
Sophos: A Framework for Application Orchestration in the
Cloud-to-Edge Continuum

Angelo Marchese a and Orazio Tomarchio b

Dept. of Electrical Electronic and Computer Engineering, University of Catania, Catania, Italy

Keywords: Cloud-to-Edge Continuum, Containers, Kubernetes Scheduler, Resource-Aware Scheduling, Network-Aware
Scheduling, Orchestration.

Abstract: Orchestrating distributed applications on the Cloud-to-Edge continuum is a challenging task, because of the
continuously varying node computational resources availability and node-to-node network latency and band-
width on Edge infrastructure. Although Kubernetes is today the de-facto standard for container orchestration
on Cloud data centers, its orchestration and scheduling strategy is not suitable for the management of time
critical applications on Edge environments because it does not take into account current infrastructure state
during its scheduling decisions. In this work, we present Sophos, a framework that runs on top of the Kuber-
netes platform in order to implement an effective resource and network-aware microservices scheduling and
orchestration strategy. In particular, Sophos extends the Kubernetes control plane with a cluster monitor that
monitors the current state of the application execution environment, an application configuration controller
that continuously tunes the application configuration based on telemetry data and a custom scheduler that de-
termines the placement for each microservice based on the run time infrastructure and application states. An
evaluation of the proposed framework is presented by comparing it with the default Kubernetes orchestration
and scheduling strategy.

1 INTRODUCTION

Modern applications such as Internet of Things (IoT),
data analytics, video streaming, process control and
augmented reality services demand strict quality of
service (QoS) requirements, especially in terms of
response time and throughput. The orchestration of
such applications is a complex problem to deal with
(Oleghe, 2021; Calcaterra et al., 2020). Traditional
Cloud computing paradigm does not satisfy properly
the new computational demands of the applications,
characterized by the need for a nearby computation
paradigm. Edge computing has emerged as an in-
novative paradigm able to take advantage of this dis-
tributed and close to the end user processing capabil-
ities, thus complementing the Cloud computing ones
(Varghese et al., 2021). By combining the Cloud and
Edge computing paradigms both the high computa-
tional resources of the Cloud and the close to the end
user processing capabilities of the Edge are used for
the execution of distributed applications.

a https://orcid.org/0000-0003-2114-3839
b https://orcid.org/0000-0003-4653-0480

Kubernetes1 is a widely adopted orchestration
platform that supports the deployment, scheduling
and management of containerized applications (Burns
et al., 2016). However, Kubernetes has not been
designed to work in geo-distributed and heteroge-
neous clusters such as the aforementioned Cloud-
Edge infrastructures (Kayal, 2020; Manaouil and Le-
bre, 2020). Cloud-Edge infrastructures are dynamic
environments, characterized by heterogeneous nodes,
in terms of available computational resources, and un-
stable network connectivity (Khan et al., 2019). In
this context, the default Kubernetes scheduling and
orchestration strategy presents some limitations be-
cause it does not consider the ever changing resource
availability on cluster nodes and the node-to-node net-
work latencies (Ahmad et al., 2021). Furthermore Ku-
bernetes does not implement a dynamic application
reconfiguration and rescheduling mechanism able to
adapt the application deployment to the current in-
frastructure state and the load and distribution of end
user requests. This can lead to degraded applica-
tion performances and frequent violations on the QoS

1https://kubernetes.io

Marchese, A. and Tomarchio, O.
Sophos: A Framework for Application Orchestration in the Cloud-to-Edge Continuum.
DOI: 10.5220/0011972600003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 261-268
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

261



requirements of latency-sensitive applications (Bulej
et al., 2020; Sadri et al., 2021).

To deal with those limitations, in this work,
based on our previous preliminary works presented
in (Marchese and Tomarchio, 2022b; Marchese and
Tomarchio, 2022a) we propose Sophos, a framework
that runs on top of Kubernetes and extends its control
plane to adapt its usage on node clusters distributed in
the Cloud-to-Edge continuum. Sophos enhances Ku-
bernetes by implementing a dynamic application or-
chestration and scheduling strategy able to consider
the current infrastructure state when determining a
placement for each application microservice and to
continuously tune the application configuration and
placement based on the ever changing infrastructure
and application states and also the current load and
distribution of end user requests.

