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Abstract: Code smells indicate weaknesses in software design that may slow down development or increase the risk of 
bugs or failures in the future. This paper aims to investigate the correlation of code smells with defects within 
classes. The method used uses a tool to automatically detect code smells in selected projects and then assesses 
the correlation of these to the number of defects found in the code. Most existing articles determine that 
software modules/classes with more smells tend to have more defects. However, while the experiments in this 
paper covering a range of languages agreed with this, the correlation was found to be weak. There remains a 
need for further investigation of the types of code smells that tend to indicate or predict defects occurring. 
Future work will perform more detailed experiments by investigating a larger quantity and variety of software 
systems as well as more granular studies into types of code smell and defects arising. 

1 INTRODUCTION 

‘Code smells’ can be caused by poor design decisions 
taken when writing code due to, for example, tight 
deadlines or developer incompetence. The term, first 
proposed in 1999, describes decisions made in object-
oriented systems that are not compoatible with widely 
accepted principles of good object oriented design 
(Fowler, 2018). Code smells are not bugs and do not 
prevent software from functioning; rather they 
indicate problems in software design or code which 
makes software difficult to maintain (Kaur, 2020). 
There are 22 code smells defined by Fowler such as 
‘Long Method’, ‘Alternative Classes with Different 
Interfaces’ and ‘Message Chains’ (Fowler, 2018)   
and some additional ones that were not initially 
defined by Fowler, such as ‘Dead Code’. Some code 
smells (such as ‘Feature Envy’) exist in individual 
methods, some (such as ‘Lazy Class’) exist within 
individual classes, and some (such as ‘Inappropriate 
Intimacy’) exist in the relationships between classes. 
Mantyla et al. (2003) categorised the 22 Fowler-
defined code smells, and one additional code smell, 
into seven categories, namely: ‘bloaters’, ‘object-
orientation abusers’, ‘change preventers’, 
‘dispensables’, ‘encapsulators’, ‘couplers’, and 
‘others’. ‘Bloaters’ refer to methods and classes that 
have increased to such proportions that they are 
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especially difficult to work with; usually they 
accumulate over time as the program and codebase 
evolves, rather than showing up immediately. 
‘Object-Orientation Abusers’ refer to incomplete or 
incorrect applications of object-oriented 
programming principles. Descriptions of the other 
categories can be found in the taxonomy by Mantyla 
et al. (2003). 

Many studies have already been completed 
relating to code smells and their impact on various 
quality attributes, including reliability, 
maintainability, and testability. Code smells are 
mostly studied in production code (Zazworka et al., 
2014; Kaur, 2020; Bán & Ferenc, 2014; D'Ambros et 
al., 2010; Li & Shatnawi, 2007; Marinescu & 
Marinescu, 2011; Fontana et al., 2013; Alkhaeir & 
Walter, 2020; Kessentini, 2019; Olbrich et al. 2010; 
Aman, 2012; Lanza & Marinescu, 2007; Saboury et 
al., 2017), but have also been studied in test code  
(Spadini et al., 2018; Garousi et al., 2018). Surveys 
have also been conducted to discover the importance 
of code smells to developers and the reasons for 
developers placing a high or low importance on them 
(Yamashita & Moonen, 2013). 

The aim of this research is to empirically assess 
correlation of software code smells with software 
defects. The following research question will be 
addressed. 
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RQ. Do software modules/classes with more 
smells tend to have more defects? 
Our null hypotheses are therefore: 
H10: There is no correlation between the number of 
defects and the number of code smells.  
H20: There is no correlation between the number 
of defects and the severity of code smells. 

H20 is formulated because all code smells are not 
equal and thus, there is a need to determine the effect 
on defects, depending on how serious the code smells.  

The remainder of this paper is structured as 
follows. The next section provides a review of 
existing research articles. Section 3 describes the 
methodology, including the chosen strategies to 
detect code smells and defects and the reasoning used 
in their selection. Details are given of the projects 
chosen on which to conduct the empirical 
investigation, the experimental setup and the tool 
support used for the investigations. Section 4 presents 
and discusses the results of the experiments. The final 
section provides a discussion of the findings 
including threats to validity and some conclusions to 
the work as well as looking ahead to future work. 

2 BACKGROUND 

Intuitively, it might be expected that software 
modules/classes with more smells tend to have more 
defects and that, on average, the number of defects in 
a class/module would increase as the number of code 
smells in it increases. It would be expected that some 
code smells would have a stronger effect on the rate 
of defects than others, because there are many 
different types of code smells of a range of sizes and 
severities, so it is unlikely that all code smells would 
be of the same undesirability. It would also be 
expected that the correlation of defects with code 
smells would not be impacted by the platform of the 
system under investigation.  

