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Abstract: Analyzing and modeling behavioral data from driving studies can be challenging and often entails numerous 
steps of data handling, preparation, and aggregation before the final data modeling and extraction of results 
can be performed. In research papers, these steps are often described only briefly due to the natural limitation 
of words and intended focus on the related research questions. However, for smaller research groups or 
individual researchers without IT experts, the engineering of appropriate data processing pipelines for this 
type of research can be challenging. To address this issue, this work presents a step-by-step guide on how we 
tackled one of these challenges in our recent research activities. Our work focused on the implementation of 
a published algorithm for the prediction of turning maneuvers at intersections, which partly relies on map data 
for computing path curvature. We describe how we used freely available technologies and which steps were 
applied for building a data processing pipeline to enrich the recorded driving data with map data obtained via 
the OpenStreetMap platform and API.

1 INTRODUCTION 

Analyzing driving behavior is essential in the domain 
of traffic or engineering psychology (also referred to 
as human factors), especially with regard to the 
design of in-vehicle information systems (IVIS) or 
advanced driving assistance systems (ADAS). 
Driving data is usually recorded in laboratory 
settings, such as driving simulators, or in real traffic 
(naturalistic) environments using a test vehicle 
equipped to record vehicle signals, videos of the 
driver, driving scenarios, and GPS information. In 
particular, the precise recording of position data plays 
an important role in the comparative analysis of 
driving behavior between different drivers in similar 
traffic environments.  

However, storing, (pre-) processing, and 
analyzing driving data entails numerous challenges 
before interpretation or modeling can be performed. 
In M. Graichen et al. (2018), the methodological 
issues as well as guidelines to address these 
challenges have been outlined. In this work, we 
focused on an overall framework for pre-processing 
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and analyzing driving data and mentioned the use of 
external data sources such as map data to enrich the 
driving data. Examples include meta information on 
street names, speed limits, and intersection types. 
Industry-affiliated research partners might even use 
high-precision digital maps data and satellite pictures 
to obtain additional information, such as lane 
markings or the design of the road infrastructure. 
However, in academic domains or non-
industry/public research projects, access to such data 
platforms is often not available, prompting 
researchers to use alternatives such as Google Maps 
(e.g., for satellite images) or OpenStreetMap (OSM).  

Smaller research groups or individual human 
factors researchers without access to experts from an 
IT department or data engineering team may find 
themselves in a situation where they need to 
implement the required data processing pipelines for 
such data. In research papers, these data steps are 
often described only briefly due to the natural 
limitation of words and intended focus on the related 
research questions. Nevertheless, there is some work 
which seeks to describe the methodological issues of 
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data analysis in the human factors domain (see M. 
Graichen et al., 2018, Beggiato, 2015, p. 38; Pereira 
et al., 2014).  

The present work aims to contribute to this 
literature by outlining a data processing framework 
for using map data from an open source platform to 
enrich naturalistic driving data, which was necessary 
to recreate a turn prediction algorithm found in the 
literature. 

2 OBJECTIVE 

The presented framework is linked to research 
activities that aimed to extend an algorithm for 
predicting turning maneuvers at intersections and is 
now also used in studies on HCXAI (human-centered 
explainable artificial intelligence; see L. Graichen et 
al., 2022). One potential application of this algorithm 
is to support drivers before performing a turning 
maneuver at intersections by displaying a warning of 
potentially crossing road users moving in the same 
direction as the driver. However, the warning should 
only be displayed in situations where the algorithm 
predicts a turning maneuver during the approaching 
phase toward the intersection. For example, when the 
driver is going straight, no warning is displayed to 
avoid undesired effects such as increasing driver 
distraction.  

The basis for this algorithm was presented by 
Liebner et al. (2013) and later extended by M. 
Graichen (2019, see also M. Graichen & Nitsch, 
2017) to integrate more personal characteristics for 
parametrizing the algorithm for individual drivers. 

The core of the algorithm is mainly based on so-
called “desired velocity models,” which represent the 
anticipated velocity while approaching the 
intersection and performing the turn maneuver. One 
way to obtain these models is by collecting and 
clustering actual driving data. However, this 
approach would require a database of typical driving 
behaviors at each individual intersection. An 
alternative and less costly approach would be to 
extract map data and calculate the anticipated path 
curvature for possible intersection maneuvers, which 
can then eventually be converted into velocity 
models.  

However, the original article does not describe 
from which data platform the map data was extracted 
and only vaguely mentions how the path curvature 
was calculated. The following sections outline the 
framework for implementing our approach for a data 
processing pipeline to obtain map data, calculate the 

path curvature, and obtain the velocity models used in 
the algorithm.  

