
Software Code Smells and Defects: An Empirical Investigation

Reuben Brown and Des Greer a
School of Electronics, Electrical Engineering and Computer Science, Queen’s University, Belfast, U.K.

Keywords: Code Smells, Software Defects, Software Maintenance.

Abstract: Code smells indicate weaknesses in software design that may slow down development or increase the risk of
bugs or failures in the future. This paper aims to investigate the correlation of code smells with defects within
classes. The method used uses a tool to automatically detect code smells in selected projects and then assesses
the correlation of these to the number of defects found in the code. Most existing articles determine that
software modules/classes with more smells tend to have more defects. However, while the experiments in this
paper covering a range of languages agreed with this, the correlation was found to be weak. There remains a
need for further investigation of the types of code smells that tend to indicate or predict defects occurring.
Future work will perform more detailed experiments by investigating a larger quantity and variety of software
systems as well as more granular studies into types of code smell and defects arising.

1 INTRODUCTION

‘Code smells’ can be caused by poor design decisions
taken when writing code due to, for example, tight
deadlines or developer incompetence. The term, first
proposed in 1999, describes decisions made in object-
oriented systems that are not compoatible with widely
accepted principles of good object oriented design
(Fowler, 2018). Code smells are not bugs and do not
prevent software from functioning; rather they
indicate problems in software design or code which
makes software difficult to maintain (Kaur, 2020).
There are 22 code smells defined by Fowler such as
‘Long Method’, ‘Alternative Classes with Different
Interfaces’ and ‘Message Chains’ (Fowler, 2018)
and some additional ones that were not initially
defined by Fowler, such as ‘Dead Code’. Some code
smells (such as ‘Feature Envy’) exist in individual
methods, some (such as ‘Lazy Class’) exist within
individual classes, and some (such as ‘Inappropriate
Intimacy’) exist in the relationships between classes.
Mantyla et al. (2003) categorised the 22 Fowler-
defined code smells, and one additional code smell,
into seven categories, namely: ‘bloaters’, ‘object-
orientation abusers’, ‘change preventers’,
‘dispensables’, ‘encapsulators’, ‘couplers’, and
‘others’. ‘Bloaters’ refer to methods and classes that
have increased to such proportions that they are

a https://orcid.org/0000-0001-6367-9274

especially difficult to work with; usually they
accumulate over time as the program and codebase
evolves, rather than showing up immediately.
‘Object-Orientation Abusers’ refer to incomplete or
incorrect applications of object-oriented
programming principles. Descriptions of the other
categories can be found in the taxonomy by Mantyla
et al. (2003).

Many studies have already been completed
relating to code smells and their impact on various
quality attributes, including reliability,
maintainability, and testability. Code smells are
mostly studied in production code (Zazworka et al.,
2014; Kaur, 2020; Bán & Ferenc, 2014; D'Ambros et
al., 2010; Li & Shatnawi, 2007; Marinescu &
Marinescu, 2011; Fontana et al., 2013; Alkhaeir &
Walter, 2020; Kessentini, 2019; Olbrich et al. 2010;
Aman, 2012; Lanza & Marinescu, 2007; Saboury et
al., 2017), but have also been studied in test code
(Spadini et al., 2018; Garousi et al., 2018). Surveys
have also been conducted to discover the importance
of code smells to developers and the reasons for
developers placing a high or low importance on them
(Yamashita & Moonen, 2013).

The aim of this research is to empirically assess
correlation of software code smells with software
defects. The following research question will be
addressed.

570
Brown, R. and Greer, D.
Software Code Smells and Defects: An Empirical Investigation.
DOI: 10.5220/0011974500003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 570-580
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

RQ. Do software modules/classes with more
smells tend to have more defects?
Our null hypotheses are therefore:
H10: There is no correlation between the number of
defects and the number of code smells.
H20: There is no correlation between the number
of defects and the severity of code smells.

H20 is formulated because all code smells are not
equal and thus, there is a need to determine the effect
on defects, depending on how serious the code smells.

The remainder of this paper is structured as
follows. The next section provides a review of
existing research articles. Section 3 describes the
methodology, including the chosen strategies to
detect code smells and defects and the reasoning used
in their selection. Details are given of the projects
chosen on which to conduct the empirical
investigation, the experimental setup and the tool
support used for the investigations. Section 4 presents
and discusses the results of the experiments. The final
section provides a discussion of the findings
including threats to validity and some conclusions to
the work as well as looking ahead to future work.

2 BACKGROUND

Intuitively, it might be expected that software
modules/classes with more smells tend to have more
defects and that, on average, the number of defects in
a class/module would increase as the number of code
smells in it increases. It would be expected that some
code smells would have a stronger effect on the rate
of defects than others, because there are many
different types of code smells of a range of sizes and
severities, so it is unlikely that all code smells would
be of the same undesirability. It would also be
expected that the correlation of defects with code
smells would not be impacted by the platform of the
system under investigation.

