTs that result in poor or ineffective
choices. Furthermore, managing a large number of
DTs can be a time-consuming and error-prone task,
particularly if the information is not well-organized
and clear. For the sake of completeness we refer to
(Preece and Shinghal, 1994) classification of anoma-
lies that may affect decision tables and corresponding
business rules. Below, we provide a summary of this
classification.

• Redundancy anomalies, while not causing er-
rors, can impede efficiency and complicate main-
tenance and consistency when revising decision
rules. These anomalies can manifest in forms
such as subsumption, duplication, unfirable ac-
tions, and unnecessary conditions.

• Inconsistency anomalies can arise when knowl-
edge is distributed among a plethora of indepen-
dently designed rules, resulting in issues like con-
flicting or ambivalent rules.

• Deficiency anomalies are a prevalent issue within
specific domains, where oversights like unused
condition values, unusable actions, and missing
rules may occur.

Thankfully DTs have a strenght aptitude to
anomalies prevention, detection and fixing. Through
the use of the same DTs, the authors in (Boffoli et al.,
2014), (Ardimento et al., 2016) show how it is pos-
sible to detect and to fix the anomalies by checking
rows and columns according to particular roadmap.
This activity can be executed automatically or manu-
ally. In the first case, it is possible to use a software
application that receive as input the DTs to analyze: it
will process all the modeled information to check for
the existence of anomalies and then, if any issues are
found, it will try to fix them by applying the proper
criteria for each specific anomaly. The execution of
detection and fixing activities on the business knowl-
edge modeled through the DTs could also be carried
out manually by experts, who know all the informa-
tion about the employed actions and the modeled con-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

184



ditions as well as the way to identify the anomalies
and how to apply the proper criteria for their fixing.
Anyway, as these activities require the cyclical repe-
tition of sequential steps for each rule derived from
the DT, the effort may arise when the modeled infor-
mation starts to grow. For this reason, the manual ex-
ecution of these tasks is feasible only if the treated
case is manageable without the necessity of automa-
tion. Therefore, in conclusion, we will show in the
rest of the paper that it could be possible to adapt the
DTs concept to the SPLs context. In particular, we
will employ DTs in SPLs to guarantee that the set of
decisions that transforms the software assets in final
products is consistent, complete and non-redundant.

2.2 Running Example: Journalling
Flash File System version 2

Journalling Flash File System version 2 (JFFS2) is a
log-structured file system optimized for flash mem-
ory devices. It has been incorporated into the Linux
kernel as of release version 2.4.10, allowing for the
selection of JFFS2 as the file system of choice during
Linux kernel configuration. In this study, we examine
the context of JFFS2 configuration during the deriva-
tion of a Linux kernel image and consider it as a hypo-
thetical software product line (SPL) from which vari-
ous JFFS2 configurations can be generated. Through
the use of decision table (DT) framework, we demon-
strate how to model the necessary knowledge for de-
riving JFFS2 configurations and how the representa-
tion of the connection between possible feature value
combinations and variation activation methods can
provide valuable aid for configuration derivation. Fur-
thermore, we illustrate how this knowledge can be
verified and validated through the application of pre-
vention, detection and fixing criteria on DTs and the
knowledge modeled through them. Figure 2 illus-
trates the feature tree of JFFS2, serving as the starting
point for our running example.

3 DESIGN OF DECISION TABLES
FOR SPL

In this section, we will delve into the process of de-
signing decision tables (DTs) to support the decisions
related to the derivation of final products in a soft-
ware product line (SPL). As previously stated in Sec-
tion 2.1, the structure of a DT is composed of four
quadrants: condition subjects, conditional states, ac-
tion subjects, and action values. To effectively use
DTs in the context of SPLs, we must take into account

certain assumptions that align DT concepts with those
of SPLs. For example, we can design one DT for each
software asset that can potentially be specified in mul-
tiple final products. Then, for each DT we design, we
can map each element of the DT to the relevant details
of the SPL. This includes:

• Mapping each condition subject to a feature (vari-
ation point)

• Mapping each conditional state to a variant of a
specific feature

• Mapping each action to an implementation of a
variation mechanism

• Mapping each action value to a relationship be-
tween the combinations of feature variants and the
employed variation mechanisms.
A generic schema of a DT created to model the

decisions about a specific asset is provided in Fig.3.
In the first quadrant (top-left) there are two condi-
tion subjects, which refer to two different features of
the software asset. In the second quadrant (top-right),
there is information about the possible values for each
specific feature. In the third quadrant (bottom-left),
there is a listing of actions that represent the means
to activate one or more variation mechanisms. In the
fourth quadrant (bottom-right), there is a link between
combinations of feature values and the actions listed
in the third quadrant.