2.1 Literature Review 

To gain insight into the areas studied relating code 
smells with defects, a review of recent papers was 
conducted. Only articles considering the correlation 
of code smells with defects were reviewed, using a 
mixture of reference snowballing on articles found 
using IEEE Xplore, Web of Knowledge and Google 
Scholar with a date filter of between 2018 and April 
2022. Abstracts of these articles where searched using 
the search string “code smell” AND (“defect” or 
“bug” or “issue”). This returned 4,840 papers of 

which 22 were included as being inside the scope of 
the study. Basic information about some of the 
selected articles is summarised in Table 1. 

Table 1: Selected Studies. 

Reference Study Type 
# 

systems 
studied 

# 
smells

studied
Bán & Ferenc, 2014 Experiment 34 8
D'Ambros et al., 2010 Experiment 6 5
Li & Shatnawi, 2007 Experiment 3 6
Marinescu & 
Marinescu, 2011

Case Study 3 4 

Olbrich et al. 2010 Experiment 3 2
Zazworka et al., 2014 Case Study 1 9
Fontana et al., 2013 Experiment 68 15
Aman, 2012 Experiment 3 1
Alkhaeir & Walter, 
2020

Experiment 10 10 

Kessentini, 2019 Experiment 3 11
Saboury et al., 2017 Case Study 5 12
Chouchane et al., 2021 Experiment 120 15

Each article in the review focused 
on various code smells, with some being studied 
more frequently than others. ‘Feature Envy’ was the 
most frequently investigated code smell with 
eight studies. ‘God Class’ was next most common 
covered by seven studies, while ‘Data Class’ was 
investigated in six of the papers. These were also the 
most frequently investigated in an existing systematic 
literature review (Kaur, 2020). Furthermore, of the 23 
code smells described in Mantyla et al.’s taxonomy of 
bad smells in code (2003), a number of them of them 
such as ‘Switch Statements’, ‘Primitive 
Obsession’ and ‘Incomplete Library Class’, were not 
studied at all in the sample papers. ‘Non-Fowler’ 
code smells not defined in Mantyla et al.’s  taxonomy 
(2003) are also rarely studied. Perhaps this is because 
of a potential lack of tools or techniques to detect 
them. Some articles focused on multiple different 
code smells (Fontana, 2013; Kessentini, 2019; 
Saboury et al. 2017; Chouchane et al., 2021), 
whereas others focused on just one or two in more 
detail (Olbrich et al. 2010; Aman, 2012). 

A common approach in papers is to use at least 
one open-source software system for analysis. There 
did not seem to be any obvious correlation between 
the number of code smells studied and the number of 
software systems studied, as shown in Figure 1. 
Popular systems included ‘Eclipse’ (D'Ambros et al. 
2010; Li & Shatnawi, 2007;  Marinescu & Marinescu, 
2011; Aman, 2012) and ‘Lucene’ (Bán & 
Ferenc,2014; D'Ambros et al;, 2010; Alkhaeir & 
Walter, 2020; Olbrich et al., 2010). Java systems were 
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the most analysed, but notably there was not much 
coverage of systems written in Python, for example. 
Mobile applications were also not analysed to a great 
extent, with just one study (Chouchane et al., 2021).  

 
Figure 1: Number of software systems studied and number 
of code smells studied in research papers. 

Articles considered were restricted to 
those that collected data on code smells and defects 
for the system(s) they included.  Regarding code 
smell detection, some articles defined their own 
metrics and models (Bán & Ferenc, 2014; D'Ambros 
et al., 2010; Fontana et al., 2013; Alkhaeir & Walter, 
2020). Others used existing models (Li & Shatnawi, 
2007; Kessentini, 2019; Olbrich et al., 2010; Saboury 
et al. 2017),  such as the ones defined by Marinescu 
& Marinescu (2011). In some cases existing tools 
such as iPlasma (Fontana et al., 
2013), inCode (Alkhaeir & Walter, 2020) 
or CodeVizard (Zazworka et al., 2014) have been 
used and paper used a manual detection method 
(Marinescu & Marinescu, 2011). Some researchers 
used several of these approaches because certain 
detection strategies are more suited to particular code 
smells (Fontana et al., 2013).  

