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Abstract: In the last decades, the effects of global warming combined with growing anthropogenic activities have caused 
a mismatch in the water supply-demand, resulting in a negative impact on numerous Mediterranean rivers 
regime and on the functionality of related ecosystem services. Thus, for water management and mitigation of 
the potential hazards, it is fundamental to efficiently map areal extents of river water surface. Synthetic 
Aperture Radar (SAR) is one of the satellite technologies applied for hydrological studies, but it has a spatial 
resolution which is limited for the study of rivers. On the other side, deep learning technology exhibits a high 
modelling potential with low spatial resolution data. In this paper, a method based on convolutional neural 
networks is applied to the SAR backscatter coefficient for detecting river water surface. Our experimental 
study focuses on the lower reach of Mijares river (Eastern Spain), covering a period from Apr 2019 to Sept 
2022. Results suggest that radar backscattering has high potential in modelling water river trends, contributing 
to the monitoring of the effects of climate change and impacts on related ecosystem services. To assess the 
effectiveness of the method, the output has been validated with the Normalized Difference Water Index 
(NDWI).

1 INTRODUCTION 

In hydrology, the ability to regularly assess the river 
water surface is of utmost importance for several 
purposes: water accountability, water allocation, 
flooding mitigation, and the reinforcement of the 
ecosystem services. In the literature, satellite based 
remote sensing has been used to monitor the areal 
extent of surface water bodies (Frappart et al., 2021; 
Botha et al., 2020). Most of the research focuses on 
studying flooding events (Carreño-Conde et al., 
2019; Quiròs and Gagnon, 2022; Tran et al., 2022), 
while the monitoring of the areal extent of river water 
surface is a more complex task, with fewer studies 
(Filippucci et al., 2022). Specifically, remote sensing 
data include different technologies, ranging from 
radar to multispectral. Radar data is not affected by 
weather conditions (e.g. clouds) while it is by 
vegetation. In particular, this is relevant for the 

monitoring of the extents of water in narrow river, 
given the limited number of water pixels. In contrast, 
the spatial resolution provided by multispectral 
satellites, especially for optical bands (such as 
Sentinel-2 used in this study), is higher than 
resolution of Sentinel-1 SAR data. For this reason, the 
Synthetic Aperture Radar (SAR) is less used to map 
the extent of river water surface respect to the optical 
data. 

On the other hand, there is a high potential in deep 
learning technology for its capabilities of mapping 
and image features identification (Ronneberger et al., 
2015), also applied to SAR data under low resolution 
conditions (Jiang et al., 2022; Orlandi et al., 2022). 
Specifically, the U-Net convolutional neural network 
has been recently experimented for the mapping of 
the extent of lake water surface. U-Net carries out the 
semantic segmentation task, partitioning the image 
into different regions, for corresponding classes (e.g. 
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surface water, vegetation, and so on) (Ronneberger et 
al., 2015). In the context of image segmentation, U-
Net is equipped with a spatial attention mechanism, 
to highlight only the relevant parts of the image 
during training. As a result, the computational 
resources on the irrelevant part of the image are low, 
with better generalisation capability. 

In this paper, a U-Net architecture is used on the 
radar backscatter coefficient with the purpose of 
efficiently identifying and mapping areal extents of 
river water surface. Satellite multispectral data are 
used for validating the method. The paper is 
structured as follows. Section 2 discusses the case 
study, i.e., the area and the data sets achieved. Section 
3 covers the overall methods in terms of Multispectral 
data pre-processing, SAR data pre-processing, and U-
Net segmentation. Experimental results are discussed 
in Section 4. Finally, Section 4 draws also the 
conclusions.  

2 CASE STUDY 

2.1 Study Area 

The study area (Figure 1) focuses on the last 20 km of 
the Mijares river in Eastern Spain (Pompeu et al., 
2021). Along the river path there are the Arenoso (93 
Mm3), Sichar (49 Mm3) and Maria Cristina (18.4 
hm3) reservoirs, which support the agricultural needs 
and guarantee the water supply to the Sichar dam (0.2 
Mm3) downstream (Macian-Sorribes et al., 2015). In 
the lower reach of the Mijares river (Figure 1), the 
alluvial plain is characterized by meandering 
sequence of fine to coarse sediments, which grade to 
deltaic successions in the Almazora and Buriana 
plains. In the last decades, the region has experienced 
hotter seasons, a concentration of the total annual 
rainfall (MedECC, 2020), and an overall decrease of 
precipitation in the period 1980-2012 with respect to 
the period 1940-2012 in 3-7%. Overall, the area has 
available water resources of 335.7 hm3/year and a 
water demands of 268.23 hm3/year (Confederación 
Hidrográfica del Júcar, 2019). There are records 
historically significant torrential floods that could not 
be correctly gauged, which are only expected to rise 
given the increasingly unstable weather patterns 
forecasted for the watershed (Masson-Delmotte et al., 
2021). 

