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Abstract: Traditional methods for unsupervised image clustering such as K-means, Gaussian Mixture Models (GMM),
and Spectral Clustering (SC) have been proposed. However, these strategies may be time-consuming and
labor-intensive, particularly when dealing with a vast quantity of unlabeled images. Recent studies have
proposed incorporating deep learning techniques to improve upon these classic models. In this paper, we
propose an approach that addresses the limitations of these prior methods by allowing for the association of
multiple images at a time to each group and by considering images that are extremely close to the images that
are already associated to the correct cluster. Additionally, we propose a method for reducing and unifying
clusters when the number of clusters is deemed too high by the user, utilizing four different heuristics while
considering the clustering as a single element. Our proposed method is able to analyze and group images in
real-time without any prior training. Experiments confirm the effectiveness of the proposed strategy in various
setting and scenarios.

1 INTRODUCTION

Unsupervised image clustering is a task that aims to
group unlabeled images based on their visual charac-
teristics. As individuals are now exposed to a vast
quantity of unlabeled images, the process of manu-
ally labeling this data can be time-consuming and, in
some cases, incredibly labor-intensive. One of the
earliest proposed clustering methods is the K-means
algorithm (MacQueen, 1967), which utilizes the Eu-
clidean distance between points in a given feature
space. Variations of the K-means algorithm have been
proposed, such as those in (De la Torre and Kanade,
2006) and (Ye et al., 2007) , which incorporate di-
mensionality reduction and clustering jointly. Other
popular clustering methods include Gaussian Mixture
Models (GMM) (Bishop and Nasrabadi, 2006) and
Spectral Clustering (SC) (Ng et al., 2001). Spec-
tral Clustering variants have gained popularity due
to their ability to outperform K-means algorithms
(Von Luxburg, 2007).

Recent studies have proposed incorporating deep
learning techniques to improve upon classic models.
These approaches often involve the combination of
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stacked autoencoders (Vincent et al., 2010) with clas-
sic methods such as K-means, GMM, and Spectral
Clustering. The authors of (Xie et al., 2016) proposed
a method that simultaneously learns features and per-
forms clustering by combining stacked autoencoders
with clustering algorithms. The paper in (Li et al.,
2018) proposed a method based on autoencoder that
works on two parts, one fully convolutional autoen-
coder that extract the features and the other part that
is a fully convolutional encoder and a soft K-means to
perform the clustering. The work described in (Jiang
et al., 2016) proposed an unsupervised generative
clustering framework that combines Variational Deep
Embedding (VAE) with a Gaussian Mixture Model
(GMM). Another approach was proposed by (Yang
et al., 2016) in which they join the process of repre-
sentation and image clustering during the training as
one process.

The authors of (Van Gansbeke et al., 2020) pro-
posed a two step methods that learn feature represen-
tation and find the meaningful nearest representation.
In (Park et al., 2021) a method that assist other ex-
isting method to find a better clustering solution is
proposed. The paper in (Niu et al., 2022) presents
a three steps method that divide the clustering in fea-
ture model that measure the instance level of similar-
ity, “clustering head” that measure the cluster level
discrepancy and both previously step jointly
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Deep learning approaches have been shown to
produce good results, but they require a time-
consuming training process. Our goal is to develop an
approach that can analyze and group images in real-
time without any prior training, nor any prior knowl-
edge on the number of elements, number of clusters,
features or semantic categories of elements to be clus-
tered. In particular, the authors of (Ortis et al., 2017)
proposed a clustering method for clips of videos ex-
tracted from different sequences recorded at different
times, that exploits a pre-trained CNN to extract fea-
tures and determine similarity without any prior train-
ing. The main advantage of (Ortis et al., 2017) is
its generalizability, and the fact that the algorithm is
fully unsupervised, without any prior on the cluster-
ing problem setting. However, this method can only
associate one image at a time to each group, which
may lead to some samples being placed in different
clusters when the dataset is rather large.

Our proposed approach build on (Ortis et al.,
2017), but it extends this method by allowing for
the association of multiple images at a time to each
group (i.e., batch clustering). Additionally, our ap-
proach adds a clustering reduction step to the pipeline,
when the number of clusters is deemed too high. In
the experiments, we tested four different approaches
for the clusters reduction.

In the following sections, we will present our pro-
posed method, showcase the results we obtained, and
compare them with state-of-the-art techniques.