2.1 Literature Review

To gain insight into the areas studied relating code
smells with defects, a review of recent papers was
conducted. Only articles considering the correlation
of code smells with defects were reviewed, using a
mixture of reference snowballing on articles found
using IEEE Xplore, Web of Knowledge and Google
Scholar with a date filter of between 2018 and April
2022. Abstracts of these articles where searched using
the search string “code smell” AND (“defect” or
“bug” or “issue”). This returned 4,840 papers of

which 22 were included as being inside the scope of
the study. Basic information about some of the
selected articles is summarised in Table 1.

Table 1: Selected Studies.

Reference Study Type

systems
studied

smells

studied
Bán & Ferenc, 2014 Experiment 34 8
D'Ambros et al., 2010 Experiment 6 5
Li & Shatnawi, 2007 Experiment 3 6
Marinescu &
Marinescu, 2011

Case Study 3 4

Olbrich et al. 2010 Experiment 3 2
Zazworka et al., 2014 Case Study 1 9
Fontana et al., 2013 Experiment 68 15
Aman, 2012 Experiment 3 1
Alkhaeir & Walter,
2020

Experiment 10 10

Kessentini, 2019 Experiment 3 11
Saboury et al., 2017 Case Study 5 12
Chouchane et al., 2021 Experiment 120 15

Each article in the review focused
on various code smells, with some being studied
more frequently than others. ‘Feature Envy’ was the
most frequently investigated code smell with
eight studies. ‘God Class’ was next most common
covered by seven studies, while ‘Data Class’ was
investigated in six of the papers. These were also the
most frequently investigated in an existing systematic
literature review (Kaur, 2020). Furthermore, of the 23
code smells described in Mantyla et al.’s taxonomy of
bad smells in code (2003), a number of them of them
such as ‘Switch Statements’, ‘Primitive
Obsession’ and ‘Incomplete Library Class’, were not
studied at all in the sample papers. ‘Non-Fowler’
code smells not defined in Mantyla et al.’s taxonomy
(2003) are also rarely studied. Perhaps this is because
of a potential lack of tools or techniques to detect
them. Some articles focused on multiple different
code smells (Fontana, 2013; Kessentini, 2019;
Saboury et al. 2017; Chouchane et al., 2021),
whereas others focused on just one or two in more
detail (Olbrich et al. 2010; Aman, 2012).

A common approach in papers is to use at least
one open-source software system for analysis. There
did not seem to be any obvious correlation between
the number of code smells studied and the number of
software systems studied, as shown in Figure 1.
Popular systems included ‘Eclipse’ (D'Ambros et al.
2010; Li & Shatnawi, 2007; Marinescu & Marinescu,
2011; Aman, 2012) and ‘Lucene’ (Bán &
Ferenc,2014; D'Ambros et al;, 2010; Alkhaeir &
Walter, 2020; Olbrich et al., 2010). Java systems were

Software Code Smells and Defects: An Empirical Investigation

571

the most analysed, but notably there was not much
coverage of systems written in Python, for example.
Mobile applications were also not analysed to a great
extent, with just one study (Chouchane et al., 2021).

Figure 1: Number of software systems studied and number
of code smells studied in research papers.

Articles considered were restricted to
those that collected data on code smells and defects
for the system(s) they included. Regarding code
smell detection, some articles defined their own
metrics and models (Bán & Ferenc, 2014; D'Ambros
et al., 2010; Fontana et al., 2013; Alkhaeir & Walter,
2020). Others used existing models (Li & Shatnawi,
2007; Kessentini, 2019; Olbrich et al., 2010; Saboury
et al. 2017), such as the ones defined by Marinescu
& Marinescu (2011). In some cases existing tools
such as iPlasma (Fontana et al.,
2013), inCode (Alkhaeir & Walter, 2020)
or CodeVizard (Zazworka et al., 2014) have been
used and paper used a manual detection method
(Marinescu & Marinescu, 2011). Some researchers
used several of these approaches because certain
detection strategies are more suited to particular code
smells (Fontana et al., 2013).

 In terms of achieving bug or defect detection,
some articles gathered bug information from Bugzilla
(D'Ambros et a.., 2010; Li & Shatnawi, 2007;
Marinescu & Marinescu, 2011; Kessentini, 2019;
Olbrich et al., 2010) and some from JIRA (D'Ambros
et al., 2010; Olbrich et al., 2010). GitHub is also
popular (Saboury et al., 2017), using tools such
as FindBugs (e.g. Zazworka et al., 2014). The
PROMISE database also features prominently
(Alkhaeir & Walter, 2020; Aman, 2012; Bán &
Ferenc, 2014). There are various options for data on
systems’ bugs, defects, or issues to be stored, so the
sources used to detect bugs, defects or issues depend
on the system under consideration. Some articles also
took the recorded severity levels of the bugs into
account to weight the issues (Li & Shatnawi, 2017;
Kessentini, 2019; Olbrich et al., 2010). On the other

hand, D’Ambros et al. (2010) decided against this
because of the subjective and potentially biased
nature of severity ratings.

