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Abstract: Issue tracking systems comprise data which are useful in evaluating or improving software development 
processes. Revealing and interpreting this information is a challenging problem which needs appropriate 
algorithms and tools. For this purpose, we use text mining schemes adapted to the specificity of the software 
repository. They base on a detailed analysis of the used dictionaries which comprise Natural Language Words 
(NLW) and are enhanced with specialized entities in issue descriptions (e.g., emails, code snippets, technical 
names). They are defined with specially developed regular expressions. The pre-processed texts are submitted 
to original text mining algorithms (machine learning). This approach has been verified in commercial and 
open-source projects and showed possible development improvements. 

1 INTRODUCTION 

Software development is managed with the use of 
Issue Tracking Systems (ITS) supported with 
Software Version Control (SVC) and other systems. 
They provide data repositories comprising rich data 
which document software engineering activities 
during the project life cycle (Vidoni, 2021; 
Sosnowski et al., 2017; Huang, et al., 2019). They are 
specified as issues in ITS created by project 
stakeholders (actors): project analyst, developers, 
testers, users. Issues are specified in some structural 
form and include various fields targeted at specific 
features, e.g., title, summary and description of the 
relevant problem, issue type, priority, reporter id, 
status and history of processing, links to other files.  

Recently, text mining techniques gained 
significant interest (e.g., Li et al., 2022; Yahav, et al. 
2019). Typical analysis goals are information 
extraction, data mining and knowledge discovery, 
text categorization, sentiment analysis, document 
summarization, etc. For this purpose, various 
algorithms have been developed based on Natural 
Language Processing (NLP) which involve 
information retrieval and extraction, lexical, 
structural and semantical analysis, data mining and 
visualization, etc. Unfortunately, texts used in 
software repositories differ significantly from those 
analysed in classical text mining. 
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The developed text mining scheme has been 
enhanced with a deep insight into the used dictionary 
considering words from NL thesaurus and other 
entities. Non-NL entities are identified and classified 
in relevance to their semantical meaning. They extend 
the space of data mining as opposed to classical text 
mining covering only NL words. The contribution of 
the paper relates two three aspects: 

i) Taxonomy and extensive  analysis (statistical 
and semantical) of textual contents in IST repositories 
supported with developed regular expressions 
identifying non-NL entities.  

ii) Investigating the impact of feature selection on 
the text classification efficiency in machine learning 
schemes adapted to searched issue properties. 

iii) Assessing the quality of issue documentation 
in relevance to project stakeholders’ activities. 

The structure of the paper is as follows. Section 2 
outlines the background of our research in relevance 
to other publications in the literature. Section 3 
presents an original analysis of text features in 
repositories and provides illustrative statistics. 
Section 4 outlines text mining methodology and 
algorithms illustrated with some experimental results. 
Sections 5 discusses possible extensions of our 
approach which is concluded in section 6.   
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2 LITERATURE REVIEW 

Software development processes are documented in 
diverse repositories supported by issue tracing (IST), 
software version control (SVC) and other systems. 
Various automatization approaches have been 
proposed in the literature targeted at specified aspects 
facilitating development optimization.  

Umer, Li & Sultan (2019) deal with the problem 
of approving or rejecting issues for further 
processing. They use natural language processing 
techniques for sentiment analysis (positive, negative) 
of the issue summary based on frequently used words 
in the reports. Nadem et al. (2021) classified issues in 
three categories bug, enhancement, and question. The 
proposed approach uses neural network RoBERT 
tuned to issue reports and admits multi-label settings.  

In practice, issues are supplemented with diverse 
textual comments added during the issue handling by 
project participants. They provide abundant 
information about the associated issues useful in their 
processing and monitoring the project progress,  
activities and competence of project participants, etc. 
Wentig et al., (2019) propose techniques to acquire 
interesting information for stakeholders. They traced 
issues from Github projects containing numerous 
comments related to discussions involving many 
participants (on average 10). Hence, they formulated 
15 categories of relevant discussions, which included 
expected and observed behaviour, bug reproduction, 
solution discussion, task progress, testing, new issues 
and requests, social conversation, etc. This study 
gives only some general insight on stakeholder 
discussions, the level of issue understanding, etc.  