2 PROPOSED METHOD

This Section presents the keystone of our approach.
Firstly, the images are grouped in non meaningful
clusters by means of a fast batch clustering approach,
then some images are moved from one cluster to oth-
ers depending on the mutual similarity between ele-
ments of same and other groups. This will produces
an high number of cluster. Secondly, the number of
clusters is reduced by a proper process detailed in
Section 2.2. In particular, we defined four different
strategies:

• outlier average;

• outlier maximum;

• maximum average;

• maximum maximum.

2.1 Stochastic Batch Clustering

The n input images are shuffled and then distributed
among K non meaningful groups. In the meantime,

we arbitrary extract some features from the images. In
particular we employed the last Fully Connected layer
extracted by the AlexNet CNN pre-trained on Ima-
geNet (Krizhevsky et al., 2017). In general it is possi-
ble to extract features with other pre-trained networks
or with a custom feature extraction process. Then,
the clustering process is refined by moving some spe-
cific elements from the initial clusters to others.The
specific elements to move will be chosen after the
analysis of the similarity as detailed in the following.
Given a representation (i.e., a feature) of the image I
a cluster I ∈ KI , we compute the cosine similarity be-
tween I and all the images belonging to Ki, i= 1, ...,N.
This will produce a distribution of cos-similarities. If
the involved images are similar one each others, the
distribution will be similar to a random uniform like
PDF. Otherwise, the presence of outliers will reveal
that the group is not uniform. Once we have the group
of similarities, we analyse these values and select the
upper outliers (i.e., the ones that are out of the distri-
bution due to their high similarity with I), if exist, and
then associate them to the same cluster of I. This pro-
cess is repeated for each image I1, ...Ih ∈ K1, ...,KN
where N is the number of groups. The main advan-
tage of such approach is that the elements move from
one cluster to the others depending of mutual simi-
larity with batched elements, rather than considering
a trained threshold on the similarity range, which is
usually crafted depending on the specific problem or
the considered representation feature.

2.2 Clustering Reduction

In the previous section we described how images are
initially clustered, however sometimes the granularity
of clustering is too high (i.e., it produces too many
groups). Then, some elements of the same category
are placed in separated groups, often times singleton
clusters. Therefore, here we present some strategies
to reduce the number of clusters.

However if the initial clustering step is inaccurate,
such errors will be propagated in the reduction pro-
cess and, hence, the quality of the new clustering will
be affected. Given a set of groups C1, ...,Cn where n is
the number of groups, we reduce the number of clus-
ters by applying a new fast clustering step, consid-
ering each cluster C j as a single element of the pro-
cess. Then, we divide the set of clusters in K non
meaningful groups. The following paragraphs will
describe four different methods for the clustering re-
duction step.

Given the cluster C j and the cluster Ck with n and
m images respectively, initially the cosine similar-
ity between the images i1, ..., in ∈ C j and the images
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i1, ..., im ∈ Ck is computed. The results of the com-
putation is a list of similarity values sim1, ...,simn∗m.
At this point, we propose the following alternatives to
calculate the distance between C j and Ck:

• Average: between the similarities is computed the
average value µ j,k.

• Maximum: between the similarities is searched
the maximum value max j,k.

Once the distance between the clusters of the K non
meaningful group is computed, each cluster is con-
sidered as a single entity and needs to be associated
to one or more clusters. Given the list of similarities
between the cluster C j considered as single entity in a
group C j ∈ KC and all the other clusters Ck considered
as single entities that belong to Ki where i = 1, ...,N,
we propose two alternatives:

• Outlier: the list of similarities is analysed and the
upper outlier is selected from the list. If the up-
per outliers exist they are associated to the same
cluster as C.

• Maximum: the list of similarities is analysed and
the maximum similarity value is selected. The el-
ement that has the maximum similarity value is
associated with the cluster C.

So we obtain the four proposed method combining
together the method of computation of distance and
the association between cluster. Specifically:

• outlier average is the combination of the method
“outlier” in the association of elements to a clus-
ter, and the method “average” in the computation
of the distance between clusters.

• outlier maximum is the combination of the
method “outlier” in the association of elements to
a cluster, and the method “maximum” in the com-
putation of the distance between clusters.

• maximum average is the combination of the
method “maximum” in the association of ele-
ments to a cluster, and the method “average” in
the computation of the distance between clusters.

• maximum maximum is the combination of the
method “maximum” in the association of ele-
ments to a cluster, and the method “maximum” in
the computation of the distance between clusters.

3 EVALUATION

3.1 Benchmark Datasets and
Evaluation Metrics

We evaluated the performance of our cluster-
ing method on four well-known public bench-

Table 1: Employed Benchmark Datasets.