 In terms of achieving bug or defect detection, 
some articles gathered bug information from Bugzilla 
(D'Ambros et a.., 2010; Li & Shatnawi, 2007; 
Marinescu & Marinescu, 2011; Kessentini, 2019; 
Olbrich et al., 2010) and some from JIRA (D'Ambros 
et al., 2010; Olbrich et al., 2010). GitHub is also 
popular (Saboury et al., 2017), using tools such 
as FindBugs (e.g. Zazworka et al., 2014). The 
PROMISE database also features prominently 
(Alkhaeir & Walter, 2020; Aman, 2012; Bán & 
Ferenc, 2014). There are various options for data on 
systems’ bugs, defects, or issues to be stored, so the 
sources used to detect bugs, defects or issues depend 
on the system under consideration. Some articles also 
took the recorded severity levels of the bugs into 
account to weight the issues (Li & Shatnawi, 2017; 
Kessentini, 2019; Olbrich et al., 2010). On the other 

hand, D’Ambros et al. (2010) decided against this 
because of the subjective and potentially biased 
nature of severity ratings.  

To assess the correlation of code smells with 
defects within classes, each article had to link each 
defect to a class. The PROMISE database contains the 
code of numerous open-source applications and their 
corresponding bug data at a class level (Bán & 
Ferenc, 2014), so little work is required to link defects 
to classes. Some articles examined the versioning 
history for the systems to find commits that addressed 
certain bugs based on if the ID or the bug issue is 
contained in the commit message (Zazworka et al., 
2014; Mantyla et al., 2003; Olbrich et al., 2010). 
Defects were then linked to classes based on which 
classes were modified in the commits. A drawback of 
this approach has been identified in that it was unable 
to detect inner classes (Zazworka et al., 2014; 
D'Ambros et al., 2010). Another approach was to use 
the changelog of a system to determine which files 
were changed and which bugs fixed in each release 
(Li & Shatnawi, 2007).  

Each article was analysed for relevance to the 
research question. Most of the articles found that 
software modules/classes with more smells tend to 
have more defects. However, some articles 
determined that no code smell has more of a 
correlation with defects in the class containing it than 
any other code smell (D'Ambros et al., 2010; Alkhaeir 
& Walter, 2020). Some researchers report that some 
code smells, particularly ‘Shotgun Surgery’ and ‘God 
Class’, have more of a positive correlation with 
defects in the class containing them than other code 
smells (Zazworka et al., 2014; Li & Shatnawi, 2007; 
Kessentini, 2019). Despite this finding about ‘God 
Classes’, Olbrich et al. (2010) found that ‘God 
Classes’ and ‘Brain Classes’ may only correlate 
positively with defects once they both exceed a 
certain size and proportion to other classes in the 
system. Alkhaeir and Walter (2020) determined that 
the presence of code smells increases the number of 
defects more than an absence of code smells 
decreases the number of defects. Marinescu & 
Marinescu (2011) determined that classes containing 
the code smells that they studied, 
including ‘God Class’, do not tend to have more 
defects. In an existing literature review Gradišnik and 
Heričko (2018) determined that software systems 
with more code smells tend to have more defects, but 
this does not hold for individual classes. Cairo et al. 
(2018) concluded that those classes affected by code 
smells are more disposed to failures than classes that 
are unaffected by code smells. Although it appears 
that software modules/classes with more smells tend 
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to have more defects, certain aspects of the existing 
literature are contradictory. 

2.2 Detecting Code Smells and Defects 

The detection of code smells in a software codebase 
can either be performed manually or automatically 
using a tool. Manual detection is considered to be the 
most reliable way of identifying code smells (Fowler, 
2018), but has disadvantages such as being very time-
consuming (Marinescu, 2001; Mantyla et al., 2003) 
and in that human evaluators have differing 
perceptions on what is a code smell or the exact 
categorization of a code smell (Mantyla et al., 2003). 
One reason for this could be differing experience 
levels. For example, Mäntylä et al. (2003) found that 
developers with more experience tended to evaluate 
software as having fewer code smells than developers 
with less experience and that differences in detection 
were larger for some code smells (such as ‘Switch 
Statements’) than others. Lead developers tended to 
identify more structural code smells, whereas regular 
developers tended to identify more code smells at the 
code level. Various studies have been performed 
comparing different automated detection strategies of 
code smells with manual detection of code smells 
(Van Emden & Moonen, 2002; Mantyla et al., 2003) 
and mostly conclude that automated detection is a 
good alternative to manual detection due to 
automated detection strategies scaling much better 
and being of similar precision and recall as manual 
detection (Olbrich et al., 2010).  

For this study, SonarQube1 was selected to detect 
code smells. SonarQube supports 29 programming 
languages including Python and Swift. Mobile 
applications were identified as a gap in existing 
research and thus an area to focus on in these 
experiments, so the support of Swift by SonarQube is 
attractive since Swift is commonly used to develop 
iOS mobile applications. SonarQube identifies a code 
smell as: “A maintainability-related issue in the code. 
Leaving it as-is means that at best maintainers will 
have a harder time than they should making changes 
to the code. At worst, they’ll be so confused by the 
state of the code that they’ll introduce additional 
errors as they make changes. This, alludes to a belief 
that software modules/classes with more smells do 
indeed tend to have more defects. Calls can be made 
to the ‘Sonarcloud’ API to conduct an analysis of a 
codebase. 