To assess the correlation of code smells with
defects within classes, each article had to link each
defect to a class. The PROMISE database contains the
code of numerous open-source applications and their
corresponding bug data at a class level (Bán &
Ferenc, 2014), so little work is required to link defects
to classes. Some articles examined the versioning
history for the systems to find commits that addressed
certain bugs based on if the ID or the bug issue is
contained in the commit message (Zazworka et al.,
2014; Mantyla et al., 2003; Olbrich et al., 2010).
Defects were then linked to classes based on which
classes were modified in the commits. A drawback of
this approach has been identified in that it was unable
to detect inner classes (Zazworka et al., 2014;
D'Ambros et al., 2010). Another approach was to use
the changelog of a system to determine which files
were changed and which bugs fixed in each release
(Li & Shatnawi, 2007).

Each article was analysed for relevance to the
research question. Most of the articles found that
software modules/classes with more smells tend to
have more defects. However, some articles
determined that no code smell has more of a
correlation with defects in the class containing it than
any other code smell (D'Ambros et al., 2010; Alkhaeir
& Walter, 2020). Some researchers report that some
code smells, particularly ‘Shotgun Surgery’ and ‘God
Class’, have more of a positive correlation with
defects in the class containing them than other code
smells (Zazworka et al., 2014; Li & Shatnawi, 2007;
Kessentini, 2019). Despite this finding about ‘God
Classes’, Olbrich et al. (2010) found that ‘God
Classes’ and ‘Brain Classes’ may only correlate
positively with defects once they both exceed a
certain size and proportion to other classes in the
system. Alkhaeir and Walter (2020) determined that
the presence of code smells increases the number of
defects more than an absence of code smells
decreases the number of defects. Marinescu &
Marinescu (2011) determined that classes containing
the code smells that they studied,
including ‘God Class’, do not tend to have more
defects. In an existing literature review Gradišnik and
Heričko (2018) determined that software systems
with more code smells tend to have more defects, but
this does not hold for individual classes. Cairo et al.
(2018) concluded that those classes affected by code
smells are more disposed to failures than classes that
are unaffected by code smells. Although it appears
that software modules/classes with more smells tend

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

572

to have more defects, certain aspects of the existing
literature are contradictory.

2.2 Detecting Code Smells and Defects

The detection of code smells in a software codebase
can either be performed manually or automatically
using a tool. Manual detection is considered to be the
most reliable way of identifying code smells (Fowler,
2018), but has disadvantages such as being very time-
consuming (Marinescu, 2001; Mantyla et al., 2003)
and in that human evaluators have differing
perceptions on what is a code smell or the exact
categorization of a code smell (Mantyla et al., 2003).
One reason for this could be differing experience
levels. For example, Mäntylä et al. (2003) found that
developers with more experience tended to evaluate
software as having fewer code smells than developers
with less experience and that differences in detection
were larger for some code smells (such as ‘Switch
Statements’) than others. Lead developers tended to
identify more structural code smells, whereas regular
developers tended to identify more code smells at the
code level. Various studies have been performed
comparing different automated detection strategies of
code smells with manual detection of code smells
(Van Emden & Moonen, 2002; Mantyla et al., 2003)
and mostly conclude that automated detection is a
good alternative to manual detection due to
automated detection strategies scaling much better
and being of similar precision and recall as manual
detection (Olbrich et al., 2010).

For this study, SonarQube1 was selected to detect
code smells. SonarQube supports 29 programming
languages including Python and Swift. Mobile
applications were identified as a gap in existing
research and thus an area to focus on in these
experiments, so the support of Swift by SonarQube is
attractive since Swift is commonly used to develop
iOS mobile applications. SonarQube identifies a code
smell as: “A maintainability-related issue in the code.
Leaving it as-is means that at best maintainers will
have a harder time than they should making changes
to the code. At worst, they’ll be so confused by the
state of the code that they’ll introduce additional
errors as they make changes. This, alludes to a belief
that software modules/classes with more smells do
indeed tend to have more defects. Calls can be made
to the ‘Sonarcloud’ API to conduct an analysis of a
codebase.

SonarQube identifies code smells and describes
them using statements, which can be mapped to code

1 https://www.sonarqube.org/)

smells described in Mantyla et al.’s (2003) taxonomy.
SonarQube identifies code smells by calculating
metrics and comparing them to set threshold values,
with a code smell being reported if the threshold is
exceeded. The statements and the corresponding code
smells in SonarQube vary depending on the language
of being analysed. Table 2 shows a sample of the
statements that can be raised by a SonarQube analysis
and which of the code smells from the taxonomy they
correspond to, and the severity level (‘Info’, ‘Minor’,
‘Major’, ‘Critical’ or ‘Blocker’) assigned to them.
Several statements can correspond to the same type
of code smell and not every code smell of the same
type is assigned the same ‘severity’ level. SonarQube
can return an assessment of different severities of the
same code smell and identify the exact cause of it.

Table 2: Example SonarQube statements and code smell
meaning.

