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Abstract: A relevant challenge to be tackled in ecology is comprehending collective insect behaviors. This understanding
significantly impacts the understanding of nature, as some of these flocks are the most extensive cooperative
units in nature. A part of the difficulty in tackling this challenge comes from reliable data sampling. This work
presents a novel method to understand the quantities and distribution of ants in colonies based on convolutional
neural networks. As this tool is unique, we created an application to create the marked dataset, created the first
version of the dataset, and tested the solution with different backbones. Our results suggest that the proposed
approach is feasible to solve the proposed issue. The average coefficient of determination R2 with the ground
truth counting was 0.9783 using the MobileNet as the backbone and 0.9792 using the EfficientNet V2B0 as
the backbone. The global average for the semi-quantitive classification of each image region was 86% for the
MobileNet and 88% for the EfficientNet V2-B0. There was no statistically significant difference between both
cases’ average and median errors. The coefficient of determination was close to the statistical significance
threshold (p = 0.065). The application using the MobileNet as its backbone performed the task faster than the
version using the EfficientNet V2-B0, with statistical significance (p < 0.05).

1 INTRODUCTION

Understanding collective ant behaviors is a critical
challenge in ecology. Helanterä et al. (Helanterä
et al., 2009) assert that unicolonial ant populations are
the largest cooperative units in nature. They state that
these species can construct interconnected nests with
hundreds of kilometers. The authors also state that
understanding the dynamics of such colonies allows
the generation of valuable information for researchers
in this field.

McGlynn (McGlynn, 2012) states that insect
colonies are mobile entities, moving nests through
their lifetime. The authors state that understand-
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ing the aspects that drive this mobility enforces the
knowledge of several aspects of the studied species,
such as the understanding of its genetics, life-history
evolution, and the role of competition. More specif-
ically, the authors affirm that the migration patterns
are often unclear in the case of ants.

Regarding the methods of understanding the mi-
gration patterns of ant colonies, Hakkala et al.
(Hakala et al., 2019) state that reliable data capture
of the colony motion is needed. They also state that
this data can be combined with environmental data to
understand the role of the context in their migration.
For this matter, technological solutions are a way to
improve data gathering and develop novel solutions
towards this goal.

The topic of planning experiments towards this
goal is also assessed by Majer and Heterick (Majer
and Heterick, 2018). The authors state that long-
term monitoring is essential for invertebrate studies.
This aspect also enforces that developing novel tech-
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Figure 1: Designed solution.

nological tools toward this goal positively impacts re-
searchers in this area.

Thus, this work explores how to create a novel tool
that allows researchers to evaluate the dynamics in
ant colonies. We expect to extract information about
quantities and distribution using the created technol-
ogy. Figure 1 summarizes the proposed solution. We
aimed to create a system that automatically counts
ants present in the solution. The solution also allows
an understanding of how the ants are approximately
distributed in the scene.

The main contribution of this work is:

• A method to estimate the counting and distribu-
tion of ants in a dense scene.

Additional contributions from this text are:

• A tool to generate a dot map-based structured
dataset for sparse and dense scenes;

• An evaluation of different convolutional neural
network backbones to perform the proposed task;

The remainder of this text is organized as follows:
In Section 2, we studied the theoretical references
around the counting on dense and sparse scenes. Sec-
tion 3 discusses some related works found in the lit-
erature and how they differ and relate to our proposal.
We present the materials and methods used to create
the solution in Section 4 and discuss the results in
Section 5. Finally, we display our conclusions, dis-
cussions, and future works in Section 6.

2 THEORETICAL REFERENCES

In this context, we want to determine both the number
of individuals and their geometric location. In some
cases, the counting is sparse, while often, the process
is determining the counting in a dense scene. Thus,
we require an understanding of counting processes in
sparse and dense scenes.

According to Kahn et al. (Khan and Basalamah,
2021), the methods to perform this task is divided
into detection-based methods and regression-based
methods. On the one hand, regression-based meth-
ods extract features from the images and try to per-
form a regression using this data. On the other hand,

detection-based methods try to identify each individ-
ual instance.