The rest of the paper is organized as follows. In
Section 2 we provide some background information
about the Kubernetes platform and discuss in more
detail some of its limitations that motivate our work.
In Section 3 we present the Sophos framework and
provide some implementation details of its compo-
nents, while in Section 4 we provide results of our
prototype evaluation on a testbed environment. Sec-
tion 5 examines some related works and, finally, Sec-
tion 6 concludes the work.

2 BACKGROUND AND
MOTIVATION

Kubernetes is today the de-facto container orches-
tration platform for the execution of distributed
microservices-based applications (Gannon et al.,
2017) on node clusters. Kubernetes has been ini-
tially thought as a container orchestration platform for
Cloud-only environments.

Although new distributions for Edge environ-
ments have emerged like KubeEdge, K3s and Mi-
croK8s, Kubernetes is not yet ready to be fully
adopted in the Cloud-to-Edge continuum, due to some
limitations of its default orchestration and scheduling
strategy.

The first limitation is related to the fact that the
Kubernetes scheduler does not consider the current
state of the infrastructure when taking its decisions.
Since the scheduler does not monitor the current CPU
and memory utilization on each node, the estimated
resource usage may not match its run time value. If re-
source usage on a node is underestimated, more Pods
end up being scheduled on that same node, causing an
increase in the shared resource interference between
Pods and consequently a decrease in overall applica-

tion performances. Furthermore, the current network
latencies between cluster nodes are not considered
when evaluating inter-Pod affinities. This means that
although an inter-Pod affinity rule is satisfied by plac-
ing the respective microservices on the same topol-
ogy domain, the two microservices are not guaranteed
to communicate with low network latencies. High
communication latencies between microservices lead
to high end-to-end application response times. Con-
sidering the run time cluster state and network con-
ditions during Pod scheduling decisions is critical in
dynamic environments like the Cloud-to-Edge contin-
uum, where node resource availability and network
latencies are unpredictable and highly variable fac-
tors.

The second limitation is related to the fact that,
although Kubernetes allows application developers to
specify the set of application configuration parame-
ters, it does not offer a mechanism to automatically
adapt the application configuration based on the cur-
rent state of the infrastructure and the application it-
self. All the application configuration is delegated to
application developers, who need to predict ahead of
time how many resources are required by each mi-
croservice and what are the most involved microser-
vices communication channels, in order to determine
CPU and memory requirements and inter-Pod affinity
weights respectively. However, this is a complex task,
considering that microservices resource requirements
and communication affinities are dynamic parameters
that strongly depend on the run time load and distri-
bution of user requests. Defining Pod resource re-
quirements and inter-Pod affinities before the run time
phase can lead to inefficient scheduling decisions and
then reduced application performances. Overestimat-
ing resource requirements for Pods reduces the prob-
ability that these are scheduled on constrained Edge
nodes near to end users, while underestimating re-
source requirements increase Pod density on cluster
nodes and then their interference. Errors in estimat-
ing inter-Pod affinities can lead to situations where
microservices that communicate more are not placed
near to each other. Then automatically updating the
application configuration at run time is a critical re-
quirement in order to adapt the application deploy-
ment based on the current state of the infrastructure
and user request patterns.

Finally, another important limitation is related to
the fact that Kubernetes does not implement schedul-
ing policies that consider the end user location for the
placement of microservices. This is a critical aspect
considering that users are typically geo-distributed
and the network distance between microservices, es-
pecially the frontend ones, and the end user can affect

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

262



the application response time.

