
Text Mining Studies of Software Repository Contents

Bartosz Dobrzyński and Janusz Sosnowski a
Warsaw University of Technology, Institute of Computer Science, ul. Nowowiejska 15/19, Poland

Keywords: Issue Tracking System, Issues and Comment Classification, Software Repository, Text Mining.

Abstract: Issue tracking systems comprise data which are useful in evaluating or improving software development
processes. Revealing and interpreting this information is a challenging problem which needs appropriate
algorithms and tools. For this purpose, we use text mining schemes adapted to the specificity of the software
repository. They base on a detailed analysis of the used dictionaries which comprise Natural Language Words
(NLW) and are enhanced with specialized entities in issue descriptions (e.g., emails, code snippets, technical
names). They are defined with specially developed regular expressions. The pre-processed texts are submitted
to original text mining algorithms (machine learning). This approach has been verified in commercial and
open-source projects and showed possible development improvements.

1 INTRODUCTION

Software development is managed with the use of
Issue Tracking Systems (ITS) supported with
Software Version Control (SVC) and other systems.
They provide data repositories comprising rich data
which document software engineering activities
during the project life cycle (Vidoni, 2021;
Sosnowski et al., 2017; Huang, et al., 2019). They are
specified as issues in ITS created by project
stakeholders (actors): project analyst, developers,
testers, users. Issues are specified in some structural
form and include various fields targeted at specific
features, e.g., title, summary and description of the
relevant problem, issue type, priority, reporter id,
status and history of processing, links to other files.

Recently, text mining techniques gained
significant interest (e.g., Li et al., 2022; Yahav, et al.
2019). Typical analysis goals are information
extraction, data mining and knowledge discovery,
text categorization, sentiment analysis, document
summarization, etc. For this purpose, various
algorithms have been developed based on Natural
Language Processing (NLP) which involve
information retrieval and extraction, lexical,
structural and semantical analysis, data mining and
visualization, etc. Unfortunately, texts used in
software repositories differ significantly from those
analysed in classical text mining.

a https://orcid.org/0000-0001-6640-1585

The developed text mining scheme has been
enhanced with a deep insight into the used dictionary
considering words from NL thesaurus and other
entities. Non-NL entities are identified and classified
in relevance to their semantical meaning. They extend
the space of data mining as opposed to classical text
mining covering only NL words. The contribution of
the paper relates two three aspects:

i) Taxonomy and extensive analysis (statistical
and semantical) of textual contents in IST repositories
supported with developed regular expressions
identifying non-NL entities.

ii) Investigating the impact of feature selection on
the text classification efficiency in machine learning
schemes adapted to searched issue properties.

iii) Assessing the quality of issue documentation
in relevance to project stakeholders’ activities.

The structure of the paper is as follows. Section 2
outlines the background of our research in relevance
to other publications in the literature. Section 3
presents an original analysis of text features in
repositories and provides illustrative statistics.
Section 4 outlines text mining methodology and
algorithms illustrated with some experimental results.
Sections 5 discusses possible extensions of our
approach which is concluded in section 6.

562
Dobrzyński, B. and Sosnowski, J.
Text Mining Studies of Software Repository Contents.
DOI: 10.5220/0011970100003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 562-569
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

2 LITERATURE REVIEW

Software development processes are documented in
diverse repositories supported by issue tracing (IST),
software version control (SVC) and other systems.
Various automatization approaches have been
proposed in the literature targeted at specified aspects
facilitating development optimization.

Umer, Li & Sultan (2019) deal with the problem
of approving or rejecting issues for further
processing. They use natural language processing
techniques for sentiment analysis (positive, negative)
of the issue summary based on frequently used words
in the reports. Nadem et al. (2021) classified issues in
three categories bug, enhancement, and question. The
proposed approach uses neural network RoBERT
tuned to issue reports and admits multi-label settings.

In practice, issues are supplemented with diverse
textual comments added during the issue handling by
project participants. They provide abundant
information about the associated issues useful in their
processing and monitoring the project progress,
activities and competence of project participants, etc.
Wentig et al., (2019) propose techniques to acquire
interesting information for stakeholders. They traced
issues from Github projects containing numerous
comments related to discussions involving many
participants (on average 10). Hence, they formulated
15 categories of relevant discussions, which included
expected and observed behaviour, bug reproduction,
solution discussion, task progress, testing, new issues
and requests, social conversation, etc. This study
gives only some general insight on stakeholder
discussions, the level of issue understanding, etc.