Sindagi and Patel (Sindagi and Patel, 2018) as-
sess that counting crowds using these methods has
several applications, such as behavior analysis, con-
gestion analysis, anomaly detection, and event de-
tection. These high-level tasks are helpful in hu-
man beings’ context but can also transport to under-
standing ecological behaviors, as presented in the pre-
vious section. These authors classify the methods
among detection-based, regression-based, and den-
sity estimation-based. The latter category comes from
the understanding that spatial information might be as
important as counting the number of individuals.

A way of generating data for these applications is
through dot annotation maps. For instance, Wan et
al. (Wan et al., 2020) employ this technique for dense
crowd counting. In their case, they transform this map
into a density map, which works as a baseline for
density estimation. They employ a two-dimensional
gaussian kernel function to generate densities from
these dot annotation maps.

In this work, we also employ a first stage based
on a dot annotation map to generate the dense-object
counting dataset for ants counting. Then, we employ
a semi-quantitative method to estimate the density of
ants in each region of the image. Finally, we use this
local estimation to estimate the total number of indi-
vidual ants per image.

3 RELATED WORKS

Some authors employed artificial intelligence meth-
ods for counting arthropods. Schneider et al. (Schnei-
der et al., 2022) used computer vision and machine
learning to count and classify arthropods. They rely
on clean Petri dish images with arthropods, using
computer vision to segment and count the number of
individuals. Then, they employ convolutional neural
networks to classify each individual. Although the
authors obtained a good result, this method does not
apply to dense scenes due to overlap.

Tresson et al. (Tresson et al., 2021) proposed em-
ploying a combination of SSD and Faster RCNN to
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identify and classify small arthropods in an image.
They employ a hierarchical classifier for the classi-
fication stage, using a step in which the objects are
classified among a superclass, then into subclasses.
This method is a different approach than the one em-
ployed in this work, as it displays a detection-based
method. Also, there is no discussion of whether the
proposed method works in dense scenes.

Bjerge et al. (Bjerge et al., 2022) developed a
real-time system to track insects. These authors em-
ploy the YOLOv3 algorithm to track and identify
sparse insects in an image in real time. Although
the authors want to study dynamics, this application
differs from the one presented in this work as it is
a detection-based method in a sparse scene. Our
objective approaches more regression- and density-
estimation-based techniques.

Eliopoulos et al. (Eliopoulos et al., 2018) devel-
oped a trap to count and identify crawling insects and
arthropods in urban environments. They created this
trap which captures the insects and arthropods, gener-
ating sparse images containing some individuals. Al-
though these authors also obtained good results from
their experiment, the exact nature of their work differs
from what is presented in this text.

Our research found no authors who employed
regression- and density-estimation-based techniques
in this context. Also, we did not observe researchers
proposing technological solutions aiming at the dis-
tribution and counting in ant or other arthropod
colonies. Another indicator for this case is the lack
of published datasets to perform this task. Therefore,
we understand that there is a notable degree of inno-
vation in the produced solution.

4 METHODOLOGY

In the previous sections, we assessed the importance
and novelty of the proposed solution. As demon-
strated, there is no precedent in producing a simi-
lar solution in the literature. In this section, we ex-
plore the details of the proposed solution. We initially
overview the proposed solution in detail. Then, we
will explore the dataset creation tool. We also assess
the backbone training process, presenting some de-
tails of the training algorithm. Finally, we display the
evaluation metrics for each stage.

4.1 Solution Overview

The proposed solution tries to estimate the number
of ants present in each area of the image. For this
matter, the employed algorithm has four main steps

to estimate the number of ants from a picture. The
steps involved in this algorithm are:

1. Transform the image size to 1024x1024;

2. Divide the image into a grid of squares of size
128x128;

3. Evaluate semi-quantitatively how many ants are
present in each square;

4. Submit the results to an approximation formula
for estimation;

The first step is converting the image size to
1024x1024 pixels. This step helps evaluate hetero-
geneous images, as our created dataset has images
of various resolutions. With this step, we homoge-
nize the number of evaluated regions for each image,
leading to the second step. In this step, we divide
the image into regions of 128x128 pixels. This ini-
tial processing helps to create 64 regions of evalu-
ation on each image. Each region is independently
evaluated by the deep learning model and is classified
among ten classes representing quantity bands from 0
to 45 ants per region. After this evaluation, we use
the model output for each chunk to reconstruct the
image considering the density of each region and per-
form the counting. Figure 2 represents the complete
overview of the proposed solution.