3 SOPHOS FRAMEWORK

3.1 Overall Design

Considering the limitations described in Section 2, in
this work we present Sophos, a framework that ex-
tends the Kubernetes platform with a dynamic orches-
tration and scheduling strategy, in order to adapt its
usage to dynamic Cloud-to-Edge continuum environ-
ments. The main idea of the proposed approach is
that in this context the application orchestration and
scheduling task should consider the dynamic state of
the infrastructure where the application is executed
and also the run time application requirements. To
this aim, Sophos monitors the current state of the
infrastructure and continuously tunes the application
configuration, in terms of microservices resource re-
quirements and inter-Pod affinities, based on the run
time application state. Unlike the default Kubernetes
platform, in Sophos the configuration of microser-
vices resource requirements and inter-Pod affinities is
not anymore delegated to application developers, who
should make predictions for these parameters, but it
is a dynamic and automated task. Furthermore, the
application scheduling strategy is not anymore based
on static estimation of node resource availability and
network distances between them, but it considers the
current node resource usage and the node-to-node net-
work latencies. Finally, in Sophos the application
scheduling strategy considers also the end user po-
sition. This is a critical aspect to take into account
considering the geo-distribution of end users in the
Cloud-to-Edge continuum.

Figure 1 shows a general model of the Sophos
framework. The current infrastructure and applica-
tion states are monitored and all the telemetry data
are collected by a metrics server. For the infrastruc-
ture, node resource availability and node-to-node la-
tencies are monitored, while for the application, mi-
croservices CPU and memory usage and the traffic
amount between them are monitored. Based on the
infrastructure telemetry data the cluster monitor com-
ponent determines a cluster graph with the set of
available resources on each cluster node and the net-
work latencies between them. The application config-
uration controller uses application telemetry data to
determine an application configuration graph whose
nodes represent application microservices with their
resource requirements and the edges the communica-
tion affinities between them each with a specific affin-
ity weight. The cluster and application graphs are

then used by the application scheduler to determine
a placement for each application Pod. Further details
on the Sophos framework components are provided in
the following subsections.

3.2 Cluster Monitor

The cluster monitor component periodically deter-
mines the cluster graph with the available CPU and
memory resources on each cluster node and the node-
to-node network latencies. This component runs
as a Kubernetes operator and it is activated by a
Kubernetes custom resource, in particular the Clus-
ter custom resource. A Cluster resource contains a
spec property with two sub-properties: runPeriod and
nodeSelector. The runPeriod property determines the
interval between two consecutive executions of the
operator logic. The nodeSelector property represents
a filter that selects the list of nodes in the cluster that
should be monitored by the operator. During each ex-
ecution of the operator the list of Node resources that
satisfy the nodeSelector condition are fetched from
the Kubernetes API server. Then for each node ni
the CPU and memory currently available on it, cpui
and memi respectively, are determined. These values
are fetched by the operator from a Prometheus2 met-
rics server, which in turn collects them from node ex-
porters executed on each cluster node. The cpui and
memi parameters are then assigned as values for the
labels available.cpu and available.memory of node ni.

Then for each pair of nodes ni and n j their net-
work cost nci, j is determined. The nci, j parameter is
an integer value in the range between 1 and 100 and it
is proportional to the network latency between nodes
ni and n j. Network latency metrics are fetched by the
operator from the Prometheus metrics server, which
in turn collects them from network probe agents exe-
cuted on each cluster node. These agents are config-
ured to periodically send ICMP traffic to all the other
cluster nodes in order to measure the round trip time
value. For each node ni the operator assigns to it a set
of labels network.cost.n j, with values equal to those
of the corresponding nci, j parameters. The cluster
graph with the updated CPU and memory available
resources and the network cost values is then submit-
ted to the Kubernetes API server.

3.3 Application Configuration
Controller

The application configuration controller periodically
determines the application configuration graph with

2https://prometheus.io/

Sophos: A Framework for Application Orchestration in the Cloud-to-Edge Continuum

263



Application
Configuration

Controller

Application
Scheduler

Application Configuration Graph

Cluster Monitor

Cluster Graph

Metrics Server

infrastructure telemetry

application telemetry

Kubernetes Cluster

Pod to schedule

N1

P1

N2

P2 N3

P3

Figure 1: Overall Sophos architecture.

the set of inter-Pod affinity rules between the appli-
cation microservices. As in the case of the cluster
monitor, this component runs as a Kubernetes op-
erator and it is activated by an instance of the Ap-
plication Kubernetes custom resource. An Applica-
tion resource contains a spec property with three sub-
properties: runPeriod, name and namespace. The
runPeriod property determines the interval between
two consecutive executions of the operator logic. The
name and namespace properties are used to select the
set of Deployment resources that compose a specific
microservices-based application. The Deployments
selected by the Application custom resource are those
created in the namespace specified by the namespace
property of the custom resource and with a label app-
group whose value is equal to the value of the name
property in the custom resource.