SonarQube identifies code smells and describes 
them using statements, which can be mapped to code 

 
1 https://www.sonarqube.org/) 

smells described in Mantyla et al.’s (2003) taxonomy. 
SonarQube identifies code smells by calculating 
metrics and comparing them to set threshold values, 
with a code smell being reported if the threshold is 
exceeded. The statements and the corresponding code 
smells in SonarQube vary depending on the language 
of being analysed. Table 2 shows a sample of the 
statements that can be raised by a SonarQube analysis 
and which of the code smells from the taxonomy they 
correspond to, and the severity level (‘Info’, ‘Minor’, 
‘Major’, ‘Critical’ or ‘Blocker’) assigned to them. 
Several statements can correspond to the same type 
of code smell and not every code smell of the same 
type is assigned the same ‘severity’ level. SonarQube 
can return an assessment of different severities of the 
same code smell and identify the exact cause of it. 

Table 2: Example SonarQube statements and code smell 
meaning. 

Statement Code smell Severity 
Functions and methods 
should not have identical 
implementations 

Duplicate 
Code 

Major 

Two branches in a 
conditional structure 
should not have exactly 
the same implementation 

Duplicate 
Code 

Major 

String literals should not 
be duplicated 

Duplicate 
Code 

Critical 

Functions should not have 
too many lines of code 

Long Method Major 

Files should not have too 
many lines of code 

Large Class Major 

Functions, methods and 
lambdas should not have 
too many parameters 

Long 
Parameter List 

Major 

Functions and methods 
should not be empty 

Speculative 
Generality 

Critical 

Sections of code should 
not be commented out 

Speculative 
Generality 

Major 

Unused function 
parameters should be 
removed 

Speculative 
Generality 

Major 

Unused local variables 
should be removed 

Speculative 
Generality 

Minor 

Comments should not be 
located at the end of lines 
of code 

Comments Minor 

Track comments matching 
a regular expression 

Comments Major 
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With regard to identifying defects in a software 
module/class, this can be more difficult than detecting 
code smells. SonarQube can detect “bugs” in classes, 
which are described in the SonarQube documentation 
as “An issue that represents something wrong in the 
code. If this has not broken yet, it will, and probably 
at the worst possible moment. This needs to be fixed”. 
An issue is described in the SonarQube 
documentation as “when a piece of code does not 
comply with a rule” and that “there are 3 types of 
issue: Bugs, Code Smells and Vulnerabilities”. The 
SonarQube documentation describes a ‘vulnerability’ 
as “a security related issue which represents a 
backdoor for attackers”.  

The simplest approach to identify defects could 
on the surface be to just use an analysis using 
SonarQube and to look at the ‘Bugs’ and 
‘Vulnerabilities’ data generated, in a similar manner 
to detecting code smells using SonarQube. However, 
this would not be accurate because the SonarQube 
definitions of ‘Bug’ and ‘Vulnerability’ are merely 
predictions of defects, Many of defects could be false 
positives. An alternative approach is to use the 
GitHub REST API to retrieve all the issues related to 
the code repository for the project in question. 
However, this approach raises the problem of issues 
on GitHub not having any direct link to a 
module/class in the codebase. Pull requests on 
GitHub do have files linked to them based on the files 
that are edited as part of the pull request, so one 
possible approach could be to use the GitHub REST 
API to retrieve pull requests rather than issues. A 
problem with this approach is that not every pull 
request corresponds to a defect; some pull requests 
correspond to new functionality being added or to 
other changes that are not defects. Simply using pull 
requests as a measure of defects could therefore lead 
to the research accidentally investigating the 
correlation of changes with code smells rather than 
the correlation of defects with code smells. Some pull 
requests have issues linked to them, however, and the 
impact of this problem can be reduced by only 
considering pull requests that have issues linked to 
them and hence are to be used to fix defects. There 
are still potential problems with this approach 
because some ‘issues’ on GitHub can refer to new 
functionality to be added rather than defects to be 
fixed. 