Therefore, in accordance with the principles of
DTs and in line with the SPL context, the choice of
a set of feature variants determines the execution of
a set of variation mechanisms which can appropri-
ately derive a final software product. In particular,
let’s consider these phases of a SPL:

• domain analysis, aimed at identifying and manag-
ing the features that the target product will have to
meet;

• variability injection, aimed at incorporating the
necessary variation mechanisms into the product
design to transform it into the target product.

Each of these phases contributes to the design of spe-
cific quadrants of a DT as follows:

• domain analysis →First and second quadrants

• variability injection →Third and fourth quadrants
Each of these will be described in more detail in the
following sub-sections

3.1 Domain Analysis →First and
Second Quadrants

Software assets, primarily source code, form the
building blocks for developers to implement specific

Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly
Detection and Resolution

185



Figure 2: Feature Tree of JFFS2 SPL.

Figure 3: A generic schema of decision table for an asset.

functionality within a software product. These assets
must adhere to the domain requirements and guide-
lines established by the SPL architecture. Therefore,
it is crucial to first derive a requirements document
from the SPL domain, outlining the expected vari-
ability and commonalities in products derived through
the SPL. This document serves as a blueprint for un-
derstanding the rules that each individual asset must
comply with.

Once the requirements document is derived, it is
necessary to clearly define the conditions that must be
met by each software asset. The requirements docu-
ment focuses on variability, thus, to manage variabil-
ity within a single component, it is possible to repre-
sent variation points and variants through the use of
a graphical notation, called the feature model, and to
focus on the specific asset. One of the most widely
used feature models is the feature tree, which repre-
sents variability and relations between different vari-
ants using a tree with nodes representing variants and
edges representing relations. In this way, it is possible
to have a simple and concise representation of condi-
tions.

The main objective of this section is to explain
how to define conditions and feature values starting
from a feature tree. Specifically, we will demonstrate
how to extract modeled features and insert them as
conditions in the first quadrant of the DT. We will also
show how to extract values for each feature and in-
sert them in the second quadrant of the DT, according
to the graphical notation used to model each specific
feature value, as this notation defines the relationship
between features and between a feature and its possi-
ble values.

• The set of condition subjects FC={FCi} (i=1...n)
represent the collection of features (variation
points) that can be covered by the asset under
consideration when it is employed in the devel-
opment of a product. To gain a comprehensive
understanding of feature knowledge, we can also
consider the set of feature domains FD={FDi} (i=
1...n) where FDi represents the domain of FCi, or
the set of all possible values for feature FCi.

• The set of conditional states FV={FVi} (i=1...n)
represents the set of values considered for a spe-
cific feature, as determined by selecting the ap-
propriate values from the feature domain. Thus,
FVi={Fik} (k=1...mi) is an ordered set of ni fea-
ture values Fik.

Running Example: JFFS2. To support our guide
Fig. 4 shows the first and the second quadrants for the
example of JFFS2, they are built from feature models
in Fig. 2 and according to the pattern just presented.
To further illustrate our guide, Figure 4 presents the

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

186



Figure 4: Decision tables supporting a SPL for JFFS2.

first and second quadrants of a decision table example
for JFFS2. These quadrants are constructed from the
feature models in Figure 2 and in accordance with the
guidelines presented in this section.