Herbold and Trautsch (2020) analyse the
possibility of classifying bug and non-bug issues
basing on combined analysis of issue title and
description with trained models. This problem has
been raised due to the observation that the reported
issue types often do not match the description of the
issue. Ferreira Gomes et al., (2019) provide a
comprehensive survey on issue severity prediction.
Similarly, we can identify security bugs. Most
described methods use unstructured text features,
machine learning and text mining techniques.
Nagvani & Verma (2012) propose the bug
classification algorithm CLUBAS which combines
text clustering, frequent term calculation and term
mapping techniques. It is used to search similar
groups of bugs (with cosine similarity), groups of
developers relevant to categorized bug groups (for
optimizing fixing times), etc.

Text mining is also useful in resolving some
specific problems of issue handling, e.g., related to

bug diagnosis and triaging, identifying duplicated
issues. In most projects new issues or bugs are
manually triaged by an expert developer. This may
result in excessive time costs resulting from
inappropriate assignment of a developer to fix the
problem and reassigning it to other persons. This can
be improved by automatic issue triaging based on text
classification techniques (Banerjee et al., 2017) to
recommend appropriate developers. It is based on
extracting and matching bug and developer categories
taking into account diverse attributes, e.g. developers’
expertise scores for correlation with reported bugs.
Zhang et al. (2016) combine issue triaging (fixer
assignment) with severity identification.

Fan et al., (2018) provide a survey of automated
bug report management techniques which include
bug triaging, detection of duplicate bug report, bug
severity/priority assignment. It is extended with a
method of discriminating valid and not valid bugs
based on random forest algorithm. Zhang et al.,
(2019) propose a tool to method-level fine-grained
bug localization. It uses semantic similarity, temporal
proximity, and call dependency scores.

An important issue is automatic identification of
duplicated reports to eliminate redundant actor
activities and reducing the amount of time a triager
spends in analysing the incoming reports. Depending
upon the project, duplicate issues constitute a few up
to 30% of all issues. We can use semantic and lexical
similarities in checking an incoming report with other
existing reports in the repository to assess the
probability of being a duplicate. Hindle & Onuczko
(2019) survey various deduplication methods, they
base on diverse techniques using TF-IDF term
frequency, machine learning, topic analysis, or deep
learning. Banerjee et al., (2017) assess issue text and
summary similarities with the cosine similarity
metric. Most approaches to automatic detection of
duplicate bugs use natural language processing, only
a few (Ebrahimi, et al., 2019) consider also the
execution information (stack traces).

The presented literature review confirms practical
significance of text mining techniques supporting
issue handling in the project lifecycle. The relevant
publications are targeted at algorithms tuned to
specific problems and they lack detailed studies of
semantical and structural features of issue reports and
comments. Typically, repositories of many projects
comprise a significant percentage of non-natural
language terms. Introducing a taxonomy of these
terms we developed regular expressions defining
diverse categories of terms. Replacing these terms in
the texts with tags relevant to different term
categories enhances semantic impact of original texts

Text Mining Studies of Software Repository Contents

563

and provides new dimension of text classification and
interpretations. Deriving various issue report features
with text mining we can combine them with other
statistics and issue handling processes which is also
neglected in the literature. These features can be
interpreted in a wider context of issue handling
dependencies, so the analysis are more project
assessment oriented. In the paper we present a deeper
study of these problems, which augments the space of
assessing issue handling and documentation.

3 TEXT FEATURE ANALYSIS

Having analysed software repositories of many
projects we found that they constitute a mixture of NL
phrases and sentences and other included objects.
Syntactic features of these records are not standard,
partially retaining grammatical rules and some
specific styles of reports or imposed by the company.
In this situation the crucial point is a deeper analysis
of the object and word classes which can be
considered as dictionary taxonomy. Objects are
complex text entities of dedicated meaning and
specified structure, e.g. code, panel, test outcome.
Within word classes (continuous character string) we
distinguish natural language words (NLW)
consistent with specified thesaurus (e.g., English),
functional words (FW) and non-classified words
(NCW). In most cases NLW class relates to English
thesaurus, however sometimes reporters may include
other language words (e.g., Polish) which can be
considered separately or included in NCW class (if
appear sporadically). NCW class may comprise
words with not defined meaning (can be processed to
include them in appropriate FW class or a new one)
or erroneous words, e.g. due to typos.

