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Abstract: We present in this paper some experiments with the adjacency matrix used as input by three spatio-temporal 
neural networks architectures when predicting traffic. The architectures were proposed in (Chen et al., 2022), 
(Li et al., 2018) and (Yu et al., 2018). We find that the predictive power of these neural networks is 
influenced to a great extent by the inputted adjacency matrix (i.e. the weights associated to the graph of the 
available traffic infrastructure). The experiments were made using two newly prepared datasets. 

1 INTRODUCTION 

Traffic data is very complex and nonlinear. Traffic 
forecasting is many times dependent on external 
factors such as the time of day, the season of the 
year, the climate and current weather, but also on 
internal factors such as the available infrastructure, 
the number of vehicles on the roads (and their 
particular types) or unexpected vehicle crashes. It 
plays a crucial role in optimizing traffic flow, 
improving traffic speed and efficiency. Moreover, it 
is a key element for creating better intelligent 
management systems for traffic. 

Traffic forecasting is a challenging endeavour. 
Its general performance depends on a complex set of 
spatio-temporal interdependencies. 

In this paper we present several traffic 
forecasting experiments for which we use three 
spatio-temporal neural network architectures which 
were very recently introduced: the GC-LSTM model 
(Chen et al., 2022), the DC-RNN model (Li et al., 
2018) and the ST-GCN model (Yu et al., 2018). 

These new spatio-temporal neural network 
architectures essentially combine some graph 
convolutional layers (which are used for processing 
the spatial information) with some temporal layers  
(used for processing the temporal information). As 
an example Long Short-Term Memory Networks 
(LSTM), see  (Hochreiter et al., 1997), may be used 
to build the temporal processing part, but there are 

also other choices available. In the experiments 
presented here we have focused on the spatial data 
used as input for these architectures. For this, we 
have developed two new datasets. The data is 
provided by the Caltrans Performance Measurement 
System (PeMS, 2021). From the raw data a matrix 
describing a weighted graph must be prepared as 
input, however it is an open question how the 
weights should be associated to the available 
infrastructure. We have found that the predictive 
power of these models is influenced to a great extent 
by the way this matrix is prepared.  

As a result, the following contributions are made 
in this paper: 
 We have created two new datasets. These new 

datasets contains temporal data for three 
different traffic features (flow, speed and 
occupancy), as well as spatial data about the 
sensors location;     

 We have investigated different ways for 
computing the weighted graph encoding the 
spatial information and the end effect on 
prediction. We have tested different parameter 
settings from which we select automatically 
the best among them for predicting. 

 We have also studied to a certain extent the 
suitability of the models for predicting the 
temporal traffic features. 

The code which was used for experiments, 
together with the two new prepared datasets, is 
available on demand from the authors.     
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2 RELATED WORK 

Scientists have been and are still looking for ways to 
optimize traffic flow, improve traffic speed and 
create better intelligent management systems for 
traffic. Therefore, forecasting traffic is currently a 
major research topic. Various authors have 
investigated many approaches to the problem of 
traffic forecasting. Nowadays, as a result of the rapid 
development in the field of deep learning (Moravčík 
et al., 2016), (Silver et al., 2016), (Silver et al., 
2017), certain new neural networks architectures 
have received particular attention. Many times they 
deliver the top results when compared with other 
models.  

Frequently the old approaches ignore completely 
the spatial features particular to the traffic, focusing 
only on temporal features (as for example flow and 
speed). These models are operating like processing 
the temporal traffic data is not at all restricted by the 
available spatial framework. Nonetheless, it is clear 
that only by using both the temporal information and 
the spatial information performant traffic forecasting 
might be achieved. 

As a result of the given topology of the existing 
roads networks the spatial traffic information is 
intrinsically belonging to the graphs area of 
research. In the last years a more general version of 
the well-known Convolutional Neural Networks 
(CNN) architecture was developed for usage given 
that data may be linked to graph domains. It is called 
Graph Convolutional Network (GCN) and 
essentially uses as input a matrix describing a 
weighted graph. For more information about GCN 
and their development we point the reader to (Bruna 
et al., 2014), (Henaff et al., 2015), (Atwood and 
Towsley, 2016), (Niepert et al., 2016), (Kipf and 
Welling, 2017) and (Hechtlinger et al., 2017). Note 
that the GCN architecture was used by many authors 
since its introduction for various applications and 
has delivered superior performance.  

