
On the Adjacency Matrix of Spatio-Temporal Neural Network
Architectures for Predicting Traffic

Sebastian Bomher1 and Bogdan Ichim1,2
1Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, Bucharest, Romania
2Simion Stoilow Institute of Mathematics of the Romanian Academy, Str. Calea Grivitei 21, Bucharest, Romania

Keywords: Traffic Models, Neural Network (NN), Graph Convolutional Network (GCN), Long Short-Term Memory
Network (LSTM), Adjacency Matrix.

Abstract: We present in this paper some experiments with the adjacency matrix used as input by three spatio-temporal
neural networks architectures when predicting traffic. The architectures were proposed in (Chen et al., 2022),
(Li et al., 2018) and (Yu et al., 2018). We find that the predictive power of these neural networks is
influenced to a great extent by the inputted adjacency matrix (i.e. the weights associated to the graph of the
available traffic infrastructure). The experiments were made using two newly prepared datasets.

1 INTRODUCTION

Traffic data is very complex and nonlinear. Traffic
forecasting is many times dependent on external
factors such as the time of day, the season of the
year, the climate and current weather, but also on
internal factors such as the available infrastructure,
the number of vehicles on the roads (and their
particular types) or unexpected vehicle crashes. It
plays a crucial role in optimizing traffic flow,
improving traffic speed and efficiency. Moreover, it
is a key element for creating better intelligent
management systems for traffic.

Traffic forecasting is a challenging endeavour.
Its general performance depends on a complex set of
spatio-temporal interdependencies.

In this paper we present several traffic
forecasting experiments for which we use three
spatio-temporal neural network architectures which
were very recently introduced: the GC-LSTM model
(Chen et al., 2022), the DC-RNN model (Li et al.,
2018) and the ST-GCN model (Yu et al., 2018).

These new spatio-temporal neural network
architectures essentially combine some graph
convolutional layers (which are used for processing
the spatial information) with some temporal layers
(used for processing the temporal information). As
an example Long Short-Term Memory Networks
(LSTM), see (Hochreiter et al., 1997), may be used
to build the temporal processing part, but there are

also other choices available. In the experiments
presented here we have focused on the spatial data
used as input for these architectures. For this, we
have developed two new datasets. The data is
provided by the Caltrans Performance Measurement
System (PeMS, 2021). From the raw data a matrix
describing a weighted graph must be prepared as
input, however it is an open question how the
weights should be associated to the available
infrastructure. We have found that the predictive
power of these models is influenced to a great extent
by the way this matrix is prepared.

As a result, the following contributions are made
in this paper:
 We have created two new datasets. These new

datasets contains temporal data for three
different traffic features (flow, speed and
occupancy), as well as spatial data about the
sensors location;

 We have investigated different ways for
computing the weighted graph encoding the
spatial information and the end effect on
prediction. We have tested different parameter
settings from which we select automatically
the best among them for predicting.

 We have also studied to a certain extent the
suitability of the models for predicting the
temporal traffic features.

The code which was used for experiments,
together with the two new prepared datasets, is
available on demand from the authors.

Bomher, S. and Ichim, B.
On the Adjacency Matrix of Spatio-Temporal Neural Network Architectures for Predicting Traffic.
DOI: 10.5220/0011971300003479
In Proceedings of the 9th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS 2023), pages 321-328
ISBN: 978-989-758-652-1; ISSN: 2184-495X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

321

2 RELATED WORK

Scientists have been and are still looking for ways to
optimize traffic flow, improve traffic speed and
create better intelligent management systems for
traffic. Therefore, forecasting traffic is currently a
major research topic. Various authors have
investigated many approaches to the problem of
traffic forecasting. Nowadays, as a result of the rapid
development in the field of deep learning (Moravčík
et al., 2016), (Silver et al., 2016), (Silver et al.,
2017), certain new neural networks architectures
have received particular attention. Many times they
deliver the top results when compared with other
models.

Frequently the old approaches ignore completely
the spatial features particular to the traffic, focusing
only on temporal features (as for example flow and
speed). These models are operating like processing
the temporal traffic data is not at all restricted by the
available spatial framework. Nonetheless, it is clear
that only by using both the temporal information and
the spatial information performant traffic forecasting
might be achieved.