3.2 Variability Injection →Third and
Fourth Quadrants

To effectively implement variability into the final
product, it is crucial to incorporate it into the prod-
uct design process through the use of variation mech-
anisms. These mechanisms are essential in determin-
ing the actions that will be performed by the com-
ponents responsible for implementing the product’s
functionality. To achieve this, variation mechanisms
must be utilized to derive variants by leveraging do-
main knowledge, as the actions are closely tied to
product requirements. In this section, we will detail
how to populate the third and fourth quadrants of a
decision table (DT), using the guidelines established
in the previous subsection to populate the first two
quadrants, based on information derived from each
domain. As previously mentioned at the beginning
of Section 3, the third quadrant of a DT must con-
tain all necessary actions, which can be considered in
the context of SPLs as the appropriate combinations
of variation mechanisms. Specifically, this quadrant
should provide a complete list of activation methods
for each specific variation mechanism. The main ob-
jectives for this quadrant are to display the various
methods that can be used to activate a particular vari-
ation mechanism and to indicate how a row in this
part of the DT should be set. The fourth quadrant
of the DT represents the outcome of connecting the
interpretation of the feature model, represented as a

combination of feature values, to the actions defined
in the third quadrant.

• The set of action subjects VM={V M j} (j=1...t)
represents all the potential actions that can be
taken to implement a specific functionality.

• The action values V={Vj} (j =1...t) are used to
connect each feature set to the corresponding ac-
tion subjects. Each value, Vj={true (x), false (-),
null (.)} represents the set of all possible values of
action subject V Mi (with the default value set to
null).

Once the DT is created, a function can be defined
that maps every combination of features to a unique
variation mechanism configuration using the Carte-
sian product of the conditional states {FVi} and the
Cartesian product of the action values {Vj}. This
function ensures that the completeness criterion of
conditions and the exclusivity criterion of actions are
met. Therefore, each action entry in the DT corre-
sponds to a decision rule. Formally, the function is
defined as follows:

DT: FC1 x FC2 x ... x FCn →V1 x V2 x ... x Vt

Running Example: JFFS2. Fig.4 provides the third
and the fourth quadrants of the JFFS2 example.

4 ANOMALIES HANDLING IN
DECISION TABLES FOR SPL

According to classification in (Preece and Shinghal,
1994) we reformulate it from the perspective of SPLs.
Fig.5 shows the description of each specific anomaly
grouped into categories Redundancy, Inconsistency

Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly
Detection and Resolution

187



and Deficiency. Each description of an anomaly has
been adapted to the SPLs context, by considering a
rule as the connection between the combination of
feature values and the methods used to activate one
or more variation mechanisms.

Figure 5: Definitions of the types of anomaly.

In section 2.1 we mentioned that it is crucial for
DTs to be consistent, complete, and non-redundant
to avoid inconsistencies or problems in the product
derivation process. By utilizing the structured na-
ture of DTs, it is possible to easily verify and validate
the set of rules derived from them. If any anomalies
are found, specific mechanisms can be employed to
fix them. This ensures that the knowledge modeled
through the DT framework is correct and efficient.
The validation provided by DTs can also be applied
to the context of product derivation in SPLs by con-
sidering each condition subject as a feature, each con-
ditional state as a variant, and each action as the set of
methods used to activate a variation mechanism. This
allows for easy modeling of SPL context knowledge
through DTs and manual or automatic validation.

4.1 Anomalies Detection in SPLs
Context

Now that we have a complete knowledge about the
anomalies that may occur in modeling information
through DTs applied to the SPLs context, we can de-
scribe the two steps necessary to guarantee that the
information could be consistent, complete and non-
redundant. The first step is the detection of anomalies
in the modeled decisions. As we described in the sec-
tion 2.1, the detection of anomalies can be carried out
automatically or manually. This activity requires as
input the set of rules derived by a DT and the criteria
useful to detect the anomalies. The execution of the
detection process consists in checking the anomalies
existing in the provided rules, even if some anomalies
may be prevented when the DT is built and populated.
The goals of this process are to establish the existence
of anomalies and to identify the type of problems and
their source, which may be the combination of fea-
ture values, the methods used to activate the variation
mechanisms or the connection between feature values
and the triggered variation mechanisms. The ”detec-
tion” part of Fig.6 provides for each anomaly:

• The Automated Checker. a description of the op-
erational steps used to detect the existence of a
specific type of anomaly.

• The Alert. Information about the level of critical-
ity of each anomaly. High critical anomalies im-
ply that DT cannot be consulted or that they may
led to incorrect results; on the contrary, low crit-
ical anomalies may led to tolerable inefficiency
or they may suggest potential problems. For this
reason, a classification of criticality levels is here
proposed by authors. In particular we can have:

– Error: anomalies that may imply inefficiencies
and a wrong outcome.