3 IMPLEMENTATION 

The following sections describe the required 
technologies for implementing the data processing 
pipeline followed by an outline of the steps for 
processing the map data and driving data.  

3.1 Prerequisites and Technologies 
Used 

Our approach has its origin in experimental driving 
studies in real traffic environments. Drivers were 
required to take a fixed route through an urban 
environment. During these trips, we recorded vehicle 
signals via the CAN bus (e.g., driver’s speed, lateral 
acceleration or braking activities). In the following 
sections, we assume that researchers have already 
familiarized themselves with the possible routes 
drivers were either required to take in an experimental 
setup or took during a more naturalistic study design. 
We also assume that sections of driving data can be 
easily loaded into the preferred analysis framework.  

The presented framework only uses technologies 
that are freely available and can be easily installed on 
any local machine or central server. However, we 
assume that readers are already experienced with 
programming and data processing languages such as 
R or Python and SQL.  

For (pre-) processing and analyzing data, we use 
R (R Core Team, 2022; https://cran.r-project.org/) 
and RStudio (https://posit.co/products/open-
source/rstudio/). For storing driving and map 
information, a PostgreSQL database 
(https://www.postgresql.org/) is used. However, 
depending on the amount of processed data and the 
individual setup, a simple SQLite database 
(https://www.sqlite.org/index.html) may suffice if the 
researcher is the only person who will work with the 
data at one point in time. The installation of the 
database is easy for common operating systems, such 
as Windows or Mac, but it is recommended to read 
the documentation or supplementary material to get 
the basic ideas of setting up a database. In this regard, 
a SQLite database is easier to apply, as installation is 
not necessary. In either variant, the database can 
usually be easily connected in R or Python.  

For the map information, we obtained freely 
available map data from OSM 
(https://www.openstreetmap.org/) by using the 
Overpass API (https://overpass-api.de/). Relevant 

VEHITS 2023 - 9th International Conference on Vehicle Technology and Intelligent Transport Systems

314



GPS positions were analyzed using satellite images 
on Google Maps. However, in comparison to Google 
Maps, OSM enables users to query information on the 
underlying road segments that comprise the map data. 

We implemented the presented example using R. 
The code and data can be accessed at the following 
URL: http://bit.ly/3Fw0xVd.  

3.2 Obtaining Map Data 

In the following section, we describe the steps for 
processing map data from the OSM platform. The 
procedure includes the following steps:  
 Identify representative GPS positions 
 Identify relevant OSM way segments related to 

the identified GPS positions 
 Download relevant way information for the 

identified segments 
 Download additional attributes (optional) 

3.2.1 Identifying GPS Reference Positions 

In our previous studies, we were interested in driving 
behaviors at intersections. For a selection of various 
intersections along the route, we identified 
representative GPS coordinates for meaningful 
reference positions on the road. A meaningful 
position could be, for example, the position of a 
stopping line or positions where weaker road users, 
such as pedestrians or cyclists, would usually cross 
the road and thus possibly the trajectory of the driver 
during a turning maneuver.  

 
Figure 1: Intersection (satellite view). 

The GPS positions were identified using Google 
Maps (e.g., by right-clicking the position of interest 

to extract the GPS coordinates). For each position, the 
GPS coordinates were then stored in the database. 
The following sections refer to the intersection shown 
in Figure 1. 

3.2.2 Identifying Relevant OSM Way 
Segments 

For each GPS position, the coordinates were then 
used in the search field of the OSM platform, which 
will show the position on a map, similar to Google 
Maps. For the next steps, users are recommended to 
increase the zoom level into the map for better 
manipulation of the OSM web interface. The 
interface displays several options to interact with the 
map on the right side of the web interface. The 
“Layers” option enables the user to activate a view on 
the meta information of the map data by selecting the 
“Map Data” option. Next, the user will see the various 
lines and layers underlying the OSM map data. 
However, each road consists of several smaller way 
segments, which can be selected by clicking one of 
the lines. 

For our analyses, we identified several way 
segments related to the approaching phase to the 
intersection (e.g., up to 150 m) and way segments of 
adjunct crossing roads (e.g., up to 50 m), into which 
drivers could potentially turn. For each way segment, 
the corresponding way ID was detected using the 
meta information provided in the web interface. For 
each intersection, we collected several way IDs and 
stored them in the database respectively.  

 
Figure 2: OSM web interface. 