Dataset Image Size Images Classes

STL-10 96x96 13000 10
CIFAR-10 32x32 60000 10

CIFAR-100/20 32x32 60000 20
CIFAR-100 32x32 60000 100

mark datasets: STL-10 (Coates et al., 2011),
CIFAR-10 (Krizhevsky et al., 2010a), CIFAR-
100/20 (Krizhevsky et al., 2010b) and CIFAR-100
(Krizhevsky et al., 2010b). In Table 1 details the
benchmark datasets. In particular, the variability of
the number of classes ranges from 10 to 100 cate-
gories. Note that the chosen extraction process forces
the images to be resized in 224x224 format before
the feature extraction. As in (Ortis et al., 2017), we
built a confusion matrix from the clustering decisions
to better evaluate its performances. In particular, the
clustering task can be formalized as a pairing process
between each pair of elements in the dataset. There-
fore, given a pair of samples of the same category, if
they are clustered in the same group we have a True
Positive, whereas we count a True Negative decision
(TN) if the process assigns two samples of different
classes to different clusters. Similarly, a False Pos-
itive decision (FP) assigns two different samples to
the same cluster and a False Negative decision (FN)
assigns two similar images to different clusters. With
the above formalization we can compute a confusion
matrix related to the pairing task. The metrics we used
to evaluate our clustering results are:

• Rand Index (RI) which is the measure of the per-
centage of correct decision:

RI =
T P+T N

T P+FP+FN +T N
. (1)

where

– T P is True Positive where two images of the
same class has been assigned to the same clus-
ter,

– T N is True Negative where two images of dif-
ferent class has been assigned to different clus-
ter,

– FP is False Positive where two images of dif-
ferent class has been assigned to the same clus-
ter,

– FN is False Negative where two images of the
same class has been assigned to different clus-
ter.

• Precision is the positive predictive value:

Precision =
T P

T P+FP
. (2)
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(a) Accuracy STL-10 1000 Images. (b) Accuracy CIFAR-10 1000 Images.

(c) Accuracy CIFAR-100/20 1000 Images. (d) Accuracy CIFAR-100 1000 Images.

Figure 1: Accuracy comparison in STL-10, Cifar-10, Cifar-100 and Cifar-100/20. We refer to Purity for the full dataset that
contains 1000 images, and to Purity2 for the the dataset without the singleton clusters.

• Recall is the sensitivity:

Recall =
T P

T P+FN
. (3)

• Purity Score which is the measure of purity con-
sidering each cluster with respect to the most fre-
quent class in the cluster (Li and Ding, 2006) We
will refer to this formula as Purity and Accuracy:

Accuracy = Purity =
1
N

k

∑
i=1

max j|Ci ∩Tj|. (4)

where N is the number of images, k the number of
Cluster, Ci the ith cluster, Tj is the set of element
of the class j that are present in the cluster C j.

• Adjusted Rand Index (ADJ) (Hubert and Arabie,
1985)

• Normalised mutual info (NMI) (Strehl and Ghosh,
2002)

3.2 Analysis of Number of Elements per
Group

What this paragraph analyse is the difference between
the number of element for each group. To have a sig-
nificant group of images and at the same a rapid ex-
ecution it has been choosen to randomly take 1000

Table 2: Best Accuracy Results.

Dataset Images per Group Accuracy
STL-10 675 0.887

STL-10drop 675 0.815
CIFAR-10 695 0.848

CIFAR-10drop 485 0.751
CIFAR-100/20 690 0.792

CIFAR-100/20drop 590 0.620
CIFAR-100 695 0.734

CIFAR-100drop 690 0.502

images for each dataset and analyse their results con-
sidering a number of images for each group from 20
till 700. For the sake of comparison, results are pre-
sented also removing singleton cluster. The aim is
to see in which case are obtained the optimal results
for each dataset. Then next sections present the re-
sult reported in Table 2. In the results, we refer to
Name Datasetdrop when the dataset has not singleton
clusters because they have been removed by the pro-
posed pipeline.

3.2.1 STL-10

As shown in Figure 1a, the accuracy values obtained
on STL-10 have a growth almost till the end, when the
value starts to slow down again, analysing the number
we see that the maximum value of accuracy consider-
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Table 3: Results of Clustering with dataset containing all the images and dataset containing only the cluster with at least 2
elements.