Herbold and Trautsch (2020) analyse the 
possibility of classifying bug and non-bug issues 
basing on combined analysis of issue title and 
description with trained models. This problem has 
been raised due to the observation that the reported 
issue types often do not match the description of the 
issue. Ferreira Gomes et al., (2019) provide a 
comprehensive survey on issue severity prediction. 
Similarly, we can identify security bugs. Most 
described methods use unstructured text features, 
machine learning and text mining techniques. 
Nagvani & Verma (2012) propose the bug 
classification algorithm CLUBAS which  combines 
text clustering, frequent term calculation and term 
mapping techniques. It is used to search similar 
groups of bugs (with cosine similarity), groups of 
developers relevant to categorized bug groups (for 
optimizing fixing times), etc. 

Text mining is also useful in resolving some 
specific problems of issue handling, e.g., related to 

bug diagnosis and triaging, identifying duplicated 
issues. In most projects  new issues or bugs are 
manually triaged by an expert developer. This may 
result in excessive time costs resulting from 
inappropriate assignment of a developer to fix the 
problem and reassigning it to other persons. This can 
be improved by automatic issue triaging based on text 
classification techniques (Banerjee et al., 2017) to 
recommend appropriate developers. It is based on 
extracting and matching bug and developer categories 
taking into account diverse attributes, e.g. developers’ 
expertise scores for correlation with reported bugs. 
Zhang et al. (2016) combine issue triaging (fixer 
assignment) with severity identification.  

Fan et al., (2018) provide a survey of automated 
bug report management techniques which include 
bug triaging, detection of duplicate bug report, bug 
severity/priority assignment. It is extended with a 
method of  discriminating valid and not valid bugs 
based on  random forest algorithm. Zhang et al., 
(2019) propose a tool to method-level fine-grained 
bug localization. It uses semantic similarity, temporal 
proximity, and call dependency scores.    

An important issue is automatic identification of 
duplicated reports to eliminate redundant actor 
activities and reducing the amount of time a triager 
spends in analysing the incoming reports. Depending 
upon the project, duplicate issues constitute a few up 
to 30% of all issues. We can use semantic and lexical 
similarities in checking an incoming report with other 
existing reports in the repository to assess the 
probability of being a duplicate. Hindle & Onuczko 
(2019) survey various deduplication methods, they 
base on diverse techniques using TF-IDF term 
frequency, machine learning, topic analysis, or deep 
learning. Banerjee et al., (2017) assess issue text and 
summary similarities with the cosine similarity 
metric. Most approaches to automatic detection of 
duplicate bugs use natural language processing, only 
a few (Ebrahimi, et al., 2019) consider also the 
execution information (stack traces).  

The presented literature review confirms practical 
significance of text mining techniques supporting 
issue handling in the project lifecycle. The relevant 
publications are targeted at algorithms tuned to 
specific problems and they lack detailed studies of 
semantical and structural features of issue reports and 
comments. Typically, repositories of many projects 
comprise a significant percentage of non-natural 
language terms. Introducing a taxonomy of these 
terms we developed regular expressions defining 
diverse categories of terms. Replacing these terms in 
the texts with tags relevant to different term 
categories enhances semantic impact of original texts 
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and provides new dimension of text classification and 
interpretations. Deriving various issue report features 
with text mining we can combine them with other 
statistics and issue handling processes which is also 
neglected in the literature. These features can be 
interpreted in a wider context of issue handling 
dependencies, so the analysis are more project 
assessment oriented. In the paper we present a deeper 
study of these problems, which augments the space of 
assessing issue handling and documentation.  