During each execution of the operator, the list
of Deployment resources selected by the name and
namespace properties are fetched from the Kuber-
netes API server. Then for each Deployment Di its
CPU and memory requirements, cpui and memi re-
spectively, are determined. These values are equal
to the average CPU and memory consumption of all
the Pods managed by the Deployment Di and are
fetched by the operator from the Prometheus met-
rics server, that in turn collects them from CAd-
visor agents. These agents are executed on each
cluster node and monitor current CPU and mem-
ory usage for the Pods executed on that node. The
cpui and memi parameters are then assigned as val-
ues for the properties spec.resources.requests.cpu and
spec.resources.requests.memory of the Pod template
Pti.

Then, the operator determines for each Deploy-
ment Di the set of inter-Pod affinity weights a f fi, j
with all the other Deployments D j of the application
and the set of inter-Pod affinity weights pa f fi, j with
the set of Pods Pj managed by the inputProxy Dae-
monSet Kubernetes resource. This DaemonSet de-

ploys on each cluster node ni a proxy Pod Pi that in-
tercepts all the user requests arriving at that node and
forwards them to the first microservice in the applica-
tion graph, like for example an API gateway microser-
vice. The a f fi, j weight is proportional to the traffic
amount exchanged between microservices µi and µ j,
while the pa f fi, j weight is proportional to the traffic
amount exchanged between the microservice µi and
the proxy Pod Pj. Both a f fi, j and pa f fi, j parameters
are integer values normalized in the range between
1 and 100. Traffic metrics are fetched by the opera-
tor from the Prometheus metrics server, which in turn
collects them from Envoy proxy containers injected
by the Istio3 platform on each application Pod. By
injecting Envoy proxies also on the inputProxy Pods
the source of user requests and the distribution of user
traffic among the different sources can be traced.

Each a f fi, j and pa f fi, j parameter of the Deploy-
ment Di is assigned by the operator as the weight of
a corresponding preferredDuringSchedulingIgnored-
DuringExecution inter-Pod affinity rule in the Pod
template Pti. The application configuration graph
with the set of updated affinity rules is then submit-
ted by the controller to the Kubernetes API server. If
at least one affinity rule in the Pod template section of
a Deployment has changed with respect to the last it-
eration, a rolling update process is activated and new
Pods with the updated resource configurations are cre-
ated.

3.4 Application Scheduler

The proposed application scheduler is a custom
scheduler, based on the Kubernetes scheduling frame-
work, that extends the default Kubernetes scheduler
by implementing a set of plugins. In particular, a Re-
sourceAware plugin that extends the scoring phase of
the Kubernetes scheduler and a NetworkAware plu-
gin that extends both the sorting and scoring phases

3https://istio.io

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

264



are proposed. The node scores calculated by the Re-
sourceAware and NetworkAware plugins are added to
the scores of the other scoring plugins of the default
Kubernetes scheduler.

The Score() function of The ResourceAware
scheduler plugin is invoked during the scoring phase
to assign a score to each cluster node when schedul-
ing a Pod p. The function evaluates the Pod p CPU
and memory resource requirements, cpup and memp,
as specified by the Pod spec.resources.requests.cpu
and spec.resources.requests.memory properties, and
for each node ni the currently available CPU and
memory resources, cpuni and memni , as specified by
the node available.cpu and available.memory labels.
The score assigned to the node ni is given by Equation
(1) where α and β parameters are in the range between
0 and 1 and their sum is equal to 1:

score(p,ni) = α× cpuni−cpup
cpup

×100+β× memni−memp
memp

×100
(1)