As a result of the given topology of the existing
roads networks the spatial traffic information is
intrinsically belonging to the graphs area of
research. In the last years a more general version of
the well-known Convolutional Neural Networks
(CNN) architecture was developed for usage given
that data may be linked to graph domains. It is called
Graph Convolutional Network (GCN) and
essentially uses as input a matrix describing a
weighted graph. For more information about GCN
and their development we point the reader to (Bruna
et al., 2014), (Henaff et al., 2015), (Atwood and
Towsley, 2016), (Niepert et al., 2016), (Kipf and
Welling, 2017) and (Hechtlinger et al., 2017). Note
that the GCN architecture was used by many authors
since its introduction for various applications and
has delivered superior performance.

Recently several authors have developed various
GCN architectures that may be used for forecasting
traffic, being motivated by the ability of GCN to
process data linked to graph domains. In (Li et al.,
2018) the authors propose a model computing
random walks on graphs. This was one of the first
attempts for making the spatial features useful. This
work was followed quite quickly by several related
papers, for example (Yu et al., 2018), (Zhao et al.,
2020), (Zhang et al., 2020), (Li and Zhu, 2021) and
(Chen et al., 2022). The authors investigate how
traffic forecasting may be improved by using various
architectures of spatio-temporal neural networks. In

general, they only use a certain fixed matrix in order
to describe the associated weighted graph.

Continuing this line of research, we perform
several experiments in order to see if the content of
this input matrix does play an important role for the
performance obtained by some particular spatio-
temporal neural network architecture and which way
of computing its entries (i.e. the weights associated
to the graph) does provide superior performance.

3 METHODOLOGY

3.1 Problem Statement

The aim of this paper is to study the influence that
the knowledge about the sensors spatial position on
the roads and the way it is further processed has on
predicting traffic features like flow, speed and
occupancy. All these are simultaneously available in
the data stored by the Caltrans Performance
Measurement System (PeMS, 2021).

Denote by 𝑆 be the number of sensors and by 𝑁
the number of time steps in a certain dataset. The
spatial information about the sensors will be
contained in a matrix 𝐴 ∈ ℝௌ୶ௌ which it is called the
adjacency matrix and contains certain weights 𝑎 ∈ሾ0,1ሿ . Remark that there exists no standard
procedure for inputting the weights 𝑎. We note that
they should be close to be 0 if there is a bad roadway
network between the two linked sensors 𝑖 and 𝑗, and
to be close to 1 if there a good roadway network
between them.

 Further, if 𝐾 traffic features (like flow, speed
and occupancy) are considered, then we get 𝐾x𝑆
time-series which are gathered by the traffic sensors.
Assume they are stored in a feature matrix 𝐵 ∈ℝ୶ௌ୶ே . Then, the vector 𝐵௧ ∈ ℝ୶ௌ contains the
values collected for all available traffic features and
by all sensors at a certain time 𝑡.

Let 𝑇 be a number of time steps. For given
adjacency matrix 𝐴 and feature matrix 𝐵 , the
general problem of spatio-temporal traffic
forecasting over the time horizon 𝑇 is the problem of
learning a model 𝑀 (i.e. a function) such that 𝐵௧ା் ≈ 𝑀൫𝐴; (𝐵௧ି, … , 𝐵௧ିଵ, 𝐵௧)൯.

In this paper we focus our attention on the
adjacency matrix 𝐴. We investigate different ways
for choosing 𝑎 in order to construct the adjacency
matrix 𝐴 and observe their influence on the model
performance in several computational experiments.

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

322

3.2 The Architecture of the
Spatio-Temporal Neural Networks

For the experiments presented in this paper we use
three spatio-temporal neural network architectures:
the GC-LSTM model (Chen et al., 2022), the DC-
RNN model (Li et al., 2018) and the ST-GCN model
(Yu et al., 2018).

The architecture of the GC-LSTM model (Chen
et al., 2022) is illustrated in Figure 1.

Figure 1: The architecture of the GC-LSTM model. The 𝐾x𝑆 time series collected by the traffic stations are used as
input.