3 TEXT FEATURE ANALYSIS 

Having analysed software repositories of many 
projects we found that they constitute a mixture of NL 
phrases and sentences and other included objects. 
Syntactic features of these records are not standard, 
partially retaining grammatical rules and some 
specific styles of reports or imposed by the company. 
In this situation the crucial point is a deeper analysis 
of the object and word classes which can be 
considered as dictionary taxonomy. Objects are 
complex text entities of dedicated meaning and 
specified structure, e.g. code, panel, test outcome. 
Within word classes (continuous character string) we 
distinguish natural language words (NLW)  
consistent with specified thesaurus (e.g., English), 
functional words (FW) and non-classified words 
(NCW). In most cases NLW class relates to English 
thesaurus, however sometimes reporters may include 
other language words (e.g., Polish) which can be 
considered separately or included in NCW class (if 
appear sporadically). NCW class may comprise 
words with not defined meaning (can be processed to 
include them in appropriate FW class or a new one) 
or erroneous words, e.g.  due to typos.  

Functional words are project dependant, 
nevertheless in general we can distinguish some 
typical ones: references to attachments of different 
types (e.g. graphical. textual, logs), external links and 
pull request references, repository user identifiers, 
names of code class or packet, email address. 
Recognition of diverse types of objects and words 
within the considered classes can be performed with 
the use of the language thesaurus and regular 
expressions defining diverse objects and FW types. 
For an illustration we present a list of such 
expressions (specified in POSIX standard notation):  
- Expressions identyfying graphical, textual, and 

log attachements: \!\S+[.png|.jpg|.gif]\!; 
\!\S+.txt\! and \!\S+.log\! , respectively 
(attachement with any extension \!\S+\!).  

- Pooll request references: (\[(.)*?pull-
request?.*\])|(https:\/\/.*?pull-request[\S]*)| 
(\[(.)*?\/pull\/?.*\])|(https:\/\/.*?\/pull\/[\S]*.?)| 
(https:\/\/.*?\/commit\/[\S]*.?) 

- External references: (http:\/\/\S+) 
(\[\S+\|\S+\])|(\[http.*?\])|(\[https:\/\/\S+)|(https:\
/\/\S+)|(http:\/\/\S+) 

- Panel and code sections: {panel(.|\n)*?{panel} 
and ({code(.|\n)*?{code})|({noformat}) 
|\n)*?{noformat})| ({code:java}(.|\n)*?{code}) 

- Names of classes and code packages (including 
js files): (([a-zA-Z_$][a-zA-Z\d_$]*\.){1,}[a-
zA- Z_$][a-zA-Z\d_$]*)| (([a-z]|[A-Z])+(_([a-
z]|[A-Z])*)+.js)| (\b([a-z]|[A-Z])+(_([a-z]|[A-
Z])*)+\b)) 

- CamelCase names of classes or methods: \w*[A-
Z]\w*[A-Z]\w*; \b[a-z]+[A-Z]+\S*\b 

- Link to Email specification - regular expressions: 
https://stackoverflow.com/a/201378 

They can be used to derive the structure of issue 
dictionary which gives some general view on the 
complexity of the further text mining algorithms and 
quality of reports. An important issue is also tracing 
dictionary features in short (e.g. monthly)  and long-
time perspectives. This is illustrated in Fig.1 for the 
analysed commercial project C1.  

 
Figure 1: NL dictionary size (number of words) for project 
C1: monthly (lower plot) and accumulated statistics (upper 
plot) related to subsequent development months. 