Recently several authors have developed various 
GCN architectures that may be used for forecasting 
traffic, being motivated by the ability of GCN to 
process data linked to graph domains. In (Li et al., 
2018) the authors propose a model computing 
random walks on graphs. This was one of the first 
attempts for making the spatial features useful.  This 
work was followed quite quickly by several related 
papers, for example (Yu et al., 2018), (Zhao et al., 
2020), (Zhang et al., 2020), (Li and Zhu, 2021) and 
(Chen et al., 2022). The authors investigate how 
traffic forecasting may be improved by using various 
architectures of spatio-temporal neural networks. In 

general, they only use a certain fixed matrix in order 
to describe the associated weighted graph. 

Continuing this line of research, we perform 
several experiments in order to see if the content of 
this input matrix does play an important role for the 
performance obtained by some particular spatio-
temporal neural network architecture and which way 
of computing its entries (i.e. the weights associated 
to the graph) does provide superior performance.  

3 METHODOLOGY 

3.1 Problem Statement 

The aim of this paper is to study the influence that 
the knowledge about the sensors spatial position on 
the roads and the way it is further processed has on 
predicting traffic features like flow, speed and 
occupancy. All these are simultaneously available in 
the data stored by the Caltrans Performance 
Measurement System (PeMS, 2021).  

Denote by 𝑆 be the number of sensors and by 𝑁 
the number of time steps in a certain dataset. The 
spatial information about the sensors will be 
contained in a matrix 𝐴 ∈ ℝௌ୶ௌ which it is called the 
adjacency matrix and contains certain weights 𝑎 ∈ሾ0,1ሿ . Remark that there exists no standard 
procedure for inputting the weights 𝑎. We note that 
they should be close to be 0 if there is a bad roadway 
network between the two linked sensors 𝑖 and 𝑗, and 
to be close to 1 if there a good roadway network 
between them. 

 Further, if 𝐾  traffic features (like flow, speed 
and occupancy) are considered, then we get 𝐾x𝑆 
time-series which are gathered by the traffic sensors. 
Assume they are stored in a feature matrix  𝐵 ∈ℝ୶ௌ୶ே . Then, the vector  𝐵௧ ∈ ℝ୶ௌ  contains the 
values collected for all available traffic features and 
by all sensors at a certain time 𝑡. 

Let 𝑇  be a number of time steps.  For given 
adjacency matrix 𝐴  and  feature matrix 𝐵 , the 
general problem of spatio-temporal traffic 
forecasting over the time horizon 𝑇 is the problem of 
learning a model 𝑀 (i.e. a function) such that  𝐵௧ା் ≈ 𝑀൫𝐴; (𝐵௧ି, … , 𝐵௧ିଵ, 𝐵௧)൯. 

In this paper we focus our attention on the 
adjacency matrix 𝐴. We investigate different ways 
for choosing 𝑎 in order to construct the adjacency 
matrix 𝐴 and observe their influence on the model 
performance in several computational experiments. 
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3.2 The Architecture of the  
Spatio-Temporal Neural Networks 

For the experiments presented in this paper we use 
three spatio-temporal neural network architectures: 
the GC-LSTM model (Chen et al., 2022), the DC-
RNN model (Li et al., 2018) and the ST-GCN model 
(Yu et al., 2018). 

The architecture of the GC-LSTM model (Chen 
et al., 2022) is illustrated in Figure 1.  

 
Figure 1: The architecture of the GC-LSTM model. The 𝐾x𝑆 time series collected by the traffic stations are used as 
input.  

According to (Chen et al., 2022) the GC-LSTM 
model consists of two distinct parts: the GCN part 
and the LSTM part. In order to apprehend the spatial 
relation between traffic stations the GCN part is 
used first. The graph convoluted data is expanded 
next with the temporal data contained in the 𝐾x𝑆 
time series. Then the time-series (now augmented 
with a graph convolution containing spatial features) 
are loaded in the LSTM part. The LSTM part keeps 
track of previous information as well. 