To reduce the impact of these problems, careful 
consideration must be taken when choosing the 
repositories to perform the experiments on. Projects 
with a large number of issues and pull requests on 
GitHub as well as having been in existence for a 
prolonged period of time are more likely to be ‘stable’ 

so that the majority of their issues and pull requests 
are related to defect fixing rather than adding new 
functionality, meaning that such projects would be a 
good choice. Some projects might not make use of 
GitHub to track issues and instead use other bug-
tracking systems, and thus wouldn’t have any issues 
‘officially’ linked to pull requests – meaning that such 
projects would be a bad choice in this case. There is 
also the fact that some repositories might be 
inconsistent with linking issues to pull requests and 
might not do it for every issue or pull request. On the 
other hand, some repositories might not create an 
issue for every pull request. When considering these 
scenarios, it can be argued that it is difficult to find an 
approach for detecting defects and linking them to 
classes that would work for every repository. 

After careful consideration of the benefits and 
drawbacks of each approach, it was decided to use the 
approach of using the GitHub REST API to retrieve 
pull requests and considering a defect to be present in 
each edited file for each pull request, while assuming 
that each file corresponds to one class. This 
assumption has the drawback of not considering inner 
classes, because they are exist in the same file as their 
containing class. This drawback was also encountered 
and considered difficult to fix by D’Ambros et al. 
(2010). Another drawback of this assumption is that 
files that contain more than one class on the same 
level will have all classes within considered as one. 
However, inspection shows that files containing more 
than one class are relatively rare, so the impact of this 
is expected to be negligible. The repositories to 
perform the experiments on must be chosen carefully 
to ensure that they are suitable to use this approach of 
defect detecting with – mainly, they must be projects 
that started a relatively long time ago and thus have a 
‘stable’ release, and they also must have a large set 
and history of pull requests and files to allow 
sufficient and reliable data to be gathered. 

Table 3: Software systems investigated. 

System Description 
Zulip A team collaboration tool. 
Superset A business intelligence web 

application. 
ECharts A charting and visualization library. 
Zulip Mobile The official Zulip mobile client, 

supporting both iOS and Android. 

2.3 Choice of Projects for Study 

Four open-source projects from GitHub were selected 
to conduct the empirical investigations. These 
software systems are detailed in Table 3. 
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The choice of projects was driven by the 
conclusions for suitable projects that were arrived at 
previously in this paper. These are summarised as 
follows. 

2.3.1 Age of Project 

Software repositories that have been in development 
for a considerable amount of time are more likely to 
have a ‘stable’ release and thus be mainly focused on 
bug fixing and have enough issues and pull requests 
to provide sufficient data for the experiments. Table 
4 shows how many issues (both open and closed) and 
pull requests (both open and closed) are associated 
with each of the chosen projects and the date when 
the oldest pull request of each project was closed, all 
accurate at the time of writing.  

Table 4: Size and age of selected software systems.2 

Project Issues Pull 
requests 

First pull 
request closed

Zulipa 7,095 14,805 25 Sep. 2015
Supersetb 8,021 10,791 23 Jul. 2015
EChartsc 15,495 1,388 3 Jun. 2013

Zulip 
Mobiled 1,914 3,449 14 Aug. 2016 

2.3.2 Tracking of Issues 

Projects that keep track of their defects and issues 
using GitHub (rather than other bug-tracking systems 
such as JIRA or Bugzilla) are preferable to use to 
gather data for the experiments. All of the selected 
projects use the ‘Issues’ section on GitHub as the way 
to track and record issues. 

 
Figure 2: Overview of the steps carried out by 
CodeCorrelator. 

2.3.3 Gaps in Research 

The identified gaps in research were projects written 
mainly in the Python programming language, and 
mobile applications. The majority (61.9%) of the 

 
2 github.com/{zulip/zulipa|supersetb|echartsc|zulip/zulipmobiled} 

Zulip code is written in Python, and Zulip Mobile is 
a mobile application and is written mainly in 
JavaScript. Superset is written mainly in TypeScript 
(35.1% of the code) and Python (33.2% of the code). 
The identified gaps in the research are covered by 
experiments on these repositories. ECharts was also 
selected for the empirical investigations because it 
meets the other two recommendations for a suitable 
project and it was decided to also use a project in a 
language that has already been thoroughly 
investigated, namely JavaScript. 

3 METHODOLOGY 

To answer the research question and provide data 
collection, a tool, ‘CodeCorrelator’ was developed,. 
The tool can be used to calculate the correlation of 
code smells with defects at a class level. It is a 
reasonable assumption to make that classes that are 
larger will have, on average, more code smells and 
more defects than classes that are smaller, simply 
because they contain a larger quantity of code and 
hence have more opportunities for code that is smelly 
or that causes defects – and this observation could 
lead to an unintended impression that code smells do 
correlate with defects. To deal with this, 
CodeCorrelator can also calculate the correlation on 
a ‘per line’ basis. 