Functional words are project dependant,
nevertheless in general we can distinguish some
typical ones: references to attachments of different
types (e.g. graphical. textual, logs), external links and
pull request references, repository user identifiers,
names of code class or packet, email address.
Recognition of diverse types of objects and words
within the considered classes can be performed with
the use of the language thesaurus and regular
expressions defining diverse objects and FW types.
For an illustration we present a list of such
expressions (specified in POSIX standard notation):
- Expressions identyfying graphical, textual, and

log attachements: \!\S+[.png|.jpg|.gif]\!;
\!\S+.txt\! and \!\S+.log\! , respectively
(attachement with any extension \!\S+\!).

- Pooll request references: (\[(.)*?pull-
request?.*\])|(https:\/\/.*?pull-request[\S]*)|
(\[(.)*?\/pull\/?.*\])|(https:\/\/.*?\/pull\/[\S]*.?)|
(https:\/\/.*?\/commit\/[\S]*.?)

- External references: (http:\/\/\S+)
(\[\S+\|\S+\])|(\[http.*?\])|(\[https:\/\/\S+)|(https:\
/\/\S+)|(http:\/\/\S+)

- Panel and code sections: {panel(.|\n)*?{panel}
and ({code(.|\n)*?{code})|({noformat})
|\n)*?{noformat})| ({code:java}(.|\n)*?{code})

- Names of classes and code packages (including
js files): (([a-zA-Z_$][a-zA-Z\d_$]*\.){1,}[a-
zA- Z_$][a-zA-Z\d_$]*)| (([a-z]|[A-Z])+(_([a-
z]|[A-Z])*)+.js)| (\b([a-z]|[A-Z])+(_([a-z]|[A-
Z])*)+\b))

- CamelCase names of classes or methods: \w*[A-
Z]\w*[A-Z]\w*; \b[a-z]+[A-Z]+\S*\b

- Link to Email specification - regular expressions:
https://stackoverflow.com/a/201378

They can be used to derive the structure of issue
dictionary which gives some general view on the
complexity of the further text mining algorithms and
quality of reports. An important issue is also tracing
dictionary features in short (e.g. monthly) and long-
time perspectives. This is illustrated in Fig.1 for the
analysed commercial project C1.

Figure 1: NL dictionary size (number of words) for project
C1: monthly (lower plot) and accumulated statistics (upper
plot) related to subsequent development months.

The presented plots show the sizes of dictionaries
in two perspectives: accumulated (taking into account
issues from 24 months) and monthly (for issues
registered within subsequent months). It is interesting
that the cardinality of NL dictionary (unique words)
within months is relatively stable (700-1127, average
870); the long-term dictionary (accumulated)
increases slowly up to 4205 for 24 months and 4763
for 36 months. Similar statistics we have derived for
open access projects. For example, in case of
MongoDB NL dictionary is richer: the monthly
dictionary size was in the range 1916 – 2700, the
accumulated size for 24 months assumed 8779.
Nevertheless, here we also observe relatively small

0
1000
2000
3000
4000
5000

1 5 9 13 17 21

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

564

increase in time. This allows to deeper analysis of
used words or phrases characterising issues. The
monthly cardinality of non-NL word classes is
significantly lower, however long-time statistics
showed linear increase. Dealing with these statistics
it is also reasonable to refer them to the number of
recorded issues and included tags. For MongoDB we
have 119 - 307 issues per month (average228), 12864
- 31563 tokens, average 21385, so average issue size
is 94 tokens. For the commercial project C1 we have
73-163 issues per month 116 (1418- 9382 tokens)
with average 50 tokens per issue.

Complex words correspond to class names,
program variables etc., they usually are specified with
appropriate name conventions, e.g. CamelCase,
snakecase, Pascal. In most analysed project we found
CamelCase notation, so such word phrases are
classified as CCW. Classes specified in relevance to
program packet, e.g.: java.lang.String – class String
in java.lang packet are denoted as CPW.