Dataset Max Accuracy Min Accuracy Mean Accuracy Dev Std Accuracy

STL-10 0.890 0.858 0.874 0.008
STL-10drop 0.816 0.774 0.795 0.013
CIFAR-10 0.836 0.785 0.813 0.011

CIFAR-10drop 0.752 0.680 0.720 0.014
CIFAR-100/20 0.786 0.731 0.759 0.012

CIFAR-100/20drop 0.642 0.567 0.605 0.016
CIFAR-100 0.758 0.692 0.730 0.012

CIFAR-100drop 0.540 0.471 0.500 0.014

ing all cluster and only the cluster that have at least 2
images is when we have 675 elements per group.

3.2.2 Cifar-10

The results in Figure 1b show that the accuracy val-
ues have a growth till the end when we consider every
cluster; when we remove the cluster that have only
one element the growth is approximately till 550 el-
ement per group and the the value starts to go down.
Analysing the number we see that the maximum value
of accuracy considering all cluster is obtained when
there are 695 element per group, and the maximum
value of accuracy considering the cluster that have at
least more than 2 images is 485.

3.2.3 Cifar-100/20

In this Section we will talk about the results on the
dataset CIFAR-100/20. As we can see in Figure 1c
the accuracy values has a growth till the end when
we consider every cluster like it happened in Cifar-
10; when we remove the cluster that have only one
element the growth is approximately till 600 element
per group then the values seems to be stable but lower
than the maximum value. Analysing the number we
see that the maximum value of accuracy considering
all cluster is obtained when there are 690 element per
group, and the maximum value of accuracy consider-
ing the cluster that have at least more than 2 images is
590.

3.2.4 Cifar-100

In this Section we will talk about the results on the
dataset CIFAR-100. As we can see in Figure 1d the
accuracy values has a growth till the end when we
consider every cluster like it happened in Cifar-10 and
Cifar-100/20; but unlike Cifar-10 and Cifar-100/20
the growth is till the end even when we remove the
cluster that have only one element. Analysing the
number we see that the maximum value of accuracy

Table 4: Results of Clustering reduction with the 4 methods:
out max, out avg, max max, max avg iterated 5 times.

Method STL-10 Cifar-10 Cifar-100/20

FUB 0.874±0.008 0.813±0.011 0.759±0.012
FUBout max 1 0.800±0.035 0.709±0.020 0.667±0.054
FUBout avg 1 0.803±0.039 0.703±0.018 0.663±0.059
FUBmax max 1 0.846±0.021 0.741±0.019 0.710±0.036
FUBmax avg 1 0.848±0.020 0.743±0.019 0.709±0.038
FUBout max 2 0.735±0.031 0.639±0.024 0.575±0.039
FUBout avg 2 0.752±0.038 0.641±0.021 0.565±0.041
FUBmax max 2 0.808±0.019 0.695±0.020 0.636±0.029
FUBmax avg 2 0.808±0.018 0.697±0.018 0.630±0.030
FUBout max 3 0.691±0.029 0.588±0.022 0.516±0.039
FUBout avg 3 0.719±0.025 0.597±0.023 0.510±0.035
FUBmax max 3 0.778±0.018 0.659±0.024 0.584±0.026
FUBmax avg 3 0.779±0.019 0.659±0.018 0.572±0.024
FUBout max 4 0.653±0.030 0.551±0.022 0.478±0.033
FUBout avg 4 0.701±0.023 0.567±0.025 0.478±0.029
FUBmax max 4 0.757±0.016 0.629±0.024 0.541±0.025
FUBmax avg 4 0.753±0.014 0.624±0.019 0.525±0.020
FUBout max 5 0.626±0.032 0.521±0.025 0.446±0.030
FUBout avg 5 0.678±0.026 0.543±0.025 0.458±0.026
FUBmax max 5 0.735±0.020 0.602±0.023 0.507±0.023
FUBmax avg 5 0.734±0.011 0.602±0.021 0.489±0.019

considering all cluster is obtained when there are 695
element per group, and the maximum value of accu-
racy considering the cluster that have at least more
than 2 images is 690.

3.3 Stochastic Batch Clustering and
Clustering Reduction

Each dataset has been divided in random groups of
1000 images; in each group the clustering algorithm
is been executed using as number of images per group
the optimal value that came out from the analysis of
the previous section. In Table 3 is reported a summary
of the results.

As observed earlier, the results may contain sin-
gleton clusters. So to the results it has been applied
the clustering reduction in order to achieve the merg-
ing between singleton clusters and other clusters. Af-
ter the reduction of number of cluster it is expected to

IMPROVE 2023 - 3rd International Conference on Image Processing and Vision Engineering

160



Table 5: Comparations of the results of state of art algorithm
and our algorithm.