The presented plots show the sizes of dictionaries 
in two perspectives: accumulated (taking into account 
issues from 24 months) and monthly (for issues 
registered within subsequent months). It is interesting 
that the cardinality of NL dictionary (unique words) 
within months is relatively stable (700-1127, average 
870); the long-term dictionary (accumulated) 
increases slowly up to 4205 for 24 months and 4763 
for 36 months.  Similar statistics we have derived for 
open access projects. For example, in case of 
MongoDB NL dictionary is richer: the monthly 
dictionary size was in the range 1916 – 2700, the 
accumulated size for 24 months assumed 8779. 
Nevertheless, here we also observe relatively small 
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increase in time. This allows to deeper analysis of 
used words or phrases characterising issues. The 
monthly cardinality of non-NL word classes is 
significantly lower, however long-time statistics 
showed linear increase. Dealing with these statistics 
it is also reasonable to refer them to the number of 
recorded issues and included tags. For MongoDB we 
have  119 - 307 issues per month (average228), 12864  
- 31563 tokens, average 21385, so average issue size 
is 94 tokens. For the commercial project C1 we have 
73-163 issues per month 116 (1418- 9382 tokens) 
with average 50 tokens per issue.  

Complex words correspond to class names, 
program variables etc., they usually are specified with 
appropriate name conventions, e.g. CamelCase, 
snakecase, Pascal. In most analysed project we found 
CamelCase notation, so such word phrases are 
classified as CCW. Classes specified in relevance to 
program packet, e.g.: java.lang.String – class String 
in java.lang packet are denoted as CPW.  

Non classified words assumed on average 5.3% 
and 9.5% of all words for C1 and MangoDB projects, 
respectively. These statistics for subsequent months 
fluctuated in the ranges  3.8% - 8.1%  and 8.2% - 
11.0%, respectively. Here, it is also important to 
analyse the cardinality of unique non-classified 
words. For the commercial project it was 0-90 per 
month which resulted in the whole period of 3 years 
dictionary of 875 words in total. For MongoDB it 
was:  172-320 per month, and total for 2 years 1780. 
Hence, it can be verified manually and refined by 
introducing other word categories, e.g. technical 
acronyms. Such statistics can also be derived 
separately for diverse issue types. For the commercial 
project the description size of user story, task, new 
function and bug issues was 146, 40, 112 and 49 
words/issue, respectively. The used NL word 
dictionary in new function was about 1.4 times bigger 
than for other issues. The ratio of non-NL elements 
per issue was 1.3-1.5 for external link, 1.5-3.0 for 
class name (with maximum 3 for user story), ratios of 
binary attachments for new function and bugs were 
0.4 and 0.7, respectively, for the remaining issue 
types it assumed 0.16. The rate of other non-NL 
elements was in the range 0.03-0.05.  

Some statistics of non-NL objects included in 
issues is presented in Tab. 1 for commercial (C1) and 
MongoDB (MDB) projects. They relate to email 
addresses, code snippets, classes, binary and image 
appendices, external and code change references, 
panel sections, respectively. Tab. 1 shows monthly 
ranges followed by average values (the second row).  

Issue descriptions may comprise diverse technical 
words (TW), which are often relevant to the project 

domain and implementation. Hence, it is reasonable 
to identify and interpret them. They can also appear 
in NLW or other word classes. Using TW words, we 
can correlate the considered text with specific 
problems, e.g., performed functionality, performance 
drawbacks. TW words can be extended for technical 
phrases (n-grams) playing a similar role to keywords 
- useful in characterizing topics of issues. These word 
sets and relevant n-grams can be derived iteratively 
and updated, they can also be a subject for team 
discussions to improve and standardize descriptions 
of issues, including sets of representative keywords. 

Table 1: Monthly distribution of non-NL objects in issues. 