According to (Chen et al., 2022) the GC-LSTM
model consists of two distinct parts: the GCN part
and the LSTM part. In order to apprehend the spatial
relation between traffic stations the GCN part is
used first. The graph convoluted data is expanded
next with the temporal data contained in the 𝐾x𝑆
time series. Then the time-series (now augmented
with a graph convolution containing spatial features)
are loaded in the LSTM part. The LSTM part keeps
track of previous information as well.

The architecture of the DC-RNN model (Li et
al., 2018) is very similar to the above architecture.
The main difference is that instead of LSTM, the
authors use Gated Recurrent Units (GRU). The same
idea is also used by (Zhao et al., 2020). According to
(Chung et al., 2014), the basic operating principles
of both the GRU and LSTM are approximately the
same. As can be also observed from the experiments
presented in this paper they deliver in practice
similar performance for various tasks, so we have
not noticed significant differences between them.

 According to (Yu et al., 2018) the ST-GCN
model consists of two Spatio-Temporal Convolution
blocks (ST-Conv blocks) after which an extra
temporal convolution layer with a fully-connected
layer as the output layer is added. Each ST-Conv
block is made of two Temporal Gated Convolution

layers with one Spatial Graph Convolution layer
sandwiched between them. Each Temporal Gated
Convolution contains a Gated Linear Unit (GLU)
with a one-dimensional convolution. Figure 2
illustrates this architecture.

Figure 2: The architecture of the ST-GCN model (left) and
the architecture of a single ST-Conv block (right).

In summary, all three architectures used in the
experiments are universal frameworks for capturing
complex spatial and temporal characteristics.

3.3 Dataset

For performing experiments we have processed two
new datasets using traffic information which was
gathered from the city of Los Angeles, California.
The data is aggregated from sensors positioned on
the various roads within the state of California and it
is stored and publically available in the Caltrans
Performance Measurement System (PeMS, 2021), a
public web platform where users can analyse and
export traffic information. In particular the website
offers multiple sectors of the city of Los Angeles.
For preparing the datasets sector seven was chosen.
This sector contains a total of 4904 unique traffic
stations each having its own identifier. However, the
raw data available from PeMS platform contains
many observations for which the values of the traffic
features are simply not available. A first important
step was to check the correctitude of the available
information. To this scope a python script passes
through each row of data and checks if the
corresponding traffic station contains information
about speed, occupancy and flow. If all three are
present then it is considered a good sensor and it is
saved. After this step from 4904 sensors only 2789
are left. A second important step in preparing the
datasets was to select traffic stations which are
relatively close together (so that we may assume that

On the Adjacency Matrix of Spatio-Temporal Neural Network Architectures for Predicting Traffic

323

the corresponding traffic values are related). This
was done by plotting on a map the sensors and then
hand-picking them.

The first dataset, called in the following small,
contains 8 hand-picked sensors in an intersection.
Their location is shown in Figure 3.

Figure 3: Map of the hand-picked sensors for the small
dataset.

The second dataset, called in the following
medium, contains 50 hand-picked sensors around an
intersection, as shown in Figure 4.

Figure 4: Map of the hand-picked sensors for the medium
dataset.

For the selected sensors, the two datasets contain
complete temporal data for the most important
traffic features available in the PeMS platform, i.e.
flow, speed and occupancy. Both datasets enclose
the time interval from the 1st of July to the 31th of
July 2021. Remarking that the heaviest congestion
happens during the week days and in order to find
better insight of the traffic during the most critical
periods only the 22 weekdays of July 2021 are
selected for further use. Measurements on each
sensor are done every 5 minutes. There are 288
observations for every day. In total both datasets
contain 6336 observations for each sensor.

The PeMS platform also offers an extra metadata
file which provides additional information for each
individual traffic station. From the data available for
each sensor the latitude and longitude numbers are
further used for computing the spatial information
needed for the experiments.

3.4 Technical Implementation

Python is the most popular programming language
used for artificial intelligence, data science or
machine learning projects in general. It is probably
the best choice for performing experiments similar
with those presented in this paper.

After the data is downloaded from the PeMS
platform it requires further processing. For this
scope the libraries Pandas (Pandas, 2016) and
NumPy (Harris et al., 2020) have been used.