An execution of CodeCorrelator (Figure 2) on a 
project first uses the Sonarcloud API to retrieve data 
on the classes within the project. This requires a 
Sonarcloud analysis to be performed on the GitHub 
repository of the project in question beforehand. 
CodeCorrelator will process the data from the API 
response to determine the folders that each class is in 
and how many lines of code are in each class. 
CodeCorrelator will then use the Sonarcloud API to 
retrieve data about the code smells within the project. 
CodeCorrelator will then use the GitHub REST API 
to retrieve the defects of the project; as mentioned 
previously, this will be done by retrieving data about 
pull requests. CodeCorrelator will then process the 
class data and the code smell data retrieved from the 
Sonarcloud API to link each code smell to a class. The 
data on defects retrieved from the GitHub REST API 
will then be processed to link each defect to a class, 
by using the GitHub REST API to retrieve more 
detailed information about each individual pull 
request that was retrieved previously and identifying 
which files were edited in each pull request. Finally, 
the results showing how many code smells and 
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defects are in each class, with or without a 
comparison to how many lines of code are in the 
corresponding class, will be outputted to a comma-
separated values (CSV) file, and a graph of defects 
against code smells for each class will be generated.  

Manual checking was carried out on the outputted 
results to ensure that no irrelevant files were detected 
as classes and hence mixed in with the analysis, 
reducing the integrity and reliability of the results of 
the experiments. For example, the experiments are 
only concerned with production code and hence 
analysis of test code is not desirable. Some of this 
checking was automated; CodeCorrelator contains 
logic to ignore any files that have the string ‘test’ 
contained in their name or path so that they are not 
analysed. Manual checking was performed by 
opening the generated CSV results files and removing 
the records for any ‘test’ files that managed to escape 
detection. Equally, the records for migrations files or 
image files were also removed prior to generation of 
results. 

One important note is that some code smells are 
more serious and undesirable than others. Hence, in 
addition to using raw numbers of code smells, a 
weighted score was used based on the ‘severity’ 
variable for a code smell as returned via the 
Sonarcloud API. This weighting is similar to the 
weights that Olbrich et al. (2010), assigned to 
weighted defects which were based on the severity 
levels provided by JIRA (which uses the same terms 
for severity levels as the Sonarcloud API for code 
smells, except for the lowest severity being referred 
to as ‘trivial’ by JIRA but ‘Info’ by Sonarcloud), as 
shown in Table 5. 

Table 5: Code Smell Weightings. 

Severity Level - Sonarcloud Weight 

Blocker 16
Critical 8
Major 4
Minor 2 
Info 1

4 RESULTS AND ANALYSIS 

Table 6 shows a snippet of the number of code smells 
and defects per class for the Zulip project. Due to 
1,383 files being analysed, only the first five and the 
last five when sorted alphabetically are displayed as a 
sample. Figure 3 shows the scatter graph of defects 
against code smells per class for each of Zulip, Zulip 

Mobile, Superset and ECharts. All of these plots (a-
d) show large clusters of data points in the bottom-left 
corners of the graphs and much more sparse spreads 
of data points as they move away from the origin, 
meaning that the vast majority of classes contain both 
only a small number of code smells, if any, and only 
a small number of defects, if any. Indeed, the snippet 
of results in Table 6 shows six of the ten Zulip classes 
presented containing zero code smells, with only ten 
code smells combined between the ten classes shown. 

Table 6: Sample Results for Zulip Project. 

Class Code 
smells 

Defects

analytics/__init__.py 0 2 
analytics/lib/__init__.py 0 5 
analytics/lib/counts.py 4 90
analytics/lib/fixtures.py 2 21
analytics/lib/time_utils.py 0 10
… … …
zproject/prod_settings_template.py 2 137
zproject/sentry.py 0 12
zproject/settings.py 0 411
zproject/urls.py 2 327
zproject/wsgi.py 0 10

The results show a small positive correlation 
between the number of code smells within a class and 
the number of defects within a class for all four 
analysed projects. The correlation for each project has 
been calculated using the Pearson Product-Moment 
Correlation Coefficient, presented in Table 7. A 
correlation value close to 1 suggests a strong positive 
correlation, while a correlation value close to -1 
suggests a strong negative correlation. A correlation 
coefficient close to 0 suggests no correlation exists. 
The correlation values calculated from the experiments 
conducted average at approximately 0.474, which 
would indicate a weak positive correlation. This 
implies that software modules/classes with more 
smells do indeed tend to have more defects. However, 
correlation values are not normally considered to be 
important when the absolute value is less than 0.8. 
From the experiments performed here, however, it is 
seen that all four projects have a similar weak positive 
correlation value. 

Table 7: Correlation of code smells and defects. 