Figure 2: Proposed system overview.

As previously discussed, this work is an inno-
vative approach to this task. Thus, some steps are
required to complete this task. We initially need
a dataset produced by researchers in ecology. This
dataset requires a computational tool to organize and
structure the data. Then, some steps are required to
train the AI, including choosing a backbone model
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for the CNN. Finally, we need to establish metrics to
evaluate the proposed work.

4.2 Dot Map Generation

As stated before, this is an unsolved problem with no
open dataset. Thus, we created a tool to generate a
structured dataset. Similarly to the dataset used by
Wan et al. (Wan et al., 2020), we chose to create a dot
map representing the presence of individual ants on
each part of the image. We produced a Guided User
Interface (GUI) to perform the task. Figure 3 displays
a software workflow diagram.

Figure 3: Dataset generation software diagram.

There are three main screens in the program. The
first one is the initial screen, in which the user con-
figures the input and output folders. In this screen,
there are two path selection inputs. The first one re-
ceives the path for the folder containing the images
the user wants to count. The second one receives the
path where the user wants the structured CSV file con-
taining the markings’ information output. The dataset
is recorded in a file named “result.csv” on the output
path.

The second one is the counting screen, where the
users mark a dot on each unit they want to mark.
This screen has several commands. The users must
click on the screen where they want their dot to be.
The software will store the coordinates and paint a
red dot on each marking. If users want to erase the

latest marking, they should click the ”Undo” button.
When they are done with the markings on the image,
they can click ”Next,” causing the program to store
the markings on disk and load the following image.

The end screen, in which the program warns the
user they have marked all images and finishes the ex-
ecution. It only gives the option to end the execution.

The laboratory members annotated 134 images us-
ing this program, producing the dot maps for sparse
and dense scenes of ant colonies. The image with the
least number of ants has one, while the image with the
most has 460 ants. Figure 4 displays a boxplot of the
number of ants per image, demonstrating that several
images are distributed from sparse to dense scenes.

Figure 4: Number of Ants per Image Distribution.

With these structured annotations, we reshaped
each image into the 1024x1024 format, translating
the markings into the correct coordinates. This step
allowed each image to generate 64 regions containing
various numbers of ants. To create a semi-quantitative
representation that suits the task, we divided them into
ten classes. The first class is for regions with no ants.
Then, each class represents a band of up to five ad-
ditional ants (1-5, 6-10, 11-15, etc.). The final class
represents the most ants per region, which is 45. Any
region with more than 45 ants would be reduced to
this maximum. The 134 annotated images produced
8576 frames for training the semi-quantitative classi-
fication convolutional neural network.

4.3 AI Model Training and Counting
System

As stated before, we started this stage with 8576 im-
ages of regions to be classified into ten classes. We
used a convolutional neural network (CNN) as the
engine to perform this task. We explored two high-
performance CNNs as backbones to this method for
testing purposes. The first is the MobileNet (Howard
et al., 2017), and the second is the EfficientNet V2-
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B0 (Tan and Le, 2021). Both models are lightweight
CNNs, ideal for performing high-demanding tasks
and later aiming at embedded solutions. The training
hardware has an i5-9600K CPU and 32 GB of RAM.
It also has an NVidia GeForce RTX 2060 Super video
card, supporting GPU acceleration for machine learn-
ing.

The created model has an input layer, the back-
bone without the final classification layer, a dense
layer with 32 neurons and linear activation function,
and a final dense classification layer with ten neurons
and “softmax” activation function. Both dense layers
use L1 kernel regularization with 0.01 as λ factor.

From the initial 8576 images, we separated 80%
for training, 10% for validation, and 10% for test-
ing. As the dataset is not balanced, we used the class
weights as a tool to enhance the classification in the
least-represented classes. We used the square root of
the initial balanced class weights to keep the weights
apart from exceedingly high or low values. We em-
ployed the Adam loss function for this training.