Further, for the implementation of the spatio-
temporal neural network models we have used the
Python versions of the state of the art libraries
Tensorflow, Keras and Torch. Tensorflow (Google
Brain, 2016) is a library developed by Google for
implementing machine learning applications. On top
of Tensorflow, another very popular package, named
Keras (Chollet, 2015), has been built. It contains
various implementations of machine learning
algorithms and together with the StellarGraph
library (CSIRO's Data61, 2018) was used for the
experiments done in (Ichim and Iordache, 2022). For
most machine learning projects Keras is the standard
choice. Torch (Paszke et al., 2019) is another well-
known library based on TensorFlow which contains
a collection of advanced tools for machine learning.
It is harder to use as Keras since the training step
needs to be manually implemented, however with
more flexibility, it has more to offer. It was our
choice for the experiments done below.

4 EXPERIMENTS

4.1 Performance Metrics

There are multiple ways to compute the performance
of a certain model. For our experiments we have
chosen five standard loss functions that compute the
distance between the actual, as measured value of a
feature yi, and the value predicted by the model for
the same feature. Let us suppose that the dataset
used for testing contains 𝑁 observations (samples)
of the shape (𝑥௧, 𝑦௧) and 𝑚 is the model for which
the performance is computed. Denote by 𝑚(𝑥௧) the
model prediction for 𝑦௧ and let 𝑦௧ഥ be the arithmetic
mean of 𝑦௧. Then we have:

 Root Mean Squared Error (RMSE):

 𝑅𝑀𝑆𝐸(𝑚) = ටଵே (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ ;

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

324

 Mean Absolute Percentage Error (MAPE):
 𝑀𝐴𝑃𝐸(𝑚) = 100𝑁 ቤ𝑦௧ − 𝑚(𝑥௧)𝑚(𝑥௧) ቤ ; ே

௧ୀଵ

 Mean Absolute Error (MAE):

 𝑀𝐴𝐸(𝑚) = ଵே |𝑦௧ − 𝑚(𝑥௧)|ே௧ୀଵ ;

 Mean Squared Error (MSE):
 𝑀𝑆𝐸(𝑚) = ଵே (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ ;

 The Coefficient of Determination (R2):
 𝑅ଶ(𝑚) = 1 − (𝑦௧ − 𝑚(𝑥௧))ଶே௧ୀଵ∑ (𝑦௧ − 𝑦௧ഥ)ଶே௧ୀଵ .

More specifically, the first four metrics measure

the loss in the model prediction. Their interpretation
is the following: a small calculated value means a
better model at making predictions. The coefficient
of determination measures the (abstract) ability to
provide good predictions by comparing a given
model with the trivial model. It is always less than 1
by definition and it is 0 for the trivial model. A
coefficient of determination close to 1 indicates a
model which is significantly better than the trivial
model.

In the tables below we compute the final RMSE
as an arithmetic average over time of the RMSE
computed for all sensors at a single time moment.
Since for any positive values 𝑎௧ we have

 ∑ ඥ𝑎௧ே௧ୀଵ𝑁 ඩ1𝑁 𝑎௧ே
௧ୀଵ ,

it follows that the final RMSE reported is smaller
than the square root of the final MSE reported.

4.2 Setup for Experiments

The neural network architectures which were used in
experiments use graphs as inputs and for this reason
the corresponding adjacency matrices need to be
constructed. Since our experiments have focused on
the influence that the input adjacency matrix plays
on the final performance we have considered the
following setups:

 Two different datasets. They essentially
determine the number of vertices in the
graph

o Small – 8 vertices;
o Medium – 50 vertices;

 Three possible ways for establishing when
there exists a edge between two vertices

o Complete – the graph has an edge
between every two vertices;

o Manual – using the map, the
vertices are manually connected;

o LR – we experimentally try to
use standard linear regression in
order to connect the vertices;

 Two distinct methods for computing the
distances between two vertices

o Geodesic – using the latitude and
longitude data for each sensor, the
geodesic distance between two
sensors is computed;

o OSRM – the shortest paths in the
road network is computed using
data from (OSRM, 2023).