Statement Code smell Severity
Functions and methods
should not have identical
implementations

Duplicate
Code

Major

Two branches in a
conditional structure
should not have exactly
the same implementation

Duplicate
Code

Major

String literals should not
be duplicated

Duplicate
Code

Critical

Functions should not have
too many lines of code

Long Method Major

Files should not have too
many lines of code

Large Class Major

Functions, methods and
lambdas should not have
too many parameters

Long
Parameter List

Major

Functions and methods
should not be empty

Speculative
Generality

Critical

Sections of code should
not be commented out

Speculative
Generality

Major

Unused function
parameters should be
removed

Speculative
Generality

Major

Unused local variables
should be removed

Speculative
Generality

Minor

Comments should not be
located at the end of lines
of code

Comments Minor

Track comments matching
a regular expression

Comments Major

Software Code Smells and Defects: An Empirical Investigation

573

With regard to identifying defects in a software
module/class, this can be more difficult than detecting
code smells. SonarQube can detect “bugs” in classes,
which are described in the SonarQube documentation
as “An issue that represents something wrong in the
code. If this has not broken yet, it will, and probably
at the worst possible moment. This needs to be fixed”.
An issue is described in the SonarQube
documentation as “when a piece of code does not
comply with a rule” and that “there are 3 types of
issue: Bugs, Code Smells and Vulnerabilities”. The
SonarQube documentation describes a ‘vulnerability’
as “a security related issue which represents a
backdoor for attackers”.

The simplest approach to identify defects could
on the surface be to just use an analysis using
SonarQube and to look at the ‘Bugs’ and
‘Vulnerabilities’ data generated, in a similar manner
to detecting code smells using SonarQube. However,
this would not be accurate because the SonarQube
definitions of ‘Bug’ and ‘Vulnerability’ are merely
predictions of defects, Many of defects could be false
positives. An alternative approach is to use the
GitHub REST API to retrieve all the issues related to
the code repository for the project in question.
However, this approach raises the problem of issues
on GitHub not having any direct link to a
module/class in the codebase. Pull requests on
GitHub do have files linked to them based on the files
that are edited as part of the pull request, so one
possible approach could be to use the GitHub REST
API to retrieve pull requests rather than issues. A
problem with this approach is that not every pull
request corresponds to a defect; some pull requests
correspond to new functionality being added or to
other changes that are not defects. Simply using pull
requests as a measure of defects could therefore lead
to the research accidentally investigating the
correlation of changes with code smells rather than
the correlation of defects with code smells. Some pull
requests have issues linked to them, however, and the
impact of this problem can be reduced by only
considering pull requests that have issues linked to
them and hence are to be used to fix defects. There
are still potential problems with this approach
because some ‘issues’ on GitHub can refer to new
functionality to be added rather than defects to be
fixed.

To reduce the impact of these problems, careful
consideration must be taken when choosing the
repositories to perform the experiments on. Projects
with a large number of issues and pull requests on
GitHub as well as having been in existence for a
prolonged period of time are more likely to be ‘stable’

so that the majority of their issues and pull requests
are related to defect fixing rather than adding new
functionality, meaning that such projects would be a
good choice. Some projects might not make use of
GitHub to track issues and instead use other bug-
tracking systems, and thus wouldn’t have any issues
‘officially’ linked to pull requests – meaning that such
projects would be a bad choice in this case. There is
also the fact that some repositories might be
inconsistent with linking issues to pull requests and
might not do it for every issue or pull request. On the
other hand, some repositories might not create an
issue for every pull request. When considering these
scenarios, it can be argued that it is difficult to find an
approach for detecting defects and linking them to
classes that would work for every repository.

After careful consideration of the benefits and
drawbacks of each approach, it was decided to use the
approach of using the GitHub REST API to retrieve
pull requests and considering a defect to be present in
each edited file for each pull request, while assuming
that each file corresponds to one class. This
assumption has the drawback of not considering inner
classes, because they are exist in the same file as their
containing class. This drawback was also encountered
and considered difficult to fix by D’Ambros et al.
(2010). Another drawback of this assumption is that
files that contain more than one class on the same
level will have all classes within considered as one.
However, inspection shows that files containing more
than one class are relatively rare, so the impact of this
is expected to be negligible. The repositories to
perform the experiments on must be chosen carefully
to ensure that they are suitable to use this approach of
defect detecting with – mainly, they must be projects
that started a relatively long time ago and thus have a
‘stable’ release, and they also must have a large set
and history of pull requests and files to allow
sufficient and reliable data to be gathered.

Table 3: Software systems investigated.

System Description
Zulip A team collaboration tool.
Superset A business intelligence web

application.
ECharts A charting and visualization library.
Zulip Mobile The official Zulip mobile client,

supporting both iOS and Android.

2.3 Choice of Projects for Study

Four open-source projects from GitHub were selected
to conduct the empirical investigations. These
software systems are detailed in Table 3.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

574

The choice of projects was driven by the
conclusions for suitable projects that were arrived at
previously in this paper. These are summarised as
follows.

2.3.1 Age of Project

Software repositories that have been in development
for a considerable amount of time are more likely to
have a ‘stable’ release and thus be mainly focused on
bug fixing and have enough issues and pull requests
to provide sufficient data for the experiments. Table
4 shows how many issues (both open and closed) and
pull requests (both open and closed) are associated
with each of the chosen projects and the date when
the oldest pull request of each project was closed, all
accurate at the time of writing.