– Warning: anomalies that may imply inefficien-
cies but no wrong outcome.

– Notification: potential anomalies that need to
be checked by the decision makers.

Running Example: JFFS2. Fig.7 highlights the
anomalies detected by the DT on the JFFS2 exam-
ple. In particular, the table discovers 11 anomalies:
3 unfirable variation mechanisms (deficiency anoma-
lies), 6 conflicting rules (inconsistency anomalies)
and 2 unnecessary feature combinations (redundancy
anomalies). Such anomalies will be fixed using the
appropriate intervention described in Fig.6.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

188



Figure 6: Detection and fixing procedures of anomalies in decision tables.

4.2 Anomalies Fixing in SPLs Context

Once the anomalies have been detected by the check-
ers, it is necessary to apply the appropriate fixing in-
tervention according to the type of anomaly. The fix-
ing interventions may vary according to the source
and the criticality of the issue. The fixing of anoma-
lies could also be carried out manually or automati-
cally. Even in this case, to execute this process some
fixing criteria must be defined. Then, all the detected
anomalies will be treated differently according to the
type of the issue and what the related fixing approach
provides for. The ”fixing” part of Fig.6 describes each
fixing approach adapted by considering the SPLs con-
text. For each fixing intervention, the following infor-
mation is specified:

• The elements involved in the anomaly, such as
rules, feature value combinations and methods for
variation mechanisms activation.

• The most appropriate solution to fix the anomaly.

This could be for example removing/refactoring
rules, feature model, feature combinations and mech-
anisms activation. The goals of the fixing activity are
to provide the set of decision without any anomaly
and to define the appropriate methods to avoid the re-
curring of the same or similar issues.
Running Example: JFFS2. Fig.8 shows the fixed
DT of the JFFS2 example. Such a table has been fixed

using the procedures described in Fig.6, it does not
exhibit anomalies and it appears more compact (due
to the redundancy fixing intervention). Furthermore,
starting from this table engineers can easily extract
and use a set of business rules with no redundancy,
inconsistency and deficiency.

5 THREATS TO VALIDITY

The effective and efficient use of DTs as a tool for
managing software SPLs can be hindered by several
threats. These include:
1. Incorrect construction of DTs from an existing

SPL: mapping the concepts of an SPL to the el-
ements of a DT is a complex task and an incon-
sistent construction of the tables can compromise
the effectiveness of the tool from the start.

2. Inadequate maintenance of DTs: the DTs reflect
the SPL, they require maintenance that aligns with
the evolution of the SPL. In cases of large and
complex DTs, maintenance can be challenging
and prone to errors.

3. Scalability issues: the more variation points in an
SPL, the larger and more complex the DTs will be.
n this case, we can divide the threats into 2 sub-
categories: intra-tabular threats and inter-tabular
ones.

Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly
Detection and Resolution

189



Figure 7: Anomaly detection for JFFS2.

3.1. Intra-tabular threats: they arise when dealing
with decision tables (DTs) in software prod-
uct lines (SPLs) that have high variability. The
more variation points in an SPL, the larger and
more complex the DTs become. In such cases,
tables can have tens of thousands of columns,
making them impractical for decision-makers
to edit, maintain, consult, validate, and correct.

3.2. Inter-tabular threats: they arise when design-
ing DTs for industrial products with hundreds
or thousands of assets and hundreds of features.
If one DT needs to be created for each single
asset, then we will end up with as many DTs
as assets and as many columns as features ex-
hibited. In such cases, there might be a lack
of anomaly investigation because the potential
anomalies attributable to inter-tabular relation-
ships are not easily identified.

To address these challenges, the authors are devel-
oping a software tool that according to the procedure
described in the previous sections:

• Support and guide the user towards the construc-
tion of the tables so that the correct mapping be-
tween the SPL concepts and the constituent ele-
ments of the DT is guaranteed, in this way you
can avoid the pitfalls of bad translations and as-
sociations of concepts that could undermine the
correctness of the target table. (Threat 1)

• Support and guide the user during the mainte-
nance of the DTs. The tool starting from the new
aspects introduced in the SPL:

– It suggests the elements of the table to intro-
duce (Threat 2)

– Supports the introduction of new rules (Threat
2)

– Recalculate and redraw the DT with the new
row and column configuration (Threat 2)