Further, the weights associated to the edges need

to be computed. For this we use the following
formula

 𝑤 = exp ቆ− 𝑑ଶ𝜎ଶ ቇ if 𝑖 ് 𝑗 and exp ቆ− 𝑑ଶ𝜎ଶ ቇ 𝜖,

which was proposed in (Yu et al., 2018). Here 𝑤
represents the weight of adjacency matrix
corresponding to the distance 𝑑 between the
vertices 𝑖 and 𝑗 computed above. The two tuning
hyperparameters 𝜖 and 𝜎 introduced in the formula
are thresholds used in order control the sparsity and
the distribution of the graph’s edges. A grid search is
performed for tuning these hyperparameters. After
this the best settings are selected automatically and
they are used further for making predictions. The
values given for the two parameters in the grid
search are: 𝜎 ∈ ሼ1, 3, 5, 10ሽ and 𝜖 ∈ ሼ0.1, 0.3, 0.5, 0.7ሽ.
4.3 Results of the Experiments

The performance of a GC-LSTM model (Chen et al.,
2022) is compared below with the performance of a
DC-RNN model (Li et al., 2018) and with the
performance of a ST-GCN model (Yu et al., 2018).

On the Adjacency Matrix of Spatio-Temporal Neural Network Architectures for Predicting Traffic

325

This allows us to see the effects that the various
changes made to the input adjacency matrix have on
the combined spatio-temporal prediction potential of
the models.

The final results of our experiments are
contained in Table 1 for the small dataset and in
Table 2 for the medium dataset. We have marked
with bold the best predictions made by each of the 3
models for 3 ways of constructing the edges

(complete, manual and linear regression) and for 2
different ways for computing the associated
distances (geodesic and OSRM). In our experiments
we have predicted the speed, however there is no
restriction in repeating the experiment for
forecasting other temporal traffic features (like flow
or occupancy). Overall the ST-GCN model has
provided the best performance in these experiments.

Table 1: Experimental Results on Small Dataset.

Model Edges Distances Metric
RMSE MAPE MAE MSE R2

GC-LSTM

Complete Geodesic 12.3186 0.3245 9.3377 230.1765 -0.0939
OSRM 2.7649 0.0481 2.0921 11.0771 0.9474

Manual Geodesic 4.9872 0.0697 3.2098 38.4739 0.8172
OSRM 4.8829 0.0703 3.2358 35.5279 0.8312

LR Geodesic 9.3054 0.1732 7.2134 146.5231 0.3037
OSRM 8.6787 0.1864 7.0297 128.3809 0.3899

DC-RNN

Complete Geodesic 13.0717 0.3477 9.8091 261.9677 -0.2451
OSRM 3.0782 0.0536 2.2542 14.5672 0.9308

Manual Geodesic 4.7836 0.0682 3.0916 34.6671 0.8352
OSRM 4.7451 0.0676 3.0761 34.7506 0.8349

LR Geodesic 10.2666 0.1901 7.5919 178.4229 0.1521
OSRM 9.2368 0.1769 6.9151 144.4572 0.3135

ST-GCN

Complete Geodesic 2.5141 0.0407 1.7378 8.0861 0.9616
OSRM 2.5936 0.0413 1.8111 8.7246 0.9585

Manual Geodesic 2.9377 0.0458 2.0689 10.4536 0.9503
OSRM 2.5497 0.0409 1.7913 8.2218 0.9609

LR Geodesic 2.5839 0.0417 1.8082 8.5089 0.9596
OSRM 3.2609 0.0599 2.2025 12.4608 0.9408

Table 2: Experimental Results on Medium Dataset.