Non classified words assumed on average 5.3%
and 9.5% of all words for C1 and MangoDB projects,
respectively. These statistics for subsequent months
fluctuated in the ranges 3.8% - 8.1% and 8.2% -
11.0%, respectively. Here, it is also important to
analyse the cardinality of unique non-classified
words. For the commercial project it was 0-90 per
month which resulted in the whole period of 3 years
dictionary of 875 words in total. For MongoDB it
was: 172-320 per month, and total for 2 years 1780.
Hence, it can be verified manually and refined by
introducing other word categories, e.g. technical
acronyms. Such statistics can also be derived
separately for diverse issue types. For the commercial
project the description size of user story, task, new
function and bug issues was 146, 40, 112 and 49
words/issue, respectively. The used NL word
dictionary in new function was about 1.4 times bigger
than for other issues. The ratio of non-NL elements
per issue was 1.3-1.5 for external link, 1.5-3.0 for
class name (with maximum 3 for user story), ratios of
binary attachments for new function and bugs were
0.4 and 0.7, respectively, for the remaining issue
types it assumed 0.16. The rate of other non-NL
elements was in the range 0.03-0.05.

Some statistics of non-NL objects included in
issues is presented in Tab. 1 for commercial (C1) and
MongoDB (MDB) projects. They relate to email
addresses, code snippets, classes, binary and image
appendices, external and code change references,
panel sections, respectively. Tab. 1 shows monthly
ranges followed by average values (the second row).

Issue descriptions may comprise diverse technical
words (TW), which are often relevant to the project

domain and implementation. Hence, it is reasonable
to identify and interpret them. They can also appear
in NLW or other word classes. Using TW words, we
can correlate the considered text with specific
problems, e.g., performed functionality, performance
drawbacks. TW words can be extended for technical
phrases (n-grams) playing a similar role to keywords
- useful in characterizing topics of issues. These word
sets and relevant n-grams can be derived iteratively
and updated, they can also be a subject for team
discussions to improve and standardize descriptions
of issues, including sets of representative keywords.

Table 1: Monthly distribution of non-NL objects in issues.

Project Adr Code Class ApBin
C1 53-271

119.1
0-10
0.9

0-199
22.7

10-114
47.1

MDB 0-7
1.1

30-117
35.5

23-249
63.2

0.176.9

ApIm ExtRef ChRef Pan
C1 - 6-211

56
0-1
0.03

-

MDB 0-29
0.19

5-21
10.9

0-11
3.2

0-12
1.7

Dealing with special words (SW) defined by
regular expressions it is worth identifying their
context, e.g., preceding them phrases. For example, in
project C1 external link in issue descriptions is
preceded by “Go to” or “open”, in comments “please
see”, “verified”; emails are preceded by “login with”.
Attachments are usually preceded with “Please see”
phrase. Sometimes issue descriptions comprise
complex sections, e.g., code snippets. Nevertheless,
less formalized section (not well structured) can also
appear. Text feature statistics are useful in assessing
informative value of reports, competence of reporters
and improvement suggestions.

4 CLASSIFICATION SCHEMES

Software development and maintenance processes
are documented in diverse repositories supported by
issue tracing (IST), software version control (SVC)
and other systems. In our studies we focused our
attention on repository issues and relevant comments.
In the first case we consider issue textual elements:
title, summary, or description; comments are treated
as indivisible entities. We have decided to pre-
process the original texts according to classical text
mining recommendations enhanced with our original
special word transformations and derived text feature
statistics. The transformed text is submitted to

Text Mining Studies of Software Repository Contents

565

classification schemes adapted to the semantic
analysis goals (section 4.1). Some illustrative results
of this original approach are presented in section 4.2.

4.1 Algorithms

The developed text mining of software repository
textual contents is performed in two phases: i) text
pre-processing, ii) classification. The first phase is
composed of the following steps of Algorithm 1:
1. Extracting reports from the software repository

for the analysis, using relevant API (e.g. Jira
API), they can relate to a specified time period.