3.2.3 Downloading Way Segment Data 

Each way segment consists of two or more nodes, 
which are represented by GPS coordinates (see Figure 
3). These nodes are not displayed in the OSM but can 
be queried using the Overpass API. To obtain the 
node data, the query pattern must be designed as 
follows: 
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https://overpass-
api.de/api/interpreter?data=way(id:
WAY_ID1, WAY_IDn);out%20geom; 

The placeholder WAY_ID should be replaced by 
actual way IDs identified in the previous steps. 

This pattern can then be used to automatically 
create API queries in the analysis framework and 
send requests to the Overpass interface (e.g., by using 
the R package httr, Wickham, 2022). The request will 
return an XML string from which node information 
can be extracted (e.g., using the R package xml2, 
Wickham et al., 2021). For each way segment, the 
node data (e.g., order of nodes, reference IDs, and 
GPS coordinates) were stored in the database 
respectively. 

 
Figure 3: Original order of nodes. 

3.2.4 Downloading Additional Attributes 

The way segment data can contain several other 
parameters of interest for further analyses, such as 
speed limit, number of lanes, or the presence of 
dedicated bicycle lanes. This information is also 
displayed in the OSM web interface and part of the 
request results when using the API.  

3.3 Pre-Processing Way Segment Data 

Before the way segment data can be used to enrich 
further analysis, users are recommended to check and 
validate the alignment of the segments. The pre-
processing of the data should include the following 
steps: 
 Correct alignment of way segments 
 Removal of unneeded nodes 
 Interpolating and trimming way segment data 

 Computing a distance to GPS reference point 
All these steps should be supported by data 

visualization to validate the results of each step. 

3.3.1 Correct Alignment of Way Segments 

As described above, each way segment consists of 
several nodes. Naturally, the order of these nodes will 
not always match the route’s direction in the driving 
study, for example, when a single way segment 
represents both driving directions instead of two 
separate way segments for each driving direction. In 
our case, it was necessary to connect the different way 
segments and the nodes to a single way segment. 
However, without applying validation checks and 
correction procedures, this can lead to undesired 
results, for example, when GPS coordinates between 
the nodes need to be interpolated.  

To address this issue, the following pattern was 
applied to the data. For each pair of succeeding way 
segments, check if the first node ID of the second way 
segment matches the last node ID of the previous way 
segment. If this is not the case, the order of the nodes 
of the second way segment needs to be reversed. This 
procedure should be applied separately for the very 
first and second way segment to ensure the correct 
starting direction from the beginning (see Figure 4).  

In some cases, such as at intersections, two 
succeeding way segments are not adjunct, which 
means that the outer nodes of the second segment do 
not match any of the nodes of the previous segment. 
To ensure that the correction still works, an additional 
(dirty) step is applied that looks for the third segment 
in a row of segments to find the matching node and 
reverts the segment if necessary. 

 
Figure 4: Sorted order of nodes. 
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3.3.2 Removal of Unneeded Nodes 

In cases of way segments that do share the same outer 
nodes (as described in the last part of the previous 
section), the unneeded nodes should be removed from 
the segment (see Figure 5). For each pair of 
succeeding way segments, this can be applied as 
follows: For the first way segment, identify the node 
ID that represent an interface to the second way 
segment (by sharing the same node ID). If this node 
is not the last node of the first way segment, all 
succeeding nodes can be removed.  

 
Figure 5: Removal of unneeded nodes. 

3.3.3 Interpolating the Data 

To be able to join the corrected map data with the 
actual driving data, both must share the same distance  

 
Figure 6: Interpolated GPS positions between nodes. 

criteria between each record. In our analyses, we 
interpolated the driving data to a representation of 0.1 
m driven distance per record. We applied the same 
method to the map data by calculating the distance 
between the GPS coordinates of each node and 
interpolated the data accordingly (see Figure 6). 

3.3.4 Calculating the Distance Criteria to 
GPS Reference Point 

haring the same equal-distanced data basis is not 
sufficient for joining the data, as map data and driving 
data do not share the same reference for the distance 
measure. In driving data, a driven distance criterion 
can usually be calculated, for example, by means of 
speed information, starting from the beginning of the 
recording. Naturally, this measure does not match the 
distance measures we will achieve for the processed 
map data, as only a selection of way segments will be 
included in the analysis. To address this issue, we 
applied the same method to the map data that we 
usually apply to the driving data by calculating the 
distance between each GPS position of each record to 
the GPS reference point. In a second step, we identify 
the record that has the minimal distance to the GPS 
reference point and set this record to zero. We then 
create a distance measure by cumulating (repeatedly 
adding or subtracting) the driven distance measure 
(e.g., 0.1 m per record) for all records that lie before 
and after this record. For a more detailed explanation, 
see M. Graichen et al. (2018). 