Project Adr Code Class ApBin
C1 53-271 

119.1
0-10 
0.9

0-199 
22.7 

10-114 
47.1

MDB 0-7 
1.1

30-117 
35.5

23-249 
63.2 

0.176.9 

ApIm ExtRef ChRef Pan
C1 - 6-211 

56
0-1 
0.03 

- 

MDB 0-29 
0.19

5-21 
10.9

0-11 
3.2 

0-12 
1.7

Dealing with special words (SW) defined by 
regular expressions it is worth identifying their 
context, e.g., preceding them phrases. For example, in 
project C1 external link in issue descriptions is 
preceded by “Go to” or “open”, in comments “please 
see”, “verified”; emails are preceded by “login with”. 
Attachments are usually preceded with “Please see” 
phrase. Sometimes issue descriptions comprise 
complex sections, e.g., code snippets. Nevertheless, 
less formalized section (not well structured) can also 
appear. Text feature statistics are useful in assessing 
informative value of reports, competence of reporters 
and improvement suggestions. 

4 CLASSIFICATION SCHEMES 

Software development and maintenance processes 
are documented in diverse repositories supported by 
issue tracing (IST), software version control (SVC) 
and other systems. In our studies we focused our 
attention on repository issues and relevant comments. 
In the first case we consider issue textual elements: 
title, summary, or description; comments are treated 
as indivisible entities. We have decided to pre-
process the original texts according to classical text 
mining recommendations enhanced with our original 
special word transformations and derived text feature 
statistics. The transformed text is submitted to 
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classification schemes adapted to the semantic 
analysis goals (section 4.1). Some illustrative results 
of this original approach are presented in section 4.2.  

4.1 Algorithms 

The developed text mining of software repository 
textual contents is performed in two phases: i) text 
pre-processing, ii) classification. The first phase is 
composed of the following steps of Algorithm 1: 
1. Extracting reports from the software repository 

for the analysis, using relevant API (e.g. Jira 
API), they can relate to a specified time period. 

2. Creating the set of original textual entities (OTE) 
labelled with issue/comment ids. 

3. Transforming OTE set into a signature form by 
replacing objects, FW and NCW words by 
special word tags (compare section 3). Here, we 
can use two conversions generalized and 
distinctive. In the first case we use a general tag 
for all words in the considered class (e.g. email, 
code, reporter) in the second one different words 
are attributed different tags (e.g. reporter#1, 
reporter#2,). Depending upon the analysis goal 
we can also admit a mixed approach with some 
word classes tagged distinctively (e.g. to trace 
issues generated by specific reporters, or referred 
to specific code commits). 

4. Text reduction, e.g., using lemmatization of 
words, removing stop words, removing 
numerical words.   

As opposed to classical text mining we do not 
unify upper- and lower-case characters (used in  
program variables, classes, etc.). The extracted text 
reports are manually analysed to derive the training 
set of text reports for the assumed classification. 
Here, we try to assure balanced representation of 
considered class categories. This set is pre-processed 
according to Algorithm 1, it can be enhanced with 
additional derived features (section3) and submitted 
to classifier training block.  

The developed classification scheme uses 
available text processing and machine learning 
packages from sklearn library. The set of considered 
text features include information from the fields of 
reported issues (e.g.  description, title of the issue and 
diverse derived attributes/factors) or comment 
contents. It is also extended by derived sentiment 
factor (positive, negative, neutral) with NLTK 
Sentiment Intensity Analyser module. Some 
numerical properties, e.g. text length can be defined 
using t-shirt sizing method used in Agile story Point 
Estimation. The developed classification involves the 
following steps of Algorithm 2: 

1. Prepare the input data for classification: textual 
data pre-processed with Algorithm 1 and other 
features (e.g., text sentiment, diverse numerical 
properties), create learning and testing subsets 
with labelled classes. 

2. Define sets of input data configuration (batches) 
for the further analysis 

3. For each data configuration perform machine 
learning transformations with packages from 
sklearn for specified classification models 

4.  For each classification model perform cross 
validation using sklearn GridSearchCV package 
and select the best model which can be used in 
classification  

The training process is based on cross validation 
technique with labelled data for training and for 
validation. For each classifier we evaluate its 
accuracy and select the best one to be used for future 
classification of transformed texts.  