2. Creating the set of original textual entities (OTE)
labelled with issue/comment ids.

3. Transforming OTE set into a signature form by
replacing objects, FW and NCW words by
special word tags (compare section 3). Here, we
can use two conversions generalized and
distinctive. In the first case we use a general tag
for all words in the considered class (e.g. email,
code, reporter) in the second one different words
are attributed different tags (e.g. reporter#1,
reporter#2,). Depending upon the analysis goal
we can also admit a mixed approach with some
word classes tagged distinctively (e.g. to trace
issues generated by specific reporters, or referred
to specific code commits).

4. Text reduction, e.g., using lemmatization of
words, removing stop words, removing
numerical words.

As opposed to classical text mining we do not
unify upper- and lower-case characters (used in
program variables, classes, etc.). The extracted text
reports are manually analysed to derive the training
set of text reports for the assumed classification.
Here, we try to assure balanced representation of
considered class categories. This set is pre-processed
according to Algorithm 1, it can be enhanced with
additional derived features (section3) and submitted
to classifier training block.

The developed classification scheme uses
available text processing and machine learning
packages from sklearn library. The set of considered
text features include information from the fields of
reported issues (e.g. description, title of the issue and
diverse derived attributes/factors) or comment
contents. It is also extended by derived sentiment
factor (positive, negative, neutral) with NLTK
Sentiment Intensity Analyser module. Some
numerical properties, e.g. text length can be defined
using t-shirt sizing method used in Agile story Point
Estimation. The developed classification involves the
following steps of Algorithm 2:

1. Prepare the input data for classification: textual
data pre-processed with Algorithm 1 and other
features (e.g., text sentiment, diverse numerical
properties), create learning and testing subsets
with labelled classes.

2. Define sets of input data configuration (batches)
for the further analysis

3. For each data configuration perform machine
learning transformations with packages from
sklearn for specified classification models

4. For each classification model perform cross
validation using sklearn GridSearchCV package
and select the best model which can be used in
classification

The training process is based on cross validation
technique with labelled data for training and for
validation. For each classifier we evaluate its
accuracy and select the best one to be used for future
classification of transformed texts.

Examples of data configuration sets in step 2 for
issue classification can be title and description,
description + sentiment + number of attachments
(compare section 4.2). In step 3 the text processing is
performed with sklearn Column Transformer which
combines input data properties in a unified matrix of
numerical values. Textual components (e.g., issue
description, title) are processed with sklearn Tfidf
Vectorizer. We can use accuracy as scoring metric as
our training data is evenly distributed.

Labelled features (e.g.: text sentiment, description
length range) are processed by OneHotEncoder
which generates spare matrix representation.
Numerical features (e.g. number of email references)
are standardized with StandardScaler. In practice, it
is reasonable to limit the number of features, so an
important issue is their selection. Basing on our
experience we decided to take into account
description, title and up to 4 additional features,
which resulted in diverse combinations submitted to
classification experiments facilitating identification
of the ones with high impact on classification quality.

It is important to note that step 3 of Algorithm 2
should be adapted to the classification goal and
analysed text specificity, which can be refined by an
expert and the gained practice. It is possible to use
diverse text feature combinations (e.g. original title,
transformed description). Hence, it is reasonable to
check classification efficiency (accuracy) of diverse
combinations of the transformed text for the analysis
and select the one with the best accuracy. In this
selection some intuition of the expert is advantageous
to select features giving the highest impact of
classification. The standard classification accuracy
(ACC) and F1 score are used here.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

566

4.2 Illustrative Results

The effectiveness of our approach is illustrated for
two classification tasks: issue types and comment
categories. We distinguish 4 issue types: user story,
task, new feature, bug. We verified the classification
accuracy (ACC) for 6 classification models and
diverse combinations of input data stream: pre-
processed (according to algorithm 1) issue
description (D), issue title (T), sentiment of title or
description, the number of special words (|SW|),
emails (|Em|), references to external appendices
(|EA|) or to code changes (|ChanR|), classes,
percentage of technical words (TW%), sizes of
description or title in bytes (denoted with |..|
brackets). This allowed us to assess the impact of
divers input data features.

Table 2: Issue type classification for C1 project.