Project Code smells /  
defects correlation 

Zulip 0.494 
Zulip Mobile 0.357 
Superset 0.460 
ECharts 0.584 
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a. ‘Zulip’ 
 

b. ‘Zulip Mobile’ 
 

c. ‘Superset’ 
 

d. ‘ECharts’ 
Figure 3: Number of defects in each class in 4 systems 
against the number of code smells in the class. 

Several hypotheses can be formulated based on 
the results. The Zulip Mobile project had the lowest 

correlation between code smells and defects, with a 
correlation value that was 0.103, or 22.4%, lower than 
the next lowest correlation value, which was the 
Superset project. This provides evidence that perhaps 
code smells are not as impactful for mobile 
applications as they are for non-mobile applications. 

With regards to programming languages, there 
did not seem to be a significant difference in the 
correlation of code smells with defects within classes. 
Zulip, mostly in Python and Superset, with significant 
code written in Python were the analysed projects 
with the second and third strongest positive 
correlations between code smells and defects within 
classes respectively; hence, Python was neither the 
language with the most positive correlation or the 
language with the least positive correlation. 

With regards to the sizes of a project in terms of 
the total number of lines of code that make it up, there 
did not seem to be a significant difference in the 
correlation of code smells with defects within classes 
either. Table 8 shows the number of lines of code 
within each of the four projects that were analysed. 

Table 8: Project Sizes. 

Project # Lines # Files Lines per 
file 

Zulip 406,597 1,383 310 
Zulip 
Mobile 

126,491 572 221 

Superset 1,687,013 3,213 525 
ECharts 303,598 731 415 

Larger projects with more lines of code, such as 
Superset from our experiments, do not seem to have 
a significant difference in the correlation of code 
smells with defects within classes as smaller projects 
with fewer lines of code, such as ECharts from our 
experiments. Furthermore, the size of a class (shown 
in Table 8 as the number of lines per file) does not 
seem to have a significant impact on the correlation 
of code smells with defects either. While it is true that 
the project with the weakest correlation between code 
smells and defects within the classes, Zulip Mobile, 
was also found to be the project with the smallest 
average class size in terms of the number of lines of 
code, this relationship did not hold for the other 
projects. For example, Superset had the largest 
average class size in terms of the number of lines of 
code but had the weakest correlation between code 
smells and defects within each class, apart from Zulip 
Mobile.  

When weighting the code smells on severity level, 
the results are similar to when looking at the raw 
numbers of code smells, with all four projects 
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showing a weak positive correlation between code 
smells and defects within classes. These results are 
presented in Table 9 and visualized in Figure 4 for 
each project. 

Table 9: Correlation of code smells and defects. 

Project  Weighted Code smells / 
defects correlation 

Zulip 0.453 
Zulip Mobile 0.405 
Superset 0.472 
ECharts 0.572 

The average correlation value when weighting the 
code smells was 0.476, which is similar to when the 
code smells are not weighted. Zulip and ECharts have 
a weaker correlation when weighting the code smells, 
while Zulip Mobile and Superset have a stronger 
correlation when weighting the code smells – but the 
change in correlation for each of the four projects is 
minimal. Ordering the projects from strongest 
positive correlation to weakest positive correlation 
gives a similar order when weighting the code smells 
as when not weighting the code smells – with ECharts 
as the strongest correlation between code smells and 
defects and Zulip Mobile as the weakest, with Zulip 
and Superset swapping their orders. 

The similarity of the results when weighting the 
code smells to the results when not weighting the 
code smells indicates that the hypotheses and 
observations observed earlier – such as code smells 
are not as impactful for causing defects for mobile 
applications as they are for non-mobile applications, 
Python (and other programming languages too) not 
having much impact on the correlation of code smells 
with defects within classes, and the size of the 
projects not having much impact on the correlation of 
code smells with defects within classes, and there 
always being a weak positive correlation between 
code smells and defects within classes – still exist. It 
can be additionally argued, based on these results, 
that the severity of a code smell does not have much 
impact on how many defects it causes. 

If software classes with more smells tend to have 
more defects. 

5 DISCUSSION 

Empirical investigations were conducted using a tool, 
‘CodeCorrelator’, on four open-source software 
systems to investigate the correlation between the 
number of code smells in a module/class and the 
number of defects in the module/class, to determine 

the relationship and correlation between the number 
of code smells in a class/module and the number of 
defects in the class/module. Attempting to answer the 
research question ‘Do software modules/classes with 
more smells tend to have more defects?’ 

a. ‘Zulip’ 

b. ‘Zulip Mobile’ 

c. ‘Superset’ 

 

d. ‘ECharts’ 
Figure 4: Number of defects in each class in each project 
against the weighted code smells in the class. 
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5.1 Threats to Validity 