The higher the difference between available re-
sources on node ni and those requested by Pod p, the
greater the score assigned to node ni. By excluding
the scoring results of the other scheduler plugins, Pod
p is placed on the node with the highest amount of
available resources. Unlike the default Kubernetes
scheduler that estimates resources availability on a
node based on the sum of the requested resources of
each Pod running on that node the ResourceAware
plugin considers current node resource usage based
on run time telemetry data. This allows to reduce
the shared resource interference between Pods result-
ing from incorrect node resource usage estimation and
then its impact on application performances.

The Score() function of the NetworkAware sched-
uler plugin is invoked during the scoring phase to as-
sign a score to each cluster node when scheduling a
Pod p. This function evaluates the inter-Pod affinity
rules of the Pod p, where in our approach affinity rules
are determined by the application configuration con-
troller. Unlike the default Kubernetes scheduler, the
NetworkAware plugin does not evaluate the topolo-
gyKey parameter in the affinity rules, but it takes into
account network cost labels of each cluster node de-
termined by the cluster monitor. Algorithm 1 shows
the details of the Score() function.

The algorithm starts by initializing the variable
cmc to zero. This variable represents the total cost of
communication between the Pod p and all the other
Pods (both microservices and proxy Pods) when the
Pod p is placed on node n. The algorithm iterates
through the list of cluster nodes cNodes. For each
cluster node cn the pcmc variable value is calculated.
This variable represents the cost of communication
between the Pod p and all the other Pods cn.pods cur-

rently running on node cmc when the Pod p is placed
on node n. For each Pod cnp the a f fp,cnp weight
of the corresponding affinity rule (pa f fp,cnp in case
cnp is a proxy Pod) is multiplied by the network cost
ncn,cn between node n and node cn and added to the
pcmc variable. The pcmc variable value is then added
to the cmc variable. The final node score is repre-
sented by the opposite of the cmc variable value.

Algorithm 1: NetworkAware plugin Score function.
Input: p, n, cNodes
Output: score

1: cmc← 0
2: for cn in cNodes do
3: pcmc← 0
4: for cnp in cn.pods do
5: pcmc← pcmc+ncn,cn×a f fp,cnp
6: end for
7: cmc← cmc+ pcmc
8: end for
9: score←−cmc

The Score() function assigns a score to each clus-
ter node n so that the Pod p is placed on the node, or in
a nearby node in terms of network latency, where the
Pods with which the Pod p has the greatest communi-
cation affinity are executed. For each affinity rule the
default Kubernetes scheduler assigns a score different
from zero only to the nodes that belong to a topology
domain matched by the topologyKey parameter of the
rule. The NetworkAware plugin instead scores all the
cluster nodes based on the current relative network
distance between them. This allows to implement a
more fine-grained node scoring approach able to take
into account the ever changing network conditions in
the cluster instead of using node labels statically as-
signed before the run time phase.

The Less() function of the NetworkAware plugin
is invoked during the sorting phase in order to deter-
mine an ordering for the Pod scheduling queue. This
function takes as input two Pods resources and returns
true if the value of the index label on the first Pod
is lesser than the value of the same label on the sec-
ond one, otherwise it returns false. This way Pods
with lower values of the index label are scheduled
first. The index label is used to determine a topo-
logical sorting of the microservices graph and appli-
cation developers have to assign a value for this label
on the Pod templates of each application Deployment,
with lower values given to the frontend microservices.
By scheduling frontend microservices first, communi-
cation affinities between these microservices and the
proxy Pods are evaluated earlier during the scoring
phase, resulting in the application placement follow-

Sophos: A Framework for Application Orchestration in the Cloud-to-Edge Continuum

265



frontend

cartcatalogueuserpaymentorder

shipping queue queue-master

user-dborder-db catalogue-db cart-db

Figure 2: Sock Shop application structure.

ing the end user position. If backend microservices
are instead scheduled before the frontend ones, only
internal communication affinities between application
microservices are evaluated during the scoring phase
and this can lead to situations where the frontend mi-
croservices are placed far away the end user.