Data configuration LSV MLP RR
D
D+|EA| +|Sw| +|Em|
D+T+TW%
D+Ts++|Sw|
TW%+|Sw|+|T|+|D|
D+T+|D|

0.778
0.783
0.931
0.756
0.772
0.922

0.842
0.861
0.925
0.831
0.794
0.897

0.786
0.767
0.903
0.772
0.758
0.889

Table 2 presents an excerpt of issue type
classification results for three best classifiers: LSV
(linear super vector), MLP (Multi-Layer Perceptron),
RR (Ridge Regression). The highest accuracy(ACC)
relates to Description + Title + TW% data
composition. For other classifiers the best results
were achieved for the same data composition: NB
(Naïve Bayes) - 0.872, Passive Aggressive (PA) -
0.894, KNN (k nearest neighbours)- 0.803. For data
based only on the issue description text, the lowest
values were 0.542, 0.531, and 0.661 for NB, PA and
KNN classifiers, respectively. For other data
combinations in most cases the results were lower
than best ones by about up to 0.1, except a few up to
0.4 (PA, NB). We can notice that the dominant impact
of accuracy has the pre-processed issue description
and title. Adding numerical features needs proper
selections, e.g. replacing TW% by 4 other numerical
ones reduced ACC to 0.892. The calculated F1 scores
were a little bit lower than ACC (typically 0.95ACC).

To check the impact of introduced input data
features we verified the classification score taking
into account only original comment description
(without replacing non-NL words with tags) and we
obtained lower ACC values. Issue type classification
into four categories was rather a simple task in
relevance to description and title. Repository reports
in project C1 were systematically improved (in

particular titles). Such classification for open-source
projects is less accurate. The classifications in
relevance to other goals e.g., quality of description,
diagnostic capabilities may show higher advantage of
using transformed data and additional features. Here,
it is worth noting that high accuracy of issue type
classification can also be considered as some metric
of issue reporting quality.

Classifying comments, we distinguished 4
categories: positive, response, question, fix. This
classification is more demanding than the issue type.
Here, we also checked the impact of diverse input
data configurations: content of the comment text (pre-
processed according to algorithm 1), sentiment, the
numbers of change references, emails, external
appendices references, classes, code snippets. Other
features (e.g., content size) had negligible impact.

Table 3: Comment classification for project C1.

Data configuration LSV MLP KNN
Cont
Cont + |ChangR|
Cont+ Sent+ |ChangR|
Cont+ |ChangR|+|Email|
Cont + |ChangR|+ |EA|
Cont+ |Code|+ |class||

0.798
0.805
0.885
0.795
0.801
0.798

0.818
0.805
0.881
0.798
0.801
0.815

0.766
0.785
0.901
0.772
0.762
0.766

Table 3 shows selected results for project C1. For
all classifiers the best results related to the third data
combination. We have also assessed comment
classification for open-source project Groovy. The
best accuracy ACC was 0.810 (F1=0.785) for LSV
classifier and configuration: Cont + |ChanR| + |?|.
Where |?| denotes the number of question marks in
the text, Cont is the pre-processed comment text.

Better results for the commercial project can be
explained by our knowledge of this project, stable
team and systematic assessment of its quality
including report ratings and critics provided by an
external company.

5 DISCUSSION

The presented analysis of textual entities within
software repositories confirmed that they comprise
significant percentage of words/phrases in natural
language which are mixed with diverse non-NL
elements. Replacing these elements with labelled tags
facilitates classification and interpretation of reports
(issues, comments). The set of not classified entities
can be further investigated to find uncovered ones and
possibly create additional new classes. The class
categories must be defined in relevance to the scope

Text Mining Studies of Software Repository Contents

567

of the analysis. Classes beyond the analysis scope can
be skipped from the input data to concentrate on the
considered ones and avoid blurring the analysis goal.

In case of long-term projects, the contents of
dictionaries can change as shown in section 3 (Fig.1).
Dictionaries for subsequent months are usually quite
small and they increase for longer periods, however
some saturation is observed. Hence, it is
recommended to periodically refine the classification
processes using upgraded training sets. The
developed text pre-processing (Algorithm 1) can be
used also in other analysis problems, e.g., based on
finding similarities or clustering analysed
reports/comments. It can be combined with other text
mining/machine learning algorithms and tools.