• Support the automatic (or guided) removal of
anomalies so that the user does not have to deal
with the direct modification of rows and columns
which in some complex cases can even be sev-
eral thousand. (Threat 2 and Threat 3.1 and Threat
3.2)

• Suggest to the user the best permutation of rows
and columns for the DTs in order to obtain the
most compact version of the DT possible. (Threat
3.1)

• Through the execution of the ”compact” function-
ality, consistent with the decision space described
by the table, it merges the ”conditional states” and
the related rules in such a way as to produce the
DT configuration as compact as possible. (Threat
3.1)

• Support in a totally automatic way the verification
and validation operations in order to search for all
the anomalies present even in cases of very large
DTs. (Threat 3.1)

• Automatically search for any presences of low
cohesion between groups of decisions in the tar-
get table and then automatically (or in a guided
way) break down this table into a set of sub-tables
loosely connected to each other. Usually, a DT

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

190



Figure 8: Fixed decision table for JFFS2.

of considerable size can be represented through a
”network” of DTs, each of much smaller dimen-
sions (Threat 3.1).

• In the case of a network of DTs, the software
searches for potential anomalies related to inter-
tabular relationships. Currently, the authors are
studying the most appropriate checkers to support
this task (Threat 3.2). In this sense, the authors

6 CONCLUSION AND FUTURE
WORKS

This paper has highlighted the potential of decision
trees (DTs) in aiding domain analysis and product
derivation for software product lines (SPLs). We have
shown that by using DTs to model complex decision
scenarios and appropriate assumptions, software en-
gineers can understand how to implement variability
in the final product while adhering to requirements
and constraints expressed through combinations of
feature values and variation mechanisms.

DTs have also been used to model all necessary
information and clearly illustrate the connections be-
tween feature values and variation mechanisms acti-
vation. This approach is particularly useful for soft-
ware engineers and experts who may require knowl-
edge that is not explicitly defined. Additionally, we
have demonstrated that the assumptions made for
knowledge modeling through DTs can ensure correct-

ness, completeness, consistency, and non-redundancy
of all required information, even in the context of
SPLs. This is due to the adaptability of anomaly
prevention, detection, and fixing criteria to the con-
text at hand, allowing software engineers to conduct
verification and validation processes on the modeled
knowledge using DTs.

Looking ahead, several areas could be further ex-
plored to enhance the proposed approach. One such
area is the use of SAT solvers or other similar meth-
ods to improve the effectiveness and efficiency of
anomaly investigation conducted by DTs, particularly
with respect to inter-tabular anomalies. Integrating
these approaches could help overcome scalability is-
sues that may arise when dealing with large and com-
plex SPLs.

Another important direction for future research is
empirical validation of the proposed approach. While
the results of this study are promising, further investi-
gation is needed to assess the effectiveness and gener-
alizability of the proposed approach in different con-
texts and scenarios.

Furthermore, the completion of the software tool
being developed by the authors could further enhance
the proposed approach by automating and streamlin-
ing some of the more trivial and repetitive tasks in-
volved in the process. This would allow software en-
gineers to focus on more critical analysis and design
activities related to SPL features and final products.

Finally, investigating the roles and interactions of

Managing Domain Analysis in Software Product Lines with Decision Tables: An Approach for Decision Representation, Anomaly
Detection and Resolution

191



other actors, such as project managers and stakehold-
ers, in the context of SPLs would be valuable in fur-
ther improving the proposed approach.

In conclusion, we believe that this paper can serve
as a valuable reference for future research on SPLs
and the use of DTs to help software engineers manage
and validate the necessary knowledge for the product
derivation process.

REFERENCES

Ardimento, P., Boffoli, N., Castelluccia, D., and Scalera, M.
(2016). How to face anomalies in your flexible busi-
ness process? the decision table rules! In Agrifoglio,
R., Caporarello, L., Magni, M., and Za, S., editors,
Re-shaping Organizations through Digital and Social
Innovation, pages 193–204. LUISS University Press -
Pola Srl.

Batory, D., Benavides, D., and Ruiz-Cortes, A. (2006). Au-
tomated analysis of feature models: challenges ahead.
Communications of the ACM, 49(12):45–47.