Table 4: Size and age of selected software systems.2

Project Issues Pull
requests

First pull
request closed

Zulipa 7,095 14,805 25 Sep. 2015
Supersetb 8,021 10,791 23 Jul. 2015
EChartsc 15,495 1,388 3 Jun. 2013

Zulip
Mobiled 1,914 3,449 14 Aug. 2016

2.3.2 Tracking of Issues

Projects that keep track of their defects and issues
using GitHub (rather than other bug-tracking systems
such as JIRA or Bugzilla) are preferable to use to
gather data for the experiments. All of the selected
projects use the ‘Issues’ section on GitHub as the way
to track and record issues.

Figure 2: Overview of the steps carried out by
CodeCorrelator.

2.3.3 Gaps in Research

The identified gaps in research were projects written
mainly in the Python programming language, and
mobile applications. The majority (61.9%) of the

2 github.com/{zulip/zulipa|supersetb|echartsc|zulip/zulipmobiled}

Zulip code is written in Python, and Zulip Mobile is
a mobile application and is written mainly in
JavaScript. Superset is written mainly in TypeScript
(35.1% of the code) and Python (33.2% of the code).
The identified gaps in the research are covered by
experiments on these repositories. ECharts was also
selected for the empirical investigations because it
meets the other two recommendations for a suitable
project and it was decided to also use a project in a
language that has already been thoroughly
investigated, namely JavaScript.

3 METHODOLOGY

To answer the research question and provide data
collection, a tool, ‘CodeCorrelator’ was developed,.
The tool can be used to calculate the correlation of
code smells with defects at a class level. It is a
reasonable assumption to make that classes that are
larger will have, on average, more code smells and
more defects than classes that are smaller, simply
because they contain a larger quantity of code and
hence have more opportunities for code that is smelly
or that causes defects – and this observation could
lead to an unintended impression that code smells do
correlate with defects. To deal with this,
CodeCorrelator can also calculate the correlation on
a ‘per line’ basis.

An execution of CodeCorrelator (Figure 2) on a
project first uses the Sonarcloud API to retrieve data
on the classes within the project. This requires a
Sonarcloud analysis to be performed on the GitHub
repository of the project in question beforehand.
CodeCorrelator will process the data from the API
response to determine the folders that each class is in
and how many lines of code are in each class.
CodeCorrelator will then use the Sonarcloud API to
retrieve data about the code smells within the project.
CodeCorrelator will then use the GitHub REST API
to retrieve the defects of the project; as mentioned
previously, this will be done by retrieving data about
pull requests. CodeCorrelator will then process the
class data and the code smell data retrieved from the
Sonarcloud API to link each code smell to a class. The
data on defects retrieved from the GitHub REST API
will then be processed to link each defect to a class,
by using the GitHub REST API to retrieve more
detailed information about each individual pull
request that was retrieved previously and identifying
which files were edited in each pull request. Finally,
the results showing how many code smells and

Software Code Smells and Defects: An Empirical Investigation

575

defects are in each class, with or without a
comparison to how many lines of code are in the
corresponding class, will be outputted to a comma-
separated values (CSV) file, and a graph of defects
against code smells for each class will be generated.

Manual checking was carried out on the outputted
results to ensure that no irrelevant files were detected
as classes and hence mixed in with the analysis,
reducing the integrity and reliability of the results of
the experiments. For example, the experiments are
only concerned with production code and hence
analysis of test code is not desirable. Some of this
checking was automated; CodeCorrelator contains
logic to ignore any files that have the string ‘test’
contained in their name or path so that they are not
analysed. Manual checking was performed by
opening the generated CSV results files and removing
the records for any ‘test’ files that managed to escape
detection. Equally, the records for migrations files or
image files were also removed prior to generation of
results.

One important note is that some code smells are
more serious and undesirable than others. Hence, in
addition to using raw numbers of code smells, a
weighted score was used based on the ‘severity’
variable for a code smell as returned via the
Sonarcloud API. This weighting is similar to the
weights that Olbrich et al. (2010), assigned to
weighted defects which were based on the severity
levels provided by JIRA (which uses the same terms
for severity levels as the Sonarcloud API for code
smells, except for the lowest severity being referred
to as ‘trivial’ by JIRA but ‘Info’ by Sonarcloud), as
shown in Table 5.

Table 5: Code Smell Weightings.

Severity Level - Sonarcloud Weight

Blocker 16
Critical 8
Major 4
Minor 2
Info 1

4 RESULTS AND ANALYSIS

Table 6 shows a snippet of the number of code smells
and defects per class for the Zulip project. Due to
1,383 files being analysed, only the first five and the
last five when sorted alphabetically are displayed as a
sample. Figure 3 shows the scatter graph of defects
against code smells per class for each of Zulip, Zulip

Mobile, Superset and ECharts. All of these plots (a-
d) show large clusters of data points in the bottom-left
corners of the graphs and much more sparse spreads
of data points as they move away from the origin,
meaning that the vast majority of classes contain both
only a small number of code smells, if any, and only
a small number of defects, if any. Indeed, the snippet
of results in Table 6 shows six of the ten Zulip classes
presented containing zero code smells, with only ten
code smells combined between the ten classes shown.