The textual repository analysis can be extended
considering other features of reports, e.g., specified in
issue fields (priority, reporter id, software
component) or timing properties. This hybrid
approach may provide deeper insight into project
problems. For an illustration we present the problem
of so-called debt of defects (Zabardast et al., 2020).
In practice, some reported issues are considered as
negligible, and their solution/handling is postponed in
time. This may become critical while the number of
such defects becomes significant. This abrupt
increase appears due to programmer fatigue with
resolving similar defects. We have developed
Algorithm 3 of identifying this situation which
includes two steps:

1) identifying significant non-linear increase of
postponed defects (creating list PD of these defects),

2) selecting suspicious defects in PD with text
mining based on recognizing some critical words in
the description or using classification algorithms and
training sets.

In the considered commercial project C1 in the
first development phase each month appeared 1
postponed negligible defect, after project stabilization
for the next 8 months we observed 8 such defects per
month, then a rapid increase appeared from 13 to 63
defects in subsequent 6 months. Similar effects we
observed also for some open-source projects. Using
text mining based on predefined critical words (10-
30 words) allowed us to identify typically 10% of
postponed defects as critical. The selected suspicious
defects have been confirmed as critical ones in 82%.
Some of these defects were identified as fixed, with
skipped registration of completed state in the issue
state history (deficiency of reporters).

In many projects some issues are labelled as
wantfix, which denotes that they will not be handled
(Panichella et al., 2021). Typical reasons for this are:
feature request/enhancement already implemented or

not needed, feature fixed in the context of previous
ones or too expensive, etc. Such issues can be
identified sooner with classification based on text
mining and rejected without processing.

The quality of issue reports depends upon the
recommendations imposed by project managers,
competence and experience of relevant stakeholders.
Good reports facilitate problem identification,
diagnosis, and resolution. It is important to match
what developers need and what issue reporters
provide (Zimmerman et al., 2010). Hence, monitoring
the quality of issue reporting is needed, it can base on
some measurements and exchanged experience
between the project team and users. This may result
in deriving diverse improvement recommendation
targeted at better readability, comprehension,
illustration, automatic classification, etc. Issue
descriptions are enhanced with generated comments
during their analysis and resolution. The quality of
these comments is also important. Tracing comment
sequences is useful in this process.

Table 4: Comment sequence features in C1 project.

Comment sequence Delay1 CDur
Fix, Pos, Res, Fix, Res, Posit
Fix,Que, Posit
Fix, Fix, Posit
Fix, Que
Res, Que, Res, Que, Posit

5d 23h
5d 1h
0.1h
7d 1h
0.3h

4d 2h
5d 2h
24d 2h
4d 21h
62d 2h

Analysing classified comments, we traced their
sequences and timing properties. Table 4 presents
some results for the commercial project. For the
presented comment sequences (2-6 comments) we
give time lapse (in days) between issue opening and
the delay to the first comment (Delay1) followed by
commenting duration (Cdur). Some sequences are
bizarre, e.g., lacking response (Res) after question
(Que). Res comment was skipped (negligence of
developer), however the problem has been resolved
and the issue closed. The initial Res comment in the
last sequence refers to the issue description.

For some classification problems we can perform
combined text mining involving textual features of
issue and comment elements extended with other
selected numerical attributes. This seems to be
valuable in case of assessing reporting quality,
predicting issue resolution form. Moreover, cross
sectional analysis is possible by restricting the
considered issues or comments to specified types,
analysis periods, involved reporters, etc.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

568

6 CONCLUSIONS

The analysis of reported issues and relevant
comments showed that a deeper study of the impact
of non-NL elements is needed to explore semantical
aspects of reports. This extends the space of the report
analysis. The introduced text pre-processing and
derived text features facilitate understanding the
classification decisions and assure better accuracy.
The validity threat to our study is the result restriction
to a few projects. Nevertheless, the presented
methodology is universal due to similarities in created
software repositories (contents and structure).