4 EVALUATION

The proposed solution has been validated using the
Sock Shop4 application executed on a test bed en-
vironment. As shown in Figure 2 the application is
composed of different microservices, database servers
and a message broker. The frontend service repre-
sents the entry point for external user requests that
are served by backend microservices that interact be-
tween them by means of network communication.
The application can be thought of as composed of dif-
ferent microservice chains, each activated by requests
sent to a specific application API.

The test bed environment for the experiments con-
sists of a Rancher Kubernetes Engine (RKE) clus-
ter with one master node and four worker nodes,
These nodes are deployed as virtual machines on a
Proxmox5 physical node and configured with 4GB
of RAM and 2 vCPU. In order to simulate a realis-
tic Cloud-to-Edge continuum environment with geo-
distributed nodes, network latencies between cluster
nodes are simulated by using the Linux traffic con-
trol (tc6) utility. By using this utility network latency
delays are configured on virtual network cards of the
cluster nodes.

4https://microservices-demo.github.io
5https://www.proxmox.com
6https://man7.org/linux/man-pages/man8/tc.8.html

We evaluate the end-to-end response time of the
Sock Shop application when HTTP requests are sent
to the frontend service. Requests to the application
are sent through the k67 load testing utility. Each
experiment consists of 5 trials, during which the k6
tool sends requests to the frontend service for 25 min-
utes. For each trial, statistics about the end-to-end
application response time are measured and are aver-
aged with those of the other trials of the same exper-
iment. The trial interval is partitioned into 5 minutes
sub-intervals. During each sub-interval the k6 tool
sends requests to a different worker node and in the
last sub-interval requests are equally distributed to all
the nodes. This way a realistic scenario with vari-
ability in the user requests distribution is simulated
by dynamically changing the source of traffic at dif-
ferent time intervals. For each experiment we com-
pare both cases when the proposed scheduler and op-
erators of the Sophos framework are deployed on the
cluster and when only the default Kubernetes sched-
uler is present. The α and β parameters of the Re-
sourceAware plugin of the Sophos application sched-
uler are assigned the same value of 0.5. We consider
three different scenarios based on the network latency
between cluster nodes: 10ms, 50ms, 100ms.

Figure 3 illustrates the results of the three experi-
ments performed, each for a different scenario, show-
ing the 95th percentile of the application response
time as a function of the number of virtual users that
send requests to the application. In all the cases, the
Sophos framework performs better than the default
Kubernetes platform with average improvements of
28%, 43% and 54% in the three scenarios respec-
tively. Furthermore, the improvement is higher for
higher node-to-node network latencies. This can be
explained by the fact that for low node-to-node laten-
cies, network communication has no significant im-
pact on the application response time. However, when
network latencies increase, network communication
becomes a bottleneck for application performances
and the lack of a network-aware scheduling strategy
causes an increase in the application response time.

5 RELATED WORK

In the literature, there is a variety of works that pro-
pose to extend the Kubernetes platform in order to
adapt its usage to Cloud-Edge environments.

A network-aware scheduler is proposed in (Santos
et al., 2019), implemented as an extension of the fil-
tering phase of the default Kubernetes scheduler. The

7https://k6.io

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

266



10 50 100 150 200 250 300
100
500

1,000

2,000

3,000

4,000

Virtual users

95
th

pe
rc

en
til

e
re

sp
on

se
tim

e
(m

s)

10ms network latency

Sophos Framework
Kubernetes platform

10 50 100 150 200 250 300
100
500

1,000

2,000

3,000

4,0004,000

Virtual users

95
th

pe
rc

en
til

e
re

sp
on

se
tim

e
(m

s)

50ms network latency

Sophos Framework
Kubernetes platform

10 50 100 150 200 250 300
100
500

1,000

1,500

2,000

3,000

4,000

Virtual users

95
th

pe
rc

en
til

e
re

sp
on

se
tim

e
(m

s)

100ms network latency

Sophos Framework
Kubernetes platform

Figure 3: Experiments results.