Examples of data configuration sets in step 2 for 
issue classification can be title and description, 
description + sentiment + number of attachments 
(compare section 4.2). In step 3 the text processing is 
performed with sklearn Column Transformer which 
combines input data properties in a unified matrix of 
numerical values. Textual components (e.g., issue 
description, title) are processed with sklearn Tfidf  
Vectorizer. We can use accuracy as scoring metric as 
our training data is evenly distributed. 

Labelled features (e.g.: text sentiment, description 
length range) are processed by OneHotEncoder 
which generates spare matrix representation. 
Numerical features (e.g. number of email references) 
are standardized with StandardScaler. In practice, it 
is reasonable to limit the number of features, so an 
important issue is their selection. Basing on our 
experience we decided to take into account 
description, title and up to 4 additional features, 
which resulted in diverse combinations submitted to 
classification experiments facilitating identification 
of the ones with high impact on classification quality.   

It is important to note that step 3 of Algorithm 2 
should be adapted to the classification goal and 
analysed text specificity, which can be refined by an 
expert and the gained practice. It is possible to use 
diverse text feature combinations (e.g. original title, 
transformed description). Hence, it is reasonable to 
check classification efficiency (accuracy) of diverse 
combinations of the transformed text for the analysis 
and select the one with the best accuracy. In this 
selection some intuition of the expert is advantageous 
to select features giving the highest impact of 
classification. The standard classification accuracy 
(ACC) and F1 score are used here. 
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4.2 Illustrative Results 

The effectiveness of our approach is illustrated for 
two classification tasks: issue types and comment 
categories. We distinguish 4 issue types: user story, 
task, new feature, bug. We verified the classification 
accuracy (ACC) for 6 classification models and 
diverse combinations of input data stream: pre-
processed (according to algorithm 1) issue 
description (D), issue title (T), sentiment of title or 
description, the number of special words (|SW|), 
emails (|Em|), references to external appendices 
(|EA|) or to code changes (|ChanR|), classes, 
percentage of technical words (TW%), sizes of 
description or title in bytes (denoted with |..| 
brackets). This allowed us to assess the impact of 
divers input data features. 

Table 2: Issue type classification for C1 project.  

Data configuration LSV MLP RR
D 
D+|EA| +|Sw| +|Em| 
D+T+TW% 
D+Ts++|Sw| 
TW%+|Sw|+|T|+|D| 
D+T+|D| 

0.778 
0.783 
0.931 
0.756 
0.772 
0.922 

0.842 
0.861 
0.925 
0.831 
0.794 
0.897 

0.786 
0.767 
0.903 
0.772 
0.758 
0.889

Table 2 presents an excerpt of issue type 
classification results for three best classifiers: LSV 
(linear super vector), MLP (Multi-Layer Perceptron), 
RR (Ridge Regression). The highest accuracy(ACC) 
relates to Description + Title + TW% data 
composition. For other classifiers the best results 
were achieved for the same data composition: NB 
(Naïve Bayes) - 0.872, Passive Aggressive (PA) - 
0.894, KNN (k nearest neighbours)-  0.803. For data 
based only on the issue description text, the lowest 
values were 0.542, 0.531, and 0.661 for NB, PA and 
KNN classifiers, respectively. For other data 
combinations in most cases the results were lower 
than best ones by about up to 0.1, except a few up to 
0.4 (PA, NB). We can notice that the dominant impact 
of accuracy has the pre-processed issue description 
and title. Adding numerical features needs  proper 
selections, e.g. replacing TW% by 4 other numerical 
ones reduced ACC to 0.892. The calculated F1 scores 
were a little bit lower than ACC (typically  0.95ACC).  