Table 6: Sample Results for Zulip Project.

Class Code
smells

Defects

analytics/__init__.py 0 2
analytics/lib/__init__.py 0 5
analytics/lib/counts.py 4 90
analytics/lib/fixtures.py 2 21
analytics/lib/time_utils.py 0 10
… … …
zproject/prod_settings_template.py 2 137
zproject/sentry.py 0 12
zproject/settings.py 0 411
zproject/urls.py 2 327
zproject/wsgi.py 0 10

The results show a small positive correlation
between the number of code smells within a class and
the number of defects within a class for all four
analysed projects. The correlation for each project has
been calculated using the Pearson Product-Moment
Correlation Coefficient, presented in Table 7. A
correlation value close to 1 suggests a strong positive
correlation, while a correlation value close to -1
suggests a strong negative correlation. A correlation
coefficient close to 0 suggests no correlation exists.
The correlation values calculated from the experiments
conducted average at approximately 0.474, which
would indicate a weak positive correlation. This
implies that software modules/classes with more
smells do indeed tend to have more defects. However,
correlation values are not normally considered to be
important when the absolute value is less than 0.8.
From the experiments performed here, however, it is
seen that all four projects have a similar weak positive
correlation value.

Table 7: Correlation of code smells and defects.

Project Code smells /
defects correlation

Zulip 0.494
Zulip Mobile 0.357
Superset 0.460
ECharts 0.584

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

576

a. ‘Zulip’

b. ‘Zulip Mobile’

c. ‘Superset’

d. ‘ECharts’
Figure 3: Number of defects in each class in 4 systems
against the number of code smells in the class.

Several hypotheses can be formulated based on
the results. The Zulip Mobile project had the lowest

correlation between code smells and defects, with a
correlation value that was 0.103, or 22.4%, lower than
the next lowest correlation value, which was the
Superset project. This provides evidence that perhaps
code smells are not as impactful for mobile
applications as they are for non-mobile applications.

With regards to programming languages, there
did not seem to be a significant difference in the
correlation of code smells with defects within classes.
Zulip, mostly in Python and Superset, with significant
code written in Python were the analysed projects
with the second and third strongest positive
correlations between code smells and defects within
classes respectively; hence, Python was neither the
language with the most positive correlation or the
language with the least positive correlation.

With regards to the sizes of a project in terms of
the total number of lines of code that make it up, there
did not seem to be a significant difference in the
correlation of code smells with defects within classes
either. Table 8 shows the number of lines of code
within each of the four projects that were analysed.

Table 8: Project Sizes.

Project # Lines # Files Lines per
file

Zulip 406,597 1,383 310
Zulip
Mobile

126,491 572 221

Superset 1,687,013 3,213 525
ECharts 303,598 731 415

Larger projects with more lines of code, such as
Superset from our experiments, do not seem to have
a significant difference in the correlation of code
smells with defects within classes as smaller projects
with fewer lines of code, such as ECharts from our
experiments. Furthermore, the size of a class (shown
in Table 8 as the number of lines per file) does not
seem to have a significant impact on the correlation
of code smells with defects either. While it is true that
the project with the weakest correlation between code
smells and defects within the classes, Zulip Mobile,
was also found to be the project with the smallest
average class size in terms of the number of lines of
code, this relationship did not hold for the other
projects. For example, Superset had the largest
average class size in terms of the number of lines of
code but had the weakest correlation between code
smells and defects within each class, apart from Zulip
Mobile.

When weighting the code smells on severity level,
the results are similar to when looking at the raw
numbers of code smells, with all four projects

Software Code Smells and Defects: An Empirical Investigation

577

showing a weak positive correlation between code
smells and defects within classes. These results are
presented in Table 9 and visualized in Figure 4 for
each project.

Table 9: Correlation of code smells and defects.

Project Weighted Code smells /
defects correlation

Zulip 0.453
Zulip Mobile 0.405
Superset 0.472
ECharts 0.572

The average correlation value when weighting the
code smells was 0.476, which is similar to when the
code smells are not weighted. Zulip and ECharts have
a weaker correlation when weighting the code smells,
while Zulip Mobile and Superset have a stronger
correlation when weighting the code smells – but the
change in correlation for each of the four projects is
minimal. Ordering the projects from strongest
positive correlation to weakest positive correlation
gives a similar order when weighting the code smells
as when not weighting the code smells – with ECharts
as the strongest correlation between code smells and
defects and Zulip Mobile as the weakest, with Zulip
and Superset swapping their orders.

The similarity of the results when weighting the
code smells to the results when not weighting the
code smells indicates that the hypotheses and
observations observed earlier – such as code smells
are not as impactful for causing defects for mobile
applications as they are for non-mobile applications,
Python (and other programming languages too) not
having much impact on the correlation of code smells
with defects within classes, and the size of the
projects not having much impact on the correlation of
code smells with defects within classes, and there
always being a weak positive correlation between
code smells and defects within classes – still exist. It
can be additionally argued, based on these results,
that the severity of a code smell does not have much
impact on how many defects it causes.