The architecture of the DC-RNN model (Li et 
al., 2018) is very similar to the above architecture. 
The main difference is that instead of LSTM, the 
authors use Gated Recurrent Units (GRU). The same 
idea is also used by (Zhao et al., 2020). According to 
(Chung et al., 2014), the basic operating principles 
of both the GRU and LSTM are approximately the 
same. As can be also observed from the experiments 
presented in this paper they deliver in practice 
similar performance for various tasks, so we have 
not noticed significant differences between them.  

 According to (Yu et al., 2018) the ST-GCN 
model consists of two Spatio-Temporal Convolution 
blocks (ST-Conv blocks) after which an extra 
temporal convolution layer with a fully-connected 
layer as the output layer is added. Each ST-Conv 
block is made of two Temporal Gated Convolution 

layers with one Spatial Graph Convolution layer 
sandwiched between them. Each Temporal Gated 
Convolution contains a Gated Linear Unit (GLU) 
with a one-dimensional convolution. Figure 2 
illustrates this architecture.  

 
Figure 2: The architecture of the ST-GCN model (left) and 
the architecture of a single ST-Conv block (right). 

In summary, all three architectures used in the 
experiments are universal frameworks for capturing 
complex spatial and temporal characteristics.    

3.3 Dataset 

For performing experiments we have processed two 
new datasets using traffic information which was 
gathered from the city of Los Angeles, California. 
The data is aggregated from sensors positioned on 
the various roads within the state of California and it 
is stored and publically available in the Caltrans 
Performance Measurement System (PeMS, 2021), a 
public web platform where users can analyse and 
export traffic information. In particular the website 
offers multiple sectors of the city of Los Angeles. 
For preparing the datasets sector seven was chosen. 
This sector contains a total of 4904 unique traffic 
stations each having its own identifier. However, the 
raw data available from PeMS platform contains 
many observations for which the values of the traffic 
features are simply not available. A first important 
step was to check the correctitude of the available 
information. To this scope a python script passes 
through each row of data and checks if the 
corresponding traffic station contains information 
about speed, occupancy and flow. If all three are 
present then it is considered a good sensor and it is 
saved. After this step from 4904 sensors only 2789 
are left. A second important step in preparing the 
datasets was to select traffic stations which are 
relatively close together (so that we may assume that 
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the corresponding traffic values are related). This 
was done by plotting on a map the sensors and then 
hand-picking them.  

The first dataset, called in the following small, 
contains 8 hand-picked sensors in an intersection. 
Their location is shown in Figure 3. 

 
Figure 3: Map of the hand-picked sensors for the small 
dataset. 

The second dataset, called in the following 
medium, contains 50 hand-picked sensors around an 
intersection, as shown in Figure 4. 

 
Figure 4: Map of the hand-picked sensors for the medium 
dataset.   

For the selected sensors, the two datasets contain 
complete temporal data for the most important 
traffic features available in the PeMS platform, i.e. 
flow, speed and occupancy. Both datasets enclose 
the time interval from the 1st of July to the 31th of 
July 2021. Remarking that the heaviest congestion 
happens during the week days and in order to find 
better insight of the traffic during the most critical 
periods only the 22 weekdays of July 2021 are 
selected for further use.  Measurements on each 
sensor are done every 5 minutes. There are 288 
observations for every day. In total both datasets 
contain 6336 observations for each sensor.  

The PeMS platform also offers an extra metadata 
file which provides additional information for each 
individual traffic station. From the data available for 
each sensor the latitude and longitude numbers are 
further used for computing the spatial information 
needed for the experiments. 

3.4 Technical Implementation 

Python is the most popular programming language 
used for artificial intelligence, data science or 
machine learning projects in general. It is probably 
the best choice for performing experiments similar 
with those presented in this paper. 

After the data is downloaded from the PeMS 
platform it requires further processing. For this 
scope the libraries Pandas (Pandas, 2016) and 
NumPy (Harris et al., 2020) have been used. 