To check the impact of introduced input data 
features we verified the classification score taking 
into account only original comment description 
(without replacing non-NL words with tags) and we 
obtained lower ACC values. Issue type classification 
into four categories was rather a simple task in 
relevance to description and title. Repository reports 
in project C1 were systematically improved (in 

particular titles). Such classification for open-source 
projects is less accurate. The classifications in 
relevance to other goals e.g., quality of description, 
diagnostic capabilities may show higher advantage of 
using transformed data and additional features. Here, 
it is worth noting that high accuracy of issue type 
classification can also be considered as some metric 
of issue reporting quality.  

Classifying comments, we distinguished 4 
categories: positive, response, question, fix. This 
classification is more demanding than the issue type. 
Here, we also checked the impact of diverse input 
data configurations: content of the comment text (pre-
processed according to algorithm 1), sentiment, the 
numbers of change references, emails, external 
appendices references, classes, code snippets. Other 
features (e.g., content size) had negligible impact.  

Table 3: Comment classification for project C1. 

Data configuration LSV MLP KNN
Cont 
Cont + |ChangR| 
Cont+ Sent+ |ChangR| 
Cont+ |ChangR|+|Email| 
Cont + |ChangR|+ |EA| 
Cont+ |Code|+ |class||

0.798 
0.805 
0.885 
0.795 
0.801 
0.798 

0.818 
0.805 
0.881 
0.798 
0.801 
0.815 

0.766 
0.785 
0.901 
0.772 
0.762 
0.766

Table 3 shows selected results for project C1. For 
all classifiers the best results related to the third data 
combination. We have also assessed comment 
classification for open-source project Groovy. The 
best accuracy ACC was 0.810 (F1=0.785) for LSV 
classifier and configuration: Cont + |ChanR| + |?|. 
Where |?| denotes the number of  question marks in 
the text, Cont is the pre-processed comment text.  

Better results for the commercial project can be 
explained by our knowledge of this project, stable 
team and systematic assessment of its quality 
including report ratings and critics provided by an 
external company. 

5 DISCUSSION 

The presented analysis of textual entities within 
software repositories confirmed that they comprise 
significant percentage of words/phrases in natural 
language which are mixed with diverse non-NL 
elements. Replacing these elements with labelled tags 
facilitates classification and interpretation of reports 
(issues, comments). The set of not classified entities 
can be further investigated to find uncovered ones and 
possibly create additional new classes. The class 
categories must be defined in relevance to the scope 
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of the analysis. Classes beyond the analysis scope can 
be skipped from the input data to concentrate on the 
considered ones and avoid blurring the analysis goal.  

In case of long-term projects, the contents of 
dictionaries can change as shown in section 3 (Fig.1). 
Dictionaries for subsequent months are usually quite 
small and they increase for longer periods, however 
some saturation is observed. Hence, it is 
recommended to periodically refine the classification 
processes using upgraded training sets. The 
developed text pre-processing (Algorithm 1) can be 
used also in other analysis problems, e.g., based on 
finding similarities or clustering analysed 
reports/comments. It can be combined with other text 
mining/machine learning algorithms and tools.   

The textual repository analysis can be extended 
considering other features of reports, e.g., specified in 
issue fields (priority, reporter id, software 
component) or timing properties. This hybrid 
approach may provide deeper insight into project 
problems. For an illustration we present the problem 
of so-called debt of defects (Zabardast et al., 2020). 
In practice, some reported issues are considered as 
negligible, and their solution/handling is postponed in 
time. This may become critical while the number of 
such defects becomes significant. This abrupt 
increase appears due to programmer fatigue with 
resolving similar defects. We have developed 
Algorithm 3 of identifying this situation which 
includes two steps:  

1) identifying significant non-linear increase of 
postponed defects (creating list PD of these defects),  

2) selecting suspicious defects in PD with text 
mining based on recognizing some critical words in 
the description or using classification algorithms and 
training sets.  