3.3.5 Trimming Way Segment Data 

As the cumulative length of the way segments will 
likely not match the section of interest for the driving  

 
Figure 7: Trimmed map data and GPS reference position. 
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data, map data should be trimmed according to the 
required distance measure (e.g., -100 m before and 50 
m after passing the GPS reference point; see Figure 
7). 

3.3.6 Joining Driving Data and Map Data 

After interpolating and trimming the map data, it 
should be possible to join the driving data and map 
data for further analysis (see Figure 8Figure 9).  

 
Figure 8: Joined driving data and map data. 

3.4 Computing the Velocity Model 

To compute the velocity model for approaching the 
intersection and a potential turning maneuver, the 
following steps should be performed: 
 Compute path curvature 
 Convert path curvature to velocity 

3.4.1 Computing Path Curvature 

For calculating the path curvature, we use the radius 
of artificial circles calculated for a series of three data 
points along the GPS path that were extracted from 
the interpolated map data. To solve the equation and 
find the center of the circle between these three 
points, we applied Gaussian elimination using the R 
package matlib (Michael Friendly et al., 2022). 

To achieve smoother results, we chose a series of 
data points that are 5 m apart from each other. 
Additionally, we also applied a k-means smoothing 
procedure (see Figure 9).  

 
Figure 9: Path curvature. 

3.4.2 Converting Path Curvature to Velocity 

To compute the velocity model 𝑣෤௪ based on the path 
curvature, we followed the method described in 
Liebner et al. (2013) using different values for the 
maximum lateral acceleration 𝑎ത୪ୟ୲ in the formula: 

𝑣෤௪ሺ𝑠ሻ ൌ minቌඨ 𝑎ത୪ୟ୲𝑘ଶሺ𝑠ሻ , 𝑣௪തതതതቍ (1)

with 𝑠  being the distance measure (e.g., the 
current driver position or distance to the GPS 
reference point), 𝑎ത୪ୟ୲  the maximum lateral 
acceleration, 𝑘ଶሺ𝑠ሻ  the smoothed path curvature 
profile and 𝑣௝ the maximum velocity for each profile 
(e.g., the maximum permitted speed for each 
individual road). 

To achieve better results, we have limited the 
gradient until the minimum speed is reached (see 
Figure 10). To adjust for outliers, we also limited the 
maximum velocity to the speed limit as provided by 
the OSM data for the related way segment. Figure 10 
shows three velocity models representing possible 
velocity profiles during a turning maneuver at this 
particular intersection (see Figure 1). 

 
Figure 10: Desired velocity models. 
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4 CONCLUSION 

4.1 Summary 

The present work aimed to outline a framework for 
using OSM data to enrich driving data recorded in 
real traffic environments. Using OSM data requires 
several steps, such as identifying relevant way IDs, 
downloading way data, and sorting the nodes of the 
segment IDs before the data can be joined with the 
driving data. Further, the importance of data 
visualization has been highlighted for all pre-
processing steps.  

We also presented an application scenario by 
using the extracted map data for calculating a path 
curvature along the way segments and converting it 
into a potential velocity model that has been used in 
an algorithm for predicting turn maneuvers. 

4.2 Discussion 

Analyzing and modeling behavioral data from driving 
studies can be challenging and often entails numerous 
steps of data handling, preparation, and aggregation 
before the final data modeling and extraction of 
results can be performed. In research papers, these 
data steps are typically described only briefly due to 
the natural limitation of words and intended focus on 
the related research questions. Comparatively, 
research papers on modeling behavioral data from 
other domains, such as automotive engineering, 
summarize these steps using abstract algorithmic 
sequences or mathematical formulas. For early career 
researchers or experts from other domains with only 
limited experience in technical implementations of 
complex data processing pipelines or algorithms, 
these types of papers can be discouraging and prevent 
further investigation. 

Being able to (re-)implement these data 
processing steps can be a crucial requirement to 
reproduce published results, extend previous 
research, or reuse analytical models for other research 
purposes. Based on previous research activities, this 
work presents a step-by-step guide for enriching 
driving data by means of public map data and freely 
available tools such as databases and open-source 
programming languages. The aim of this paper was to 
help readers getting started with similar projects, 
particularly smaller research groups or individual 
human factors researchers without access to experts 
from data engineering teams. However, the presented 
methods can be used in many areas of human factors 
research and are easily accessible. To make the 
presented methods even more efficient, future work 

could focus on automating the retrieval of way ids and 
corresponding map data (node information), 
depending on the recorded GPS data of the driver. 
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