Further, for the implementation of the spatio-
temporal neural network models we have used the 
Python versions of the state of the art libraries 
Tensorflow, Keras and Torch. Tensorflow (Google 
Brain, 2016) is a library developed by Google for 
implementing machine learning applications. On top 
of Tensorflow, another very popular package, named 
Keras (Chollet, 2015), has been built. It contains 
various implementations of machine learning 
algorithms and together with the StellarGraph 
library (CSIRO's Data61, 2018) was used for the 
experiments done in (Ichim and Iordache, 2022). For 
most machine learning projects Keras is the standard 
choice.  Torch (Paszke et al., 2019) is another well-
known library based on TensorFlow which contains 
a collection of advanced tools for machine learning. 
It is harder to use as Keras since the training step 
needs to be manually implemented, however with 
more flexibility, it has more to offer. It was our 
choice for the experiments done below. 

4 EXPERIMENTS 

4.1 Performance Metrics 

There are multiple ways to compute the performance 
of a certain model. For our experiments we have 
chosen five standard loss functions that compute the 
distance between the actual, as measured value of a 
feature yi, and the value predicted by the model for 
the same feature. Let us suppose that the dataset 
used for testing contains 𝑁  observations (samples) 
of the shape (𝑥௧, 𝑦௧) and 𝑚 is the model for which 
the performance is computed. Denote by 𝑚(𝑥௧) the 
model prediction for 𝑦௧ and let 𝑦௧ഥ  be the arithmetic 
mean of 𝑦௧. Then we have: 
 
 Root Mean Squared Error (RMSE): 

 𝑅𝑀𝑆𝐸(𝑚) = ටଵே  (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ ; 
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 Mean Absolute Percentage Error (MAPE): 
 𝑀𝐴𝑃𝐸(𝑚) = 100𝑁  ቤ𝑦௧ − 𝑚(𝑥௧)𝑚(𝑥௧) ቤ ;       ே

௧ୀଵ  

 
 Mean Absolute Error (MAE):  

 𝑀𝐴𝐸(𝑚) = ଵே  |𝑦௧ − 𝑚(𝑥௧)|ே௧ୀଵ ; 
 

 Mean Squared Error (MSE): 
 𝑀𝑆𝐸(𝑚) = ଵே  (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ ; 
 

 The Coefficient of Determination (R2): 
 𝑅ଶ(𝑚) = 1 −  (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ∑ (𝑦௧ − 𝑦௧ഥ )ଶே௧ୀଵ  .  

 
More specifically, the first four metrics measure 

the loss in the model prediction. Their interpretation 
is the following: a small calculated value means a 
better model at making predictions. The coefficient 
of determination measures the (abstract) ability to 
provide good predictions by comparing a given 
model with the trivial model. It is always less than 1 
by definition and it is 0 for the trivial model. A 
coefficient of determination close to 1 indicates a 
model which is significantly better than the trivial 
model. 

In the tables below we compute the final RMSE 
as an arithmetic average over time of the RMSE 
computed for all sensors at a single time moment. 
Since for any positive values 𝑎௧ we have 

 ∑ ඥ𝑎௧ே௧ୀଵ𝑁  ඩ1𝑁  𝑎௧ே
௧ୀଵ , 

 
it follows that the final RMSE reported is smaller 
than the square root of the final MSE reported. 

4.2 Setup for Experiments 

The neural network architectures which were used in 
experiments use graphs as inputs and for this reason 
the corresponding adjacency matrices need to be 
constructed. Since our experiments have focused on 
the influence that the input adjacency matrix plays 
on the final performance we have considered the 
following setups: 

 Two different datasets. They essentially 
determine the number of vertices in the 
graph 

o Small  –  8 vertices; 
o Medium  – 50 vertices; 

 Three possible ways for establishing when 
there exists a edge between two vertices  

o Complete – the graph has an edge 
between every two vertices; 

o Manual – using the map, the 
vertices are manually connected; 

o LR  –  we experimentally try to 
use standard linear regression in 
order to connect the vertices;  

 Two distinct methods for computing the 
distances between two vertices 

o Geodesic  – using the latitude and 
longitude data for each sensor, the 
geodesic distance between two 
sensors is computed; 

o OSRM – the shortest paths in the 
road network is computed using 
data from (OSRM, 2023).  