We began the training with a learning rate of 1×
10−4, which was reduced to 10% of each value when
finding plateaus of 5 epochs. Finally, the algorithm
will stop early when finding a plateau of 15 epochs in
the validation loss.

After training the CNNs, the counting system con-
siders the output of these networks for each region
on the image to perform the counting. The output
of the classification model is an integer from 0 to 9,
obtained from the argmax function, which evaluates
which class had the highest classification probability.
Letting Ci be the classification integer obtained from
the i-th region from an image on the dataset, the num-
ber of ants Ni on that region is:

• Ni = 0, if Ci = 0;

• Ni = 1, if Ci = 1;

• Ni = 4×Ci, if 2 ≤Ci ≤ 6;

• Ni = 5×Ci, if Ci > 6.

The number of ants per image A, considering each
i region on the image, is given by the equation:

A =
i

∑Ni (1)

4.4 Evaluation Metrics

After settling the methods for predicting the number
of ants on each part of the dataset, we need to estab-
lish evaluation metrics for each stage of the method.
Mainly, we focus on the two critical parts of the algo-
rithm: the region classification and the counting. The

region classification, as the name suggests, is a clas-
sification problem. The counting characterizes as a
regression problem.

As stated, the first stage is a classification prob-
lem. For this matter, we used the traditional machine-
learning metrics towards classification: Precision, Re-
call, and F1-Score. They are defined by the True Pos-
itive (T P), False Positive (FP), and False Negative
(FN) samples from each class. The equations which
define each metric are:

Precision =
T P

T P+FP
(2)

Recall =
T P

T P+FN
(3)

F1-Score = 2× Precision×Recall
Precision+Recall

(4)

Besides these metrics, we also evaluated the
global average and the confusion matrix as quantita-
tive and qualitative indicators of the model function-
ing.

With the metrics defined for the classification
problem, we also need to establish the metrics for the
regression. Typically, we use the coefficient of de-
termination R2 as an indicator for the quality of re-
gressions. This coefficient is defined from the resid-
ual sum of squares SSr and the total sum of squares
SSt . Ideally, the count would approach the function
f (x) = x, where f (x) is the number of ants counted
by the AI, and x is the ground-truth value.

The residual sum of squares can be defined using
xn as the ground truth for the n-th image and f̂n(xn) as
the model output. The equation which represents the
SSr is:

SSr =
n

∑( f̂n(xn)− xn) (5)

Similarly, the total sum of squares can be calcu-
lated from the mean output value f̂ and all f̂n(xn)
values obtained as the model outputs. The equation
which represents the SSt is:

SSt =
n

∑( f̂n(xn)− f̂ ) (6)

The equation gives the coefficient of determina-
tion R2:

R2 = 1− SSr

SSt
(7)

We evaluated the coefficient of determination in
10 executions for each backbone to determine if there
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is any statistically significant difference between the
models. We also compared the average error, the stan-
dard deviation of the error, and the median of the error
for both backbones. Finally, we compared the time
taken for each prediction on the complete dataset us-
ing both CNNs. We evaluated the statistical differ-
ences using the paired t-Test.

5 EXPERIMENTAL RESULTS

After defining the metrics to evaluate the system, we
performed the training and testing with the proposed
algorithm. The initial evaluation comes from the
backbone CNNs. Our initial approach is quantitative.
Table 1 compresses the classification metrics for the
tests evaluating the MobileNet as the backbone. The
global accuracy was circa 86%. The metrics display
a reduction in the quality of the model when predict-
ing the higher-density classes. These results are due
to the lower presence of samples of this size.

As the problem comes from a semi-quantitative
approach, it is also necessary to evaluate how the
misses can affect the result using a more qualitative
approach. For this matter, we evaluate the confusion
matrix as a source of information. Figure 5 displays
the confusion matrix obtained using the MobileNet as
the backbone. As the image suggests, most errors are
above or below one class, resulting in errors contained
within five ants.

These initial results suggested that the proposed
method can reach an acceptable estimation to com-
plete the main counting tasks. Additionally, it sug-
gests the capability of recognizing the density of ants
in each area with enough quality.