Construct Validity: As stated previously, because of 
the file-based nature of Sonarcloud and GitHub, the 
assumption was made that each file corresponds to 
one class, which is not always true. This means that 
the code smell and defect data gathered for one class 
could be code smell and defect data for several classes 
merged. This threat and its consequences also apply 
to inner classes which were not considered. One way 
to avoid this problem could be to analyse the 
description of pull requests, issues, or commit 
messages to determine which class within a file is 
affected by the defect (or code smell). Another threat 
is in that each pull request was assumed to correspond 
to defects, when in reality some pull requests 
introduce new functionality to a project rather than 
fixing defects. Even among issues marked as ‘bugs’, 
there still could have been many that did not actually 
correspond to a defect, as shown by Antoniol et al. 
(2008) that a considerable percentage of problem 
reports marked as ‘bugs’ are not related to corrective 
maintenance. In future it may be a good idea to make 
use of the approach proposed by Antoniol et al. to 
filter out the ‘non-bugs’. 

External Validity: Open-source software systems 
only were investigated; it is possible that differences 
between closed and open-source development could 
alter the results of the experiments, as the rate of code 
smells and/or defects may differ. Further although 
choice of systems studied was informed by 
knowledge of those systems, it cannot be claimed that 
they are representative of all software systems.  

Internal Validity: The usage of only Sonarcloud 
to detect code smells also raises potential threats to 
validity, because it might output some false positives 
or false negatives. Another validity threat relates to 
the code that was analysed; although both automated 
and manual approaches were used to remove files 
from the analysis that were not production code (such 
as test code, migrations, image files, etc.), it is 
possible without exhaustive searching that some 
obsolete or discarded code may have escaped 
filtering. It is also unlikely that the defect data 
gathered is complete, because it is possible that there 
were some defects that were not recorded or 
discovered. Another threat to validity is that, despite 
carrying out some experiments in which code smells 
were weighted due to their severity, the defects were 
not weighted due to severity levels and instead were 
just considered as a raw number of defects, with any 
potential ‘minor’ defects being treated the same as 
any potential ‘blocker’ defects. This is because the 
defect data was gathered using GitHub issues and pull 

requests, and there is no ‘severity’ attribute available. 
Using data from alternative bug tracking systems, 
such as Bugzilla or JIRA, could resolve this but 
requires considerably more effort and is left as future 
work. In mitigation of this also, Ostrand et al. (2004) 
have suggested that defect severity levels may be 
unreliable because they are evaluated by humans and 
thus can be subjective and inaccurate, sometimes 
assigned because of political reasons and not related 
to the actual bug itself. A defect can also have its 
severity level unreliably increased to boost the 
reputation of the developer who fixes it or be reported 
to be more severe than it actually is so that it receives 
extra focus and a quicker fix (D'Ambros, 2010).  

6 CONCLUSIONS 

In this study, empirical investigations were performed 
using a the CodeCorrelator tool on four open-source 
software systems to determine the relationship and 
correlation between the number of code smells in a 
module/class and the number of defects in the 
module/class. The findings of the experiments were 
in line with most of the studies analysed as part of the 
literature review in Section 2 of this paper, as 
software classes with more code smells did tend to 
have more defects, and this held true for all four of 
the software systems investigated, regardless of 
platform (mobile or non-mobile), programming 
language (Python or JavaScript), or size (such as 
number of classes or number of lines of code). Thus, 
null hypothesis H10 can be rejected. The findings 
remained similar when weighting the code smells 
using severity, so the null hypothesis H20 can also be 
rejected. However, the correlation between code 
smells and defects within classes was very weak in all 
of the investigations, so while the answer to the 
research question was found to be ‘yes’, it could be 
argued that the evidence of a relationship between 
code smells and defects within classes is not 
particularly strong. This is in line with the findings in 
Kaur (2020) who found the relationship between code 
smells and failures inconclusive. 

In future work, it would be important to complete 
empirical investigations on many more software 
systems, both open-source and closed-source. This 
would ensure a higher chance of knowing if the 
results found in this study still stand when performed 
on a much wider range, variety, type, and quantity of 
software systems, or if they are simply valid just for 
the four specific software systems focused on in this 
study. Alternatives to SonarQube may also be sought 
since recent work has been critical of its rules and 
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how they translate to severity (Lenarduzzi  et al, 
2020). Another possibility for future work is 
assessing the correlation of different types of code 
smells with defects within classes to see which code 
smells are the most impactful in terms of defects. 
Another interesting avenue for exploration might be 
to explore non-code ‘smells’ that can be detected 
earlier in the software process, even as early as 
project initiation and in requirements models (Greer 
& Conradi, 2008) and how these might relate to 
defects. 
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