 
Further, the weights associated to the edges need 

to be computed. For this we use the following 
formula 

 𝑤 = exp ቆ− 𝑑ଶ𝜎ଶ ቇ if 𝑖 ് 𝑗 and exp ቆ− 𝑑ଶ𝜎ଶ ቇ  𝜖, 
 

which was proposed in  (Yu et al., 2018).  Here 𝑤  
represents the weight of adjacency matrix 
corresponding to the distance 𝑑  between the 
vertices 𝑖  and 𝑗  computed above. The two tuning 
hyperparameters 𝜖  and 𝜎  introduced in the formula 
are thresholds used in order control the sparsity and 
the distribution of the graph’s edges. A grid search is 
performed for tuning these hyperparameters. After 
this the best settings are selected automatically and 
they are used further for making predictions. The 
values given for the two parameters in the grid 
search are: 𝜎 ∈ ሼ1, 3, 5, 10ሽ and 𝜖 ∈ ሼ0.1, 0.3, 0.5, 0.7ሽ. 
4.3 Results of the Experiments 

The performance of a GC-LSTM model (Chen et al., 
2022) is compared below with the performance of a 
DC-RNN model (Li et al., 2018) and with the 
performance of a ST-GCN model (Yu et al., 2018). 
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This allows us to see the effects that the various 
changes made to the input adjacency matrix have on 
the combined spatio-temporal prediction potential of 
the models. 

The final results of our experiments are 
contained in Table 1 for the small dataset and in 
Table 2 for the medium dataset. We have marked 
with bold  the best predictions made by each of the 3 
models for 3 ways of constructing the edges 

(complete, manual and linear regression) and for 2 
different ways for computing the associated 
distances (geodesic and OSRM). In our experiments 
we have predicted the speed, however there is no 
restriction in repeating the experiment for 
forecasting other temporal traffic features (like flow 
or occupancy).  Overall the ST-GCN model has 
provided the best performance in these experiments.  

Table 1: Experimental Results on Small Dataset. 

Model Edges Distances Metric
RMSE MAPE MAE MSE R2

GC-LSTM 

Complete Geodesic 12.3186 0.3245 9.3377 230.1765 -0.0939
OSRM 2.7649 0.0481 2.0921 11.0771 0.9474

Manual Geodesic 4.9872 0.0697 3.2098 38.4739 0.8172
OSRM 4.8829 0.0703 3.2358 35.5279 0.8312

LR Geodesic 9.3054 0.1732 7.2134 146.5231 0.3037
OSRM 8.6787 0.1864 7.0297 128.3809 0.3899

DC-RNN 

Complete Geodesic 13.0717 0.3477 9.8091 261.9677 -0.2451
OSRM 3.0782 0.0536 2.2542 14.5672 0.9308

Manual Geodesic 4.7836 0.0682 3.0916 34.6671 0.8352
OSRM 4.7451 0.0676 3.0761 34.7506 0.8349

LR Geodesic 10.2666 0.1901 7.5919 178.4229 0.1521
OSRM 9.2368 0.1769 6.9151 144.4572 0.3135

ST-GCN 

Complete Geodesic 2.5141 0.0407 1.7378 8.0861 0.9616 
OSRM 2.5936 0.0413 1.8111 8.7246 0.9585

Manual Geodesic 2.9377 0.0458 2.0689 10.4536 0.9503
OSRM 2.5497 0.0409 1.7913 8.2218 0.9609

LR Geodesic 2.5839 0.0417 1.8082 8.5089 0.9596
OSRM 3.2609 0.0599 2.2025 12.4608 0.9408

Table 2: Experimental Results on Medium Dataset. 