proposed approach makes use of round-trip time la-
bels, statically assigned to cluster nodes, in order to
minimize the network distance of a specific Pod with
respect to a target location specified on its configu-
ration file. One problem with this solution relates to
the fact that round-trip time labels are statically pre-
assigned to cluster nodes, not reflecting the run-time

variability of network latencies.
In (Caminero and Muñoz-Mansilla, 2021) an ex-

tension to the Kubernetes default scheduler is pro-
posed that uses information about the status of the net-
work, like bandwidth and round trip time, to optimize
batch job scheduling decisions. The scheduler pre-
dicts whether an application can be executed within
its deadline and rejects applications if their deadlines
cannot be met. Although information about current
network conditions and historical job execution times
is used during scheduling decisions, communication
interactions between microservices are not considered
in this work.

The authors of (Cao and Sharma, 2021) propose to
leverage application-level telemetry information dur-
ing the lifetime of a distributed application to cre-
ate service communication graphs that represent the
internal communication patterns of all components.
The graph-based representations are then used to gen-
erate colocation policies of the application workload
in such a way that the cross-server internal communi-
cation is minimized. However, in this work schedul-
ing decisions are not influenced by the cluster network
state.

In (Pusztai et al., 2021) Pogonip, an edge-aware
scheduler for Kubernetes, designed for asynchronous
microservices is presented. Authors formulate the
placement problem as an Integer Linear Programming
optimization problem and define a heuristic to quickly
find an approximate solution for real-world execu-
tion scenarios. The heuristic is implemented as a set
of Kubernetes scheduler plugins. Also in this work,
there is no Pod rescheduling if network conditions
change over time.

In (Wojciechowski et al., 2021) a Kubernetes
scheduler extender is proposed that uses applica-
tion traffic historical information collected by Service
Mesh to ensure efficient placement of Service Func-
tion Chains (SFCs). During each Pod scheduling,
nodes are scored by adding together traffic amounts,
averaged over a time period, between the Pod’s mi-
croservice and its neighbors in the chain of services
executed on those nodes. As in our work, histori-
cal application traffic is measured, but the proposed
scheduler does not take into account current node-
to-node latencies, neither communication patterns be-
tween microservices.

In (Fu et al., 2021) Nautilus is presented, a run-
time system that includes, among its modules, a
resource contention aware resource manager and a
communication-aware microservice mapper. While
the proposed solution migrates application Pod if
computational resources utilization is unbalanced
among nodes, there is no Pod rescheduling in the

Sophos: A Framework for Application Orchestration in the Cloud-to-Edge Continuum

267



case of degradation on the communication between
microservices.

6 CONCLUSIONS

In this work we proposed Sophos, a framework that
extends the Kubernetes platform in order to adapt its
usage to dynamic Cloud-to-Edge continuum environ-
ments. The idea is to add a layer on top of Kubernetes
to overcome the limitations of its mainly static appli-
cation scheduling and orchestration strategy. Orches-
trating applications in the Cloud-to-Edge continuum
requires a knowledge of the current state of the infras-
tructure and to continuously tune the configuration
and the placement of the application microservices.
To this aim in Sophos a cluster monitor operator mon-
itors the network state and the resource availability on
cluster nodes, while an application configuration op-
erator dynamically assigns inter-Pod affinities and re-
source requirements on the application Pods based on
application telemetry data. Based on the current in-
frastructure state and the dynamic application config-
uration, a custom scheduler determines a placement
for application Pods.

As a future work we plan to improve the in-
frastructure and application monitoring modules with
more sophisticated techniques that allow to do predic-
tive analysis on the infrastructure and the application
state and to make proactive application reconfigura-
tion and rescheduling actions. To this aim time series
analysis and machine learning techniques will be ex-
plored in the future.

REFERENCES

Ahmad, I., AlFailakawi, M. G., AlMutawa, A., and Al-
salman, L. (2021). Container scheduling techniques:
A survey and assessment. Journal of King Saud Uni-
versity - Computer and Information Sciences.