Benavides, D., Felfernig, A., Galindo, J. A., and Reinfrank,
F. (2013). Automated analysis in feature modelling
and product configuration. In International confer-
ence on software reuse, pages 160–175. Springer.

Boffoli, N., Castelluccia, D., and Visaggio, G. (2013). Tab-
ularizing the business knowledge: modeling, mainte-
nance and validation. In Organizational Change and
Information Systems, pages 471–479. Springer.

Boffoli, N., Castelluccia, D., and Visaggio, G. (2014). Tab-
ularizing the business knowledge: automated detec-
tion and fixing of anomalies. In Information Systems,
Management, Organization and Control, pages 243–
251. Springer.

Clements, P. and Northrop, L. (2001). Software Product
Lines: Practices and Patterns. Addison-Wesley Pro-
fessional.

Czarnecki, K. and Kim, C. H. P. (2005). Cardinality-
based feature modeling and constraints: A progress
report. In International Workshop on Software Facto-
ries, pages 16–20. ACM San Diego, California, USA.

Drave, I., Kautz, O., Michael, J., and Rumpe, B. (2019). Se-
mantic evolution analysis of feature models. In Pro-
ceedings of the 23rd International Systems and Soft-
ware Product Line Conference-Volume A, pages 245–
255.

Galindo, J. A. and Benavides, D. (2020). A python frame-
work for the automated analysis of feature models: A
first step to integrate community efforts. In Proceed-
ings of the 24th ACM International Systems and Soft-
ware Product Line Conference-Volume B, pages 52–
55.

Horcas, J.-M., Galindo, J. A., Heradio, R., Fernandez-
Amoros, D., and Benavides, D. (2021). Monte carlo
tree search for feature model analyses: a general
framework for decision-making. In Proceedings of the
25th ACM International Systems and Software Prod-
uct Line Conference-Volume A, pages 190–201.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (foda) feasibility study. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Software Engi-
neering Inst.

Krueger, C. W. (2006). New methods in software product
line development. In SPLC, volume 6, pages 95–102.

Le, V.-M., Felfernig, A., Uta, M., Benavides, D., Galindo,
J., and Tran, T. N. T. (2021). Directdebug: Auto-
mated testing and debugging of feature models. In
2021 IEEE/ACM 43rd International Conference on
Software Engineering: New Ideas and Emerging Re-
sults (ICSE-NIER), pages 81–85.

Maes, R. and Van Dijk, J. (1988). On the role of ambigu-
ity and incompleteness in the design of decision ta-
bles and rule-based systems. The Computer Journal,
31(6):481–489.

Mannion, M. (2002). Using first-order logic for product
line model validation. In International Conference on
Software Product Lines, pages 176–187. Springer.

Maßen, T. v. d. and Lichter, H. (2003). Requiline: A
requirements engineering tool for software product
lines. In International Workshop on Software Product-
Family Engineering, pages 168–180. Springer.

Pohl, K., Böckle, G., and Van Der Linden, F. (2005). Soft-
ware product line engineering: foundations, princi-
ples, and techniques, volume 1. Springer.

Preece, A. D. and Shinghal, R. (1994). Foundation and
application of knowledge base verification. Interna-
tional journal of intelligent Systems, 9(8):683–701.

Trinidad, P., Benavides, D., and Cortés, A. R. (2006). Iso-
lated features detection in feature models. In CAiSE
Forum, page 26.

Van Deursen, A. and Klint, P. (2002). Domain-specific lan-
guage design requires feature descriptions. Journal of
computing and information technology, 10(1):1–17.

Vanthienen, J., Mues, C., Wets, G., and Delaere, K. (1998).
A tool-supported approach to inter-tabular verifica-
tion. Expert systems with applications, 15(3-4):277–
285.

von der Maßen, T. and Lichter, H. (2004). Deficiencies in
feature models. In workshop on software variability
management for product derivation-towards tool sup-
port, volume 44, page 21.

Wang, H., Li, Y. F., Sun, J., Zhang, H., and Pan, J. (2005). A
semantic web approach to feature modeling and veri-
fication. In Workshop on Semantic Web Enabled Soft-
ware Engineering (SWESE’05), page 46.

Zhang, W., Zhao, H., and Mei, H. (2004). A propositional
logic-based method for verification of feature models.
In International Conference on Formal Engineering
Methods, pages 115–130. Springer.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

192