In the considered commercial project C1 in the 
first development phase each month appeared 1 
postponed negligible defect, after project stabilization 
for the next 8 months we observed 8 such defects per 
month, then a rapid increase appeared from 13 to 63 
defects in subsequent 6 months. Similar effects we 
observed also for some open-source projects. Using 
text mining based on predefined  critical words (10-
30 words) allowed us to identify typically 10% of 
postponed defects as critical. The selected suspicious 
defects have been confirmed as critical ones  in 82%. 
Some of these defects were identified as fixed, with 
skipped registration of completed state in the issue 
state history (deficiency of reporters).   

In many projects some issues are labelled as 
wantfix, which denotes that they will not be handled 
(Panichella et al., 2021). Typical reasons for this are: 
feature request/enhancement already implemented or 

not needed, feature fixed in the context of previous 
ones or too expensive, etc. Such issues can be 
identified sooner with classification based on text 
mining and rejected without processing. 

The quality of issue reports depends upon the 
recommendations imposed by project managers,  
competence and experience of relevant stakeholders. 
Good reports facilitate problem identification, 
diagnosis, and resolution. It is important to match 
what developers need and what issue reporters 
provide (Zimmerman et al., 2010). Hence, monitoring 
the quality of issue reporting is needed, it can base on 
some measurements and exchanged experience 
between the project team and users. This may result 
in deriving diverse improvement recommendation 
targeted at better readability, comprehension, 
illustration, automatic classification, etc. Issue 
descriptions are enhanced with generated comments 
during their analysis and resolution. The quality of 
these comments is also important. Tracing comment 
sequences is useful in this process. 

Table 4: Comment sequence features in C1 project. 

Comment sequence Delay1 CDur
Fix, Pos, Res, Fix, Res, Posit 
Fix,Que, Posit 
Fix, Fix, Posit 
Fix, Que 
Res, Que, Res, Que, Posit

5d 23h 
5d 1h 
0.1h 
7d 1h 
0.3h 

4d 2h 
5d 2h 
24d 2h 
4d 21h 
62d 2h

Analysing classified comments, we traced their 
sequences and timing properties. Table 4 presents 
some results for the commercial project. For the 
presented comment sequences (2-6 comments) we 
give time lapse (in days) between issue opening and 
the delay to the first comment (Delay1) followed by 
commenting duration (Cdur). Some sequences are 
bizarre, e.g., lacking response (Res) after question 
(Que). Res comment was skipped (negligence of 
developer), however the problem has been resolved 
and the issue closed. The initial Res comment in the 
last sequence refers to the issue description.  

For some classification problems we can perform 
combined text mining involving textual features of 
issue and comment elements extended with other 
selected numerical attributes. This seems to be 
valuable in case of assessing reporting quality, 
predicting issue resolution form. Moreover, cross 
sectional analysis is possible by restricting the 
considered issues or comments to specified types, 
analysis periods, involved reporters, etc.  
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6 CONCLUSIONS 

The analysis of reported issues and relevant 
comments showed that a deeper study of the impact  
of non-NL elements is needed to explore semantical 
aspects of reports. This extends the space of the report 
analysis. The introduced text pre-processing and 
derived text features facilitate understanding the 
classification decisions and assure better accuracy. 
The validity threat to our study is the result restriction 
to a few projects. Nevertheless, the presented 
methodology is universal due to similarities in created 
software repositories (contents and structure).   

The main text mining is targeted at classification 
or clustering of the considered textual objects, here 
we can use diverse statistical and machine learning 
techniques, which can be combined and adapted to 
project specificity and searched properties. This can 
be enhanced with contextual and correlations 
analysis. Distinction between texts generated by bots, 
authored by users, developers or testers could narrow 
semantic searches and extend the space of repository 
studies. Further research is targeted at correlating 
issue handling processes schemes and times with 
semantical aspects of textual descriptions and other 
issue features (basing on our previous experience - 
Sosnowski, et al., 2017; Polaczek & Sosnowski, 
2021). This can be enhanced with questionnaire 
studies involving project participants.  
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