Model Edges Distances Metric
RMSE MAPE MAE MSE R2

GC-LSTM 

Complete Geodesic 9.2198 0.2202 7.1484 129.7562 0.1016
OSRM 3.1074 0.0505 2.4401 12.1576 0.9158

Manual Geodesic 8.4881 0.1997 5.6513 111.5111 0.2279
OSRM 8.2374 0.1946 5.6716 104.5321 0.2763

LR Geodesic 8.3699 0.1784 5.8521 106.3525 0.2637
OSRM 8.2734 0.1741 5.8059 103.7811 0.2815

DC-RNN 

Complete Geodesic 9.1336 0.2023 6.9403 128.6674 0.1092
OSRM 5.1074 0.1006 3.9828 35.7923 0.7522

Manual Geodesic 8.4088 0.1971 5.5235 108.7543 0.2471
OSRM 8.4106 0.2001 5.6183 110.1817 0.2372

LR Geodesic 8.2222 0.1742 5.7521 102.5802 0.2898
OSRM 8.2052 0.1755 5.7703 101.7261 0.2957

ST-GCN 

Complete Geodesic 2.2045 0.0291 1.4141 5.6623 0.9608
OSRM 3.0271 0.0331 1.6851 9.8946 0.9315

Manual Geodesic 2.9934 0.0351 1.7708 9.7289 0.9326
OSRM 2.1745 0.0303 1.3569 5.8831 0.9593

LR Geodesic 3.1474 0.0303 1.5051 10.6289 0.9264
OSRM 2.1291 0.0282 1.3691 5.2089 0.9639 
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4.4 Interpretation of the Results 

The scope of the following visualizations is to 
provide a better understanding of our results. We 
have chosen two particular sensors (one for the 
small and one for the medium dataset) and the 
predictions made for traffic speed by all three 
models for both datasets on the corresponding test 
sets are presented in the Figures 5 and 6.  

 

 

 
Figure 5: GC-LSTM, DC-RNN and ST-GCN speed 
predictions on one sensor of the small dataset. 

 
Figure 6: GC-LSTM, DC-RNN and ST-GCN speed 
predictions on one sensor of the medium dataset. 

Analysing the performance obtained (as 
presented in Tables 1 and 2), we can see that:  
  By using data from (OSRM, 2023) for 

computing distances (i.e. the associated 
weight of the adjacency matrix) we get better 
performance in general (independent of the 
model). On the small dataset there exists one 
experimental setup where the best 
performance is obtained with the distances 
computed as geodesic distances, however the 
difference is not significant;     

 In general the complete graph appears to 
provide the best performance, but only when 
combined with the OSRM computed 
distances. This was really a surprise for us, 
since it provides significantly better 
performance than even the manually 
constructed graphs. On the medium dataset 
there exists one experimental setup where the 
best performance is obtained with our 
experimental variation of the linear regression 
algorithm, however the difference is not 
significant.      

5 CONCLUSIONS AND FUTURE 
WORK 

We present in this paper some experiments with the 
adjacency matrix used as input by three spatio-
temporal neural networks architectures when 
predicting traffic. For the experiments the following 
architectures were used: the GC-LSTM model (Chen 
et al., 2022), the DC-RNN model (Li et al., 2018) 
and the ST-GCN model (Yu et al., 2018). For each 
architecture we have considered 12 experimental 
setups, which were given by variations of the input 
adjacency matrix. We have found that, in almost all 
cases, the best performance is obtained when 
combining the complete graph with OSRM 
computed distances. In the two cases were the values 
obtained for R2 were negative (see Table 1) the 
model has delivered worse performance than the 
trivial model, which shows the importance of the 
method used for computing the distances. However, 
one should note that there are significant limitations 
to this approach, since the complexity of the 
complete graph increases quadratically with the 
number of vertices in the graph and the graphs 
considered are not really big.   

In the future we plan to make more experiments 
with both the spatial data (represented in the 
adjacency matrix), as well as with the temporal 
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traffic data.  It is quite clear that the way the spatial 
information is pre-processed plays an important role 
for improving the overall performance. Therefore we 
intend to search for better ways of processing it, 
aiming in particular for a sparse representation. We 
also intend to investigate more complex dataset, like 
for example the dataset introduced in (Mon et al., 
2022). 
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