Model Edges Distances Metric
RMSE MAPE MAE MSE R2

GC-LSTM

Complete Geodesic 9.2198 0.2202 7.1484 129.7562 0.1016
OSRM 3.1074 0.0505 2.4401 12.1576 0.9158

Manual Geodesic 8.4881 0.1997 5.6513 111.5111 0.2279
OSRM 8.2374 0.1946 5.6716 104.5321 0.2763

LR Geodesic 8.3699 0.1784 5.8521 106.3525 0.2637
OSRM 8.2734 0.1741 5.8059 103.7811 0.2815

DC-RNN

Complete Geodesic 9.1336 0.2023 6.9403 128.6674 0.1092
OSRM 5.1074 0.1006 3.9828 35.7923 0.7522

Manual Geodesic 8.4088 0.1971 5.5235 108.7543 0.2471
OSRM 8.4106 0.2001 5.6183 110.1817 0.2372

LR Geodesic 8.2222 0.1742 5.7521 102.5802 0.2898
OSRM 8.2052 0.1755 5.7703 101.7261 0.2957

ST-GCN

Complete Geodesic 2.2045 0.0291 1.4141 5.6623 0.9608
OSRM 3.0271 0.0331 1.6851 9.8946 0.9315

Manual Geodesic 2.9934 0.0351 1.7708 9.7289 0.9326
OSRM 2.1745 0.0303 1.3569 5.8831 0.9593

LR Geodesic 3.1474 0.0303 1.5051 10.6289 0.9264
OSRM 2.1291 0.0282 1.3691 5.2089 0.9639

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

326

4.4 Interpretation of the Results

The scope of the following visualizations is to
provide a better understanding of our results. We
have chosen two particular sensors (one for the
small and one for the medium dataset) and the
predictions made for traffic speed by all three
models for both datasets on the corresponding test
sets are presented in the Figures 5 and 6.

Figure 5: GC-LSTM, DC-RNN and ST-GCN speed
predictions on one sensor of the small dataset.

Figure 6: GC-LSTM, DC-RNN and ST-GCN speed
predictions on one sensor of the medium dataset.

Analysing the performance obtained (as
presented in Tables 1 and 2), we can see that:
 By using data from (OSRM, 2023) for

computing distances (i.e. the associated
weight of the adjacency matrix) we get better
performance in general (independent of the
model). On the small dataset there exists one
experimental setup where the best
performance is obtained with the distances
computed as geodesic distances, however the
difference is not significant;

 In general the complete graph appears to
provide the best performance, but only when
combined with the OSRM computed
distances. This was really a surprise for us,
since it provides significantly better
performance than even the manually
constructed graphs. On the medium dataset
there exists one experimental setup where the
best performance is obtained with our
experimental variation of the linear regression
algorithm, however the difference is not
significant.

5 CONCLUSIONS AND FUTURE
WORK

We present in this paper some experiments with the
adjacency matrix used as input by three spatio-
temporal neural networks architectures when
predicting traffic. For the experiments the following
architectures were used: the GC-LSTM model (Chen
et al., 2022), the DC-RNN model (Li et al., 2018)
and the ST-GCN model (Yu et al., 2018). For each
architecture we have considered 12 experimental
setups, which were given by variations of the input
adjacency matrix. We have found that, in almost all
cases, the best performance is obtained when
combining the complete graph with OSRM
computed distances. In the two cases were the values
obtained for R2 were negative (see Table 1) the
model has delivered worse performance than the
trivial model, which shows the importance of the
method used for computing the distances. However,
one should note that there are significant limitations
to this approach, since the complexity of the
complete graph increases quadratically with the
number of vertices in the graph and the graphs
considered are not really big.

In the future we plan to make more experiments
with both the spatial data (represented in the
adjacency matrix), as well as with the temporal

On the Adjacency Matrix of Spatio-Temporal Neural Network Architectures for Predicting Traffic

327

traffic data. It is quite clear that the way the spatial
information is pre-processed plays an important role
for improving the overall performance. Therefore we
intend to search for better ways of processing it,
aiming in particular for a sparse representation. We
also intend to investigate more complex dataset, like
for example the dataset introduced in (Mon et al.,
2022).

REFERENCES

Atwood, J., Towsley, D. (2016). Diffusion-convolutional
neural networks. In NIPS'16, Proceedings of the 30th
International Conference on Neural Information
Processing Systems, 2001 – 2009.

Bruna, J., Zaremba, W., Szlam, A., LeCun, Y. (2014).
Spectral Networks and Locally Connected Networks
on Graphs. In ICLR 2014, Proceedings of the 2th
International Conference on Learning
Representations, pages 1 – 14.