Method STL-10 Cifar-10 Cifar-100/20

K-Means
(MacQueen, 1967)

0.192 0.229 0.130

SC
(Ng et al., 2001) 0.159 0.247 0.136

AC
(Franti et al., 2006) 0.332 0.228 0.138

NMF
(Cai et al., 2009) 0.180 0.190 0.118

AE
(Bengio et al., 2006) 0.303 0.314 0.165

SDAE
(Vincent et al., 2010) 0.302 0.297 0.151

DCGAN
(Radford et al., 2015) 0.298 0.315 0.151

DeCNN
(Zeiler et al., 2010) 0.299 0.282 0.133

VAE
(Kingma and Welling, 2013) 0.282 0.291 0.152

JULE
(Yang et al., 2016) 0.277 0.272 0.137

DEC
(Xie et al., 2016) 0.359 0.301 0.185

DAC
(Chang et al., 2017) 0.470 0.522 0.238

DeepCluster
(Caron et al., 2018) 0.334 0.374 0.189

DDC
(Chang et al., 2019) 0.489 0.524 N/A

IIC
(Ji et al., 2019) 0.610 0.617 0.257

DCCM
(Wu et al., 2019) 0.482 0.623 0.327

DSEC
(Chang et al., 2018) 0.482 0.478 0.255

GATCluster
(Niu et al., 2020) 0.583 0.610 0.281

PICA
(Huang et al., 2020) 0.713 0.696 0.337

CC
(Li et al., 2021) 0.850 0.790 0.429

IDFD
(Tao et al., 2021) 0.756 0.815 0.425

SCAN
(Van Gansbeke et al., 2020) 0.809 0.883 0.507

SCAN + RUC
(Park et al., 2021) 0.867 0.903 0.533

SPICE
(Niu et al., 2022) 0.938 0.926 0.538

FUB-Clustering 0.874±0.008 0.81±0.011 0.759±0.012
FUB-Clusteringdrop 0.795±0.013 0.72±0.140 0.605±0.016

FUB-Clusteringout max 1 0.800±0.035 0.709±0.020 0.667±0.054
FUB-Clusteringout avg 1 0.803±0.039 0.703±0.018 0.663±0.059
FUB-Clusteringmax max 1 0.846±0.021 0.741±0.019 0.710±0.036
FUB-Clusteringmax avg 1 0.848±0.020 0.743±0.019 0.709±0.038

observe a lower accuracy because of the merging of
different cluster that not always are 100% accurate so
the errors are also merged; another reason why it is
expected a lower accuracy is that the singleton clus-
ter have accuracy 100% that will not be considered
anymore unless it joins a cluster that is already 100%
accurate. In Table 4 there is a summary of the results
of the clustering reduction. As expected the results
observed have lower accuracy. It is possible to no-
tice also that the methods “out max” and “out avg”
have lower accuracy than “max max” and “max avg”,
however the reason is related to the number of cluster
left, “out max” and “out avg” reduce the number of
cluster so much more than the other two methods.

3.4 Comparison with the State of the
Art

The performance of the FUB-Clustering has been
evaluated on three commonly used dataset: STL-10,
CIFAR-10, CIFAR-100/20. In Table 5 we compare
the results of the different version of FUB and the
result of other state-of-art algorithms. From the re-
sults we can observe that SPICE(Niu et al., 2022) out-
perform FUB in the clustering of the Datasets STL-
10 and Cifar-10. However SPICE require a train-
ing and during the train is known the number of
cluster, instead in FUB the number of cluster is not
known. Our results are still competitive and outper-
form other state-of-art methods. Regarding the Cifar
100/20 Datasets FUB outperforms all the other state-
of-art methods with all the FUB methods, even the
method that drop the singleton clusters.

4 CONCLUSIONS

In this study, we proposed different ways on how to
do clustering using features without prior knowledge
of the number of cluster, K. Our studies have been
performed on images, however this algorithm can be
used with other kinds of data as well. The experimen-
tal results show that FUB-Clustering is competitive
as it outperforms most of the existent state of the art
algorithms on two well known dataset (STL-10 and
Cifar-10) and outperform all the existent state of art
algorithm in the well known dataset Cifar-100/20. It
is worth to highlight that FUB is fully unsupervised,
so it does not have any prior knowledge on the cluster-
ing problem it is applied to (e.g., number of clusters,
kind of input data, dimensionality of the space, etc.).
Other than clustering single images we are also able
to cluster group of images, however if the group of
images is not accurate 100% accurate, we might ob-
tain a some errors in our clustering. Despite FUB-
Clustering is already able to obtain competitive re-
sults, we aim to improve the computational complex-
ity in pursuance of a faster computation.
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