2.2 Datasets 

Our data sets consist of images acquired by Sentinel-
2 and Sentinel-1A satellites, provided by the 

European Space Agency (ESA). Sentinel-2 is a 
Multispectral satellite, acquiring images in 13 bands. 
For this work, we used 36 Level-1C images (Table 1) 
covering a period from October 2019 to August 2022, 
considering all the 13 bands but also selecting 
particular bands, such as B3 and B8 (visible and near-
infrared, respectively) to build a river mask. Sentinel-
1A is a SAR satellite operating in the C-band. We 
used 104 Single Look Complex (SLC) images, 
acquired in Descending orbit and in Interferometric 
Wide swath beam mode (Table 1), covering the time 
period from April 2019 to September 2022. 

Table 1: SAR and Multispectral datasets. 

Satellite Sentinel-1A Sentinel-2 
Product Level Single Look 

Complex (SLC) 
Multispectral 

Instrument (MSI) - 
Level-1C 

Tiles - T31TBE, T30TYK 
Spatial 

Resolution (m) 
20 × 20 10 × 10 

Orbit Descending (path 
8, frame 458) 

- 

Acquisition 
mode 

Interferometric 
Wide swath (IW) 

- 

Revisit time 12 days - 
Polarization VV - 

3 METHODS 

3.1 Multispectral Images  
Pre-Processing 

To identify the areal extent of the river water surface 
the NDWI is computed, i.e., a satellite-derived index 
utilizing visible and near-infrared wavelengths not 
affected by meteorological conditions (e.g. Tran et 
al., 2022). Specifically, NDWI has been computed on 
36 Sentinel-2 images, using band 3 (visible) and 8 
(near-infrared) through the following formula: 𝑁𝐷𝑊𝐼 =  𝐵3 −  𝐵8𝐵3 +  𝐵8 (1)

Then, based on the NDWI, a polygon of the areal 
extent of the water has been created for each image. 
This process has been also validated by comparing 
each polygon to all the 13 bands in the image. Thus, 
the final Water Surface Mask (WSM) has been 
created by comparing the 36 different water polygons 
generated. As a final step, in order to give to the U-
Net architecture some validation multispectral maps 
to train the network, the 36 different NDWI maps 
have been translated into binary images. Each pixel  
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Figure 1: Study area (red rectangle) and river drainage network. 

of a binary image is set to 0 outside the WSM, and 1 
to mark the presence of water within the final WSM, 
where the selection of the threshold water/non-water 
set to -0.1 (Figure 2) has been validated comparing 
with all the bands of the Multispectral images. The 
column on the right in Figure 2 shows the flow chart. 

 
Figure 2: SAR (left) and Multispectral (right) data pre-
processing. 

3.2 SAR Images Pre-processing 

A series of 104 SAR images have been processed to 
obtain the backscatter coefficient from the raw radar 

images. Figure 2 left shows the workflow. First, the 
thermal noise removal has been applied, choosing the 
VV (Vertical-Vertical) polarization. This option was 
preferred, instead of VH polarization. Indeed, 
differently from other works focused on floodings 
events (Carreño-Conde et al., 2019; Tran et al., 
2022), in this research the general scarce presence of 
water requires a stronger backscatter value provided 
by VV polarization. The following step was the 
radiometric calibration. To achieve a radiometrically 
calibrated backscatter, σ is set to 0, from the 
amplitudes stored in the SLC image. Subsequently, 
the azimuth debursting is carried out to merge all 
bursts using the TOPSAR-Deburst method, followed 
by the Multilook step with a window size of 1×1 in 
Range and Azimuth, respectively. Figure 3 shows 
three different filters that have been tested to remove 
the remaining speckle: Lee, IDAN and Lee Sigma. 
Differently from other works (e.g. Carreño-Conde et 
al., 2019), in this study, in terms of accuracy and 
better visual estimation of the presence of water, the 
Lee Sigma filter gives the best results, compared to 
both Lee which appears noisier and to IDAN that 
provides less details. Then, the image is projected 
from Slant Range onto Ground Range (SRGR). 
Finally, the Terrain-Correction geocoding has been 
applied using the Digital Elevation Model of the 
NASA Shuttle Radar Topography Mission 1 arcsec of 
30 m spatial resolution. 