Chen, J., Wang, X., Xu, X. (2022). GC-LSTM: graph
convolution embedded LSTM for dynamic network
link prediction. Applied Intelligence 52, pages 7513 –
7528.

Chollet, F., & others (2015). Keras. Available online at:
https://github.com/fchollet/keras.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014).
Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. Presented in NIPS
2014, Deep Learning and Representation Learning
Workshop. Preprint arXiv: 1412.3555.

CSIRO's Data61 (2018). StellarGraph Machine Learning
Library. Online at https://stellargraph.readthedocs.io/.

Google Brain (2016). TensorFlow: A system for large-
scale machine learning. In OSDI'16, Proceedings of
the 12th USENIX conference on Operating Systems
Design and Implementation, pages 265 – 283.

Harris, R., Millman, J., van der Walt, J. et al. (2020).
Array programming with NumPy. Nature 585, pages
357 – 362.

Hechtlinger, Y., Chakravarti, P., Qin, J. (2017). A
generalization of convolutional neural networks to
graph-structured data. Preprint arXiv: 1704.08165.

Henaff, M., Bruna, J., LeCun, Y. (2015). Deep
convolutional networks on graph-structured data.
Preprint arXiv:1506.05163.

Hochreiter, S., Schmidhuber, J. (1997). Long short-term
memory. Neural Computation 9, pages 1735 – 1780.

Ichim, B., Iordache, F. (2022). Predicting Multiple Traffic
Features using a Spatio-Temporal Neural Network
Architecture. In VEHITS 2022, Proceedings of the 8th
International Conference on Vehicle Technology and
Intelligent Transport Systems, pages 331 – 337.

Kipf, T., Welling, M. (2017). Semi-Supervised
Classification with Graph Convolutional Networks. In
ICLR 2017, Proceedings of the 6th International

Conference on Learning Representations, pages 1 –
14.

Li, Y., Yu, R., Shahabi, C., Liu, Y. (2018). Diffusion
Convolutional Recurrent Neural Network: Data-
Driven Traffic Forecasting. In ICLR 2018,
Proceedings of the 6th International Conference on
Learning Representations, pages 1 – 16.

Li, M., Zhu, Z. (2021). Spatial-temporal fusion graph
neural networks for traffic flow forecasting. In
Proceedings of the Thirty-Five AAAI Conference on
Artificial Intelligence, 4189 – 4196.

Mon, E., Ochiai, H., Komolkiti, P., Aswakul, C. (2022).
Real-world sensor dataset for city inbound-outbound
critical intersection analysis. Scientific Data 9, article
number 357.

Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill,
D., Bard, N., Davis, T., Waugh, K., Johanson, M.,
Bowling, M. (2017). Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science 356,
pages 508 – 513.

Niepert, M., Ahmed, M., Kutzkov, K. (2016). Learning
convolutional neural networks for graphs. In ICML
2016, Proceedings of the 33rd International
Conference on Machine Learning, pages 2014 – 2023.

Pandas (2020). Available at: https://pandas.pydata.org/.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., et al. (2019). PyTorch: An Imperative
Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems
32, pages 8024 – 8035.

PeMS, Caltrans Performance Measurement System
(2021). Data available at https://pems.dot.ca.gov/.

OSRM, Open Source Routing Machine (2023). Data
available at http://project-osrm.org/.

Silver, D. et al. (2016). Mastering the game of go with
deep neural networks and tree search. Nature 529,
pages 484 – 489.

Silver, D. et al. (2017). Mastering the game of go without
human knowledge. Nature 550, pages 354 – 359.

Yu, B., Yin, H., Zhu, Z. (2018). Spatio-Temporal Graph
Convolutional Networks: A Deep Learning
Framework for Traffic Forecasting. In Proceedings of
the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-ECAI-2018, pages 3634
– 3640.

Zhang, Q., Chang, J., Meng, G., Xiang, S., Pan, C. (2020).
Spatio-Temporal Graph Structure Learning for Traffic
Forecasting. In Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, 1177 – 1185.

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T.,
Deng, M., Li H. (2020). T-GCN: A Temporal Graph
Convolutional Network for Traffic Prediction. IEEE
Transactions on Intelligent Transportation Systems
21, pages 3848 – 3858.

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

328