If software classes with more smells tend to have
more defects.

5 DISCUSSION

Empirical investigations were conducted using a tool,
‘CodeCorrelator’, on four open-source software
systems to investigate the correlation between the
number of code smells in a module/class and the
number of defects in the module/class, to determine

the relationship and correlation between the number
of code smells in a class/module and the number of
defects in the class/module. Attempting to answer the
research question ‘Do software modules/classes with
more smells tend to have more defects?’

a. ‘Zulip’

b. ‘Zulip Mobile’

c. ‘Superset’

d. ‘ECharts’
Figure 4: Number of defects in each class in each project
against the weighted code smells in the class.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

578

5.1 Threats to Validity

Construct Validity: As stated previously, because of
the file-based nature of Sonarcloud and GitHub, the
assumption was made that each file corresponds to
one class, which is not always true. This means that
the code smell and defect data gathered for one class
could be code smell and defect data for several classes
merged. This threat and its consequences also apply
to inner classes which were not considered. One way
to avoid this problem could be to analyse the
description of pull requests, issues, or commit
messages to determine which class within a file is
affected by the defect (or code smell). Another threat
is in that each pull request was assumed to correspond
to defects, when in reality some pull requests
introduce new functionality to a project rather than
fixing defects. Even among issues marked as ‘bugs’,
there still could have been many that did not actually
correspond to a defect, as shown by Antoniol et al.
(2008) that a considerable percentage of problem
reports marked as ‘bugs’ are not related to corrective
maintenance. In future it may be a good idea to make
use of the approach proposed by Antoniol et al. to
filter out the ‘non-bugs’.

External Validity: Open-source software systems
only were investigated; it is possible that differences
between closed and open-source development could
alter the results of the experiments, as the rate of code
smells and/or defects may differ. Further although
choice of systems studied was informed by
knowledge of those systems, it cannot be claimed that
they are representative of all software systems.

Internal Validity: The usage of only Sonarcloud
to detect code smells also raises potential threats to
validity, because it might output some false positives
or false negatives. Another validity threat relates to
the code that was analysed; although both automated
and manual approaches were used to remove files
from the analysis that were not production code (such
as test code, migrations, image files, etc.), it is
possible without exhaustive searching that some
obsolete or discarded code may have escaped
filtering. It is also unlikely that the defect data
gathered is complete, because it is possible that there
were some defects that were not recorded or
discovered. Another threat to validity is that, despite
carrying out some experiments in which code smells
were weighted due to their severity, the defects were
not weighted due to severity levels and instead were
just considered as a raw number of defects, with any
potential ‘minor’ defects being treated the same as
any potential ‘blocker’ defects. This is because the
defect data was gathered using GitHub issues and pull

requests, and there is no ‘severity’ attribute available.
Using data from alternative bug tracking systems,
such as Bugzilla or JIRA, could resolve this but
requires considerably more effort and is left as future
work. In mitigation of this also, Ostrand et al. (2004)
have suggested that defect severity levels may be
unreliable because they are evaluated by humans and
thus can be subjective and inaccurate, sometimes
assigned because of political reasons and not related
to the actual bug itself. A defect can also have its
severity level unreliably increased to boost the
reputation of the developer who fixes it or be reported
to be more severe than it actually is so that it receives
extra focus and a quicker fix (D'Ambros, 2010).

6 CONCLUSIONS

In this study, empirical investigations were performed
using a the CodeCorrelator tool on four open-source
software systems to determine the relationship and
correlation between the number of code smells in a
module/class and the number of defects in the
module/class. The findings of the experiments were
in line with most of the studies analysed as part of the
literature review in Section 2 of this paper, as
software classes with more code smells did tend to
have more defects, and this held true for all four of
the software systems investigated, regardless of
platform (mobile or non-mobile), programming
language (Python or JavaScript), or size (such as
number of classes or number of lines of code). Thus,
null hypothesis H10 can be rejected. The findings
remained similar when weighting the code smells
using severity, so the null hypothesis H20 can also be
rejected. However, the correlation between code
smells and defects within classes was very weak in all
of the investigations, so while the answer to the
research question was found to be ‘yes’, it could be
argued that the evidence of a relationship between
code smells and defects within classes is not
particularly strong. This is in line with the findings in
Kaur (2020) who found the relationship between code
smells and failures inconclusive.

In future work, it would be important to complete
empirical investigations on many more software
systems, both open-source and closed-source. This
would ensure a higher chance of knowing if the
results found in this study still stand when performed
on a much wider range, variety, type, and quantity of
software systems, or if they are simply valid just for
the four specific software systems focused on in this
study. Alternatives to SonarQube may also be sought
since recent work has been critical of its rules and

Software Code Smells and Defects: An Empirical Investigation

579

how they translate to severity (Lenarduzzi et al,
2020). Another possibility for future work is
assessing the correlation of different types of code
smells with defects within classes to see which code
smells are the most impactful in terms of defects.
Another interesting avenue for exploration might be
to explore non-code ‘smells’ that can be detected
earlier in the software process, even as early as
project initiation and in requirements models (Greer
& Conradi, 2008) and how these might relate to
defects.