3.3 SAR Image Semantic Segmentation 

Overall, the task of detecting the river water surface  
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Figure 3: Speckle-Filters, Lee (a), IDAN (b), Lee Sigma (c). 

is tackled as a SAR image segmentation task. 
Specifically, a 128×128-pixel SAR image is 
considered as an input. A particular Convolutional 
Neural Network, known as U-Net (Ronneberger et 
al., 2015) is used for the SAR image segmentation 
task. A U-Net consists of a contracting and an 
expanding path, to capture context and precise 
localization, respectively. A U-Net can be trained 
from very few images, outperforming the other 
approaches (Qin et al., 2020). 

Figure 4 shows two examples of image 
segmentation, after 100 training iterations (images a-
e), and after 30,000 training iterations (f-j) of the U-
Net. Specifically, image (a) and (f) are two examples 
of raw input. Second, the known WSM has been used 
to filter the initial raw input (b and g). Third, the 
reference truth data (c) and (h) are derived from the 
Multispectral images. Fourth, images (d) and (i) show 
the output provided by the U-Net. Finally, images (e) 
and (j) represent the binarized water/non-water 
outputs: pixel values larger or equal than 0.5 are set 
to 1, otherwise they are set to 0. 
  

    
(a)    (f) 

    
 (b)      (g) 

    
(c)   (h) 

    
(d)   (i) 

    
(e)     (j) 

Figure 4: Samples after 100 training iterations (a-e), and 
after 30,000 training iterations (f-j); raw input (a,f); water 
surface mask (b,g); multispectral bands (c,h); raw output 
(d,i); discretized output (e,j). 
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4 RESULTS AND DISCUSSION 

To carry out the proposed research, we have used an 
open-source implementation of the U-Net (Wang, 
2023). The generated source code has been made 
publicly available (Galatolo, 2023). Table 2 shows 
the U-Net hyperparameters settings, achieved via grid 
search. Figure 5 shows the cross-entropy loss against 
the iterations. In this image, it can be read that after 
computing 6000 iterations the system achieves good 
performances, about 0.013. Figure 6 shows the 
outputs of the U-Net, one performed on the SAR 
images and the other one obtained with Multispectral 
images, both representing the area in the image 
covered by the water, hereafter called as the 
“Normalized River Water Extent (NRWE)”. The 
results obtained using SAR and optical images are 
promising. Indeed, there is a good similarity between 
SAR outputs and Optical water masks (Figure 4). 
Moreover, it can also be appreciated a similar 
seasonal trend in the NRWE over time. Finally, the 
Mean Absolute Error (MAE) between the SAR-based 
NRWE and Optical- based NRWE is 0.072. 

5 CONCLUSIONS 

In this paper we analysed the Mijares river (Eastern 
Spain) from April 2019 to September 2022. In 
particular, we focused on its lower reach that can be 
considered a challenging task given that this area is 
often drought prone and it has little detectable water 
for the most part of the year, yet it registers recurring 
floods. Differently from the majority of case studies 
in the literature using remote sensing to map flooding, 
wide rivers and large water surfaces, here we used a 
Convolutional Neural Network for detecting river 
water surfaces from SAR data, using Multispectral 
data as a ground truth. Specifically, a data pipeline for 
satellite data pre-processing is first presented, and 
then the U-Net architecture is parameterized and 
trained. The adopted approach, which provided 
promising early experimental results in the river 
water surfaces detection through radar backscatter, 
can be considered as a first step to further investigate 
the same satellite data sets over a longer period, with 
the final aim of monitoring the temporal variations 
and the effects of the climate change in a fragile 
ecosystem such as rivers. Lastly, to encourage 
scientific collaborations, the source code used for this 
work has been made publicly available (Galatolo, 
2023).  

Table 2: U-Net hyperparameters settings. 

Parameter Description Value(s) 
dim no. initial channels 8 
dim mults no. channels multipliers [1, 2, 4] 
blocks per stage no. convolutional 

operations per stage 
[2, 2, 2] 

self-attentions 
per stage 

no. self-attention blocks per 
stage 

[0, 0, 1] 

channels input channels 1 
resnet groups no. normalization groups 2 
consolidate 
upsample fmaps  

feature maps consolidation true 

weight 
standardize 

weight standardization false 

attention heads no. attention heads 2 
attention dim 
head 

size of attention head 16 

training 
window size  

window size of training 
samples 

128 

training batch 
size 

no. of samples per iteration 32 

learning rate amount of weight change in 
response to the error 

0.001 

 

 
Figure 5: Cross-entropy loss against iterations. 

 
Figure 6: Normalized River Water Extent. 
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