Bulej, L., Bures, T., Filandr, A., Hnetynka, P., Hnetynková,
I., Pacovsky, J., Sandor, G., and Gerostathopoulos, I.
(2020). Managing latency in edge-cloud environment.
CoRR, abs/2011.11450.

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and
Wilkes, J. (2016). Borg, omega, and kubernetes:
Lessons learned from three container-management
systems over a decade. Queue, 14(1):70–93.

Calcaterra, D., Di Modica, G., and Tomarchio, O. (2020).
Cloud resource orchestration in the multi-cloud land-
scape: a systematic review of existing frameworks.
Journal of Cloud Computing, 9(49).

Caminero, A. C. and Muñoz-Mansilla, R. (2021). Quality of
service provision in fog computing: Network-aware
scheduling of containers. Sensors, 21(12).

Cao, L. and Sharma, P. (2021). Co-locating container-
ized workload using service mesh telemetry. In
Proceedings of the 17th International Conference on
Emerging Networking EXperiments and Technologies,
CoNEXT ’21, page 168–174, New York, NY, USA.
Association for Computing Machinery.

Fu, K., Zhang, W., Chen, Q., Zeng, D., Peng, X., Zheng,
W., and Guo, M. (2021). Qos-aware and resource effi-
cient microservice deployment in cloud-edge contin-
uum. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 932–941.

Gannon, D., Barga, R., and Sundaresan, N. (2017). Cloud-
native applications. IEEE Cloud Computing, 4:16–21.

Kayal, P. (2020). Kubernetes in fog computing: Feasibil-
ity demonstration, limitations and improvement scope
: Invited paper. In 2020 IEEE 6th World Forum on
Internet of Things (WF-IoT), pages 1–6.

Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I., and Ahmed,
A. (2019). Edge computing: A survey. Future Gener-
ation Computer Systems, 97:219–235.

Manaouil, K. and Lebre, A. (2020). Kubernetes and the
Edge? Research Report RR-9370, Inria Rennes - Bre-
tagne Atlantique.

Marchese, A. and Tomarchio, O. (2022a). Extending the ku-
bernetes platform with network-aware scheduling ca-
pabilities. In Troya, J., Medjahed, B., Piattini, M.,
Yao, L., Fernández, P., and Ruiz-Cortés, A., editors,
Service-Oriented Computing, pages 465–480, Cham.
Springer Nature Switzerland.

Marchese, A. and Tomarchio, O. (2022b). Network-aware
container placement in cloud-edge kubernetes clus-
ters. In 2022 22nd IEEE International Symposium
on Cluster, Cloud and Internet Computing (CCGrid),
pages 859–865, Taormina, Italy.

Oleghe, O. (2021). Container placement and migration
in edge computing: Concept and scheduling models.
IEEE Access, 9:68028–68043.

Pusztai, T., Rossi, F., and Dustdar, S. (2021). Pogonip:
Scheduling asynchronous applications on the edge. In
IEEE 14th International Conference on Cloud Com-
puting (CLOUD), pages 660–670.

Sadri, A. A., Rahmani, A. M., Saberikamarposhti, M., and
Hosseinzadeh, M. (2021). Fog data management: A
vision, challenges, and future directions. Journal of
Network and Computer Applications, 174:102882.

Santos, J., Wauters, T., Volckaert, B., and De Turck, F.
(2019). Towards network-aware resource provision-
ing in kubernetes for fog computing applications. In
IEEE Conference on Network Softwarization (Net-
Soft), pages 351–359.

Varghese, B., de Lara, E., Ding, A., Hong, C., Bonomi, F.,
Dustdar, S., Harvey, P., Hewkin, P., Shi, W., Thiele,
M., and Willis, P. (2021). Revisiting the arguments for
edge computing research. IEEE Internet Computing,
25(05):36–42.

Wojciechowski, L., Opasiak, K., Latusek, J., Wereski, M.,
Morales, V., Kim, T., and Hong, M. (2021). Netmarks:
Network metrics-aware kubernetes scheduler powered
by service mesh. In IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, pages 1–
9.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

268