REFERENCES

Alkhaeir, T., & Walter, B. (2020). The effect of code smells
on the relationship between design patterns and defects.
IEEE Access, 9, 3360-3373.

Aman, H. (2012). An empirical analysis on fault-proneness
of well-commented modules. In 2012 Fourth
International Workshop on Empirical Software
Engineering in Practice (pp. 3-9). IEEE.

Bán, D., & Ferenc, R. (2014). Recognizing antipatterns and
analyzing their effects on software maintainability. In
International Conference on Computational Science
and Its Applications (pp. 337-352). Springer, Cham.

Cairo, A. S., Carneiro, G. D. F., & Monteiro, M. P. (2018).
The impact of code smells on software bugs: A
systematic literature review. Information, 9(11), 273.

Chouchane, M., Soui, M., & Ghedira, K. (2021). The
impact of the code smells of the presentation layer on
the diffuseness of aesthetic defects of Android apps.
Automated Software Engineering, 28(2), 1-29.

D'Ambros, M., Bacchelli, A. & Lanza, M. (2010). On the
impact of design flaws on software defects. In 2010
10th International Conference on Quality Software (pp.
23-31). IEEE.

Fontana, F. A., Ferme, V., Marino, A., Walter, B., &
Martenka, P. (2013). Investigating the impact of code
smells on system's quality: An empirical study on
systems of different application domains. In 2013 IEEE
International Conference on Software Maintenance (pp.
260-269). IEEE.

Fowler, M. (2018) Refactoring: Improving the Design of
Existing Code, Addison-Wesley Professional.

Garousi, V., Kucuk, B., & Felderer, M. (2018). What we
know about smells in software test code. IEEE
Software, 36(3), 61-73.

Gradišnik, M. I. T. J. A., & Hericko, M. (2018). Impact of
code smells on the rate of defects in software: A
literature review. In CEUR Workshop Proceedings
(Vol. 2217, pp. 27-30).

Greer, D., & Conradi, R. (2009). Software project initiation
and planning–an empirical study. IET software, 3(5),
356-368.

Kaur, A. (2020). A systematic literature review on
empirical analysis of the relationship between code
smells and software quality attributes. Archives of

Computational Methods in Engineering, 27(4), 1267-
1296.

Kessentini, M. (2019). Understanding the correlation
between code smells and software bugs. Available at
https://deepblue.lib.umich.edu/bitstream/handle/2027.
42/147342/CodeSmellsBugs.pdf; accessed 9-Jan.2023.

Lanza, M., & Marinescu, R. (2007). Object-oriented
metrics in practice: using software metrics to
characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business
Media.

Lenarduzzi, V., Lomio, F., Huttunen, H. & Taibi,D. (2020)
"Are SonarQube Rules Inducing Bugs?," In IEEE 27th
International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE.

Li, W., & Shatnawi, R. (2007). An empirical study of the
bad smells and class error probability in the post-release
object-oriented system evolution. Journal of systems
and software, 80(7), 1120-1128.

Mantyla, M., Vanhanen, J., & Lassenius, C. (2003). A
taxonomy and an initial empirical study of bad smells
in code. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings. (pp. 381-
384). IEEE.

Marinescu, R. (2001). Detecting design flaws via metrics in
object-oriented systems. In Proceedings 39th
International Conference and Exhibition on
Technology of Object-Oriented Languages and
Systems. TOOLS 39 (pp. 173-182). IEEE.

Marinescu, R., & Marinescu, C. (2011). Are the clients of
flawed classes (also) defect prone?. In 2011 IEEE 11th
International Working Conference on Source Code
Analysis and Manipulation (pp. 65-74). IEEE.

Olbrich, S. M., Cruzes, D. S., & Sjøberg, D. I. (2010). Are
all code smells harmful? A study of God Classes and
Brain Classes in the evolution of three open source
systems. In 2010 IEEE international conference on
software maintenance (pp. 1-10). IEEE.

Saboury, A., Musavi, P., Khomh, F., & Antoniol, G. (2017).
An empirical study of code smells in javascript projects.
In 2017 IEEE 24th international conference on software
analysis, evolution and reengineering (SANER) (pp.
294-305). IEEE.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., &
Bacchelli, A. (2018). On the relation of test smells to
software code quality. In 2018 IEEE international
conference on software maintenance and evolution
(ICSME) (pp. 1-12). IEEE.

Van Emden, E., & Moonen, L. (2002). Java quality
assurance by detecting code smells. In Ninth Working
Conference on Reverse Engineering, 2002.
Proceedings. (pp. 97-106). IEEE.

Yamashita, A., & Moonen, L. (2013). Do developers care
about code smells? An exploratory survey. In 2013 20th
working conference on reverse engineering (WCRE)
(pp. 242-251). IEEE.

Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y.,
Seaman, C., & Shull, F. (2014). Comparing four
approaches for technical debt identification. Software
Quality Journal, 22(3), 403-426.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

580