The main text mining is targeted at classification
or clustering of the considered textual objects, here
we can use diverse statistical and machine learning
techniques, which can be combined and adapted to
project specificity and searched properties. This can
be enhanced with contextual and correlations
analysis. Distinction between texts generated by bots,
authored by users, developers or testers could narrow
semantic searches and extend the space of repository
studies. Further research is targeted at correlating
issue handling processes schemes and times with
semantical aspects of textual descriptions and other
issue features (basing on our previous experience -
Sosnowski, et al., 2017; Polaczek & Sosnowski,
2021). This can be enhanced with questionnaire
studies involving project participants.

REFERENCES

Banerjee, S. et al. (2017). Automated triaging of very large
bug repositories. In Information and Software
Technology, 89.

Ebrahimi, N. e al. (2019). An HMM-based approach for
automatic detection and classification of duplicate bug
reports. In Information and Software Technology 113
(2019) 98–109.

Fan, Y., Xia, X., Lo, D., Hassan, A.E. (2018). Chaff from
the wheat: characterizing and determining valid bug
reports. In IEEE Transactions on Software
Engineering,· August 2018.

Ferreira Gomes, L.A., et al. (2019). Bug report severity
level prediction in open source software: A survey and
research opportunities. In Information and Software
Technology 115 (2019) 58–78.

Herbold, S., Trautsch, A., Trautsch, F. (2020). On the
feasibility of automated prediction of bug and non-bug
issues.In Empirical Software Engineering 25, 5333–
5369.

Hindle, A., Onuczko, C. (2019). Preventing duplicate bug
reports by continuously querying bug reports. In
Empirical Software Engineering, vol. 24, no. 2.

Huang, Y., et al. (2019). An empirical study on the issue
reports with questions raised during the issue resolving
process. In Empirical Software Engineering 24, 718–
750.

Li, Q. et al. (2022). A survey on text classification: From
traditional to deep learning In ACM Transactions on
Intelligent Systems and Technology vol. 13, no. 2.

Nadeem, A., Usman Sarwar, M., Zubair Malik, M. (2021).
Automatic issue classifier: a transfer learning
framework for classifying issue reports. In IEEE
International Symposium on Software Reliability
Engineering Workshops (ISSREW), October.

Nagvani, N.K., Verma, S. (2012). CLUBAS: An algorithm
and Java based tool for software bug classification
using bug attributes similarities. In Journal of Software
Engineering and Applications, vol.5, no. 6, 436-447.

Panichella, S., Canfora, G., Andrea Di Sorbo (2021).
‘Won’t we fix this issue?’ Qualitative characterization
and automated identification of wontfix issues on
GitHub. In Information and Software Technology, Vol.
139, Nov., 106665.

Polaczek, J., Sosnowski, J. (2021). Exploring the software
repositories of embedded systems: An industrial
experience. In Information and Software Technology,
vol. 131.

Sosnowski, J., Dobrzyński, B., Janczarek, P. (2017)
Analysing problem handling schemes in software
projects. In Information and Software Technology, vol.
91.

Umer, Q., Liu, H., Sultan, Y. (2019). Sentiment based
approval prediction for enhancement reports, In
Journal of Systems and Software, 1555 (2019) 57-69.

Vidoni, M. (2021). A systematic process for Mining
Software Repositories: Results from a systematic
literature review. In Information and Software
Technology, vol 4 December.

Wenting, D.A, et al. (2019). Analysis and detection of
information types of open source software issue
discussions. In ICSE, IEEE/ACM 41st International
Conference on Software Engineering.

Yahav, I., Shehory, O, Schwartz, D. (2019). Comments
mining with TF-IDF: The inherent bias and its removal.
In IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 3, pp. 437-450.

Zabardast, E. Gonzalez-Huerta, J., Šmite, D. (2020).
Refactoring, bug fixing, and new development effect on
technical debt: An industrial case study. In 46th
Euromicro SEAA Conference, pp. 376-384.

Zhang, T., et al. (2016). Towards more accurate severity
prediction and fixer recommendation of software bugs.
In Journal of Systems and Software 117 166–184.

Zhang, W. et al. (2019). FineLocator: A novel approach to
method-level fine-grained bug localization by query
expansion. In Information and Software Technology
110 (2019) 121–135.

Zimmermann, T. et al. (2010). What makes a good bug
report? In IEEE Transactions on Software Engineering,
vol. 36, no. 5, pp. 618-643.

Text Mining Studies of Software Repository Contents

569