Table 1: MobileNet classification metrics.

Precision Recall F1-score Support
0 0.92 0.96 0.94 584
1 0.81 0.70 0.75 202
2 0.56 0.67 0.61 36
3 0.58 0.50 0.54 14
4 0.40 0.67 0.50 3
5 0.50 0.29 0.36 7
6 0.17 0.25 0.20 4
7 0.25 0.25 0.25 4
8 0.60 0.43 0.50 7
9 0.50 0.67 0.57 3
Accuracy 86%
Macro avg. 0.53 0.54 0.52 864
Weighted avg. 0.86 0.86 0.86 864

The next step is evaluating the EfficientNet V2-B0
using the same metrics. In this case, the global accu-
racy was 88%. Table 2 displays the obtained results
from training this network. Although it has a higher

Figure 5: Confusion Matrix for the MobileNet.

global average, it initially displays some issues with
some classes. As in the previous case, most issues are
related to the least represented classes.

The similarities and differences also display the
need for another qualitative evaluation using the con-
fusion matrix. Figure 6 displays the confusion matrix
evaluating the test set. Again, in this case, most er-
rors happen in classes close to the correct classifica-
tion, indicating the feasibility of using this tool in the
counting algorithm. The following steps are to eval-
uate the behavior of these methods within the context
of the counting application.

Table 2: EfficientNet V2-B0 classification metrics.

Precision Recall F1-score support
0 0.94 0.96 0.95 584
1 0.84 0.78 0.81 202
2 0.72 0.72 0.72 36
3 0.64 0.50 0.56 14
4 0.14 0.33 0.20 3
5 0.12 0.14 0.13 7
6 0.12 0.25 0.17 4
7 0.00 0.00 0.00 4
8 0.50 0.43 0.46 7
9 0.50 0.33 0.40 3
Accuracy 88%
Macro avg. 0.45 0.45 0.44 864
Weighted avg. 0.88 0.88 0.88 864

As the former section suggests, the counting task
is similar to a regression problem. Nonetheless, we
know the ideal function we wanted the data to fit.
Therefore, we developed our metrics demonstrated in
the former section considering the coefficient of de-
termination to this ideal fit function.

We executed ten stages of training and testing us-
ing the same dataset and separation using each back-
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Figure 6: Confusion Matrix for the EfficientNet V2-B0.

bone. Our approach in this experiment is to demon-
strate if both systems work in an actual counting stage
and if there is any statistically significant difference
from using each backbone model.

Initially, we evaluated the metrics using the Mo-
bileNet as the backbone. Table 3 displays the results
obtained from these tests. We can see that the results
are consistent, with an average error of circa ten ants.
The median error is circa eight ants. The average co-
efficient of determination was 0.9783, consistent in
the ten runs, with a standard deviation of approxi-
mately 10−3. This result indicates the feasibility of
the tool in counting from sparse to dense scenes.

Table 3: Counting metrics for the MobileNet.

Median error Mean error SD error R2

8 10.34 10.36 0.9774
8 10.61 10.61 0.9773

7.5 9.91 9.91 0.9797
7.5 10.61 10.69 0.9777
7.5 10.56 10.72 0.9766
7.5 10.17 10.23 0.9778

7 9.86 9.83 0.9799
7.5 10.00 10.22 0.9785

7 9.94 10.23 0.9787
7.5 10.17 10.43 0.9792

Average 7.5 10.22 10.32 0.9783

We also studied the metrics obtained using the Ef-
ficientNet V2-B0 as the backbone. Table 4 displays
the results from the second set of tests. The results
also display consistent behavior, indicating that re-
placing the backbone also produced a feasible solu-
tion. The average coefficient of determination was
0.9792 and consistent in the ten runs, with a standard
deviation of approximately 10−3. The average error
was circa ten ants, and the median error was circa
seven ants.

At first, the results seem similar to the previous
tests, with some of them indicating a minor improve-
ment in the second set. When analyzing the data, it
did not support that this improvement was statistically
significant. The only result which approached statis-
tically significant improvement was the coefficient of
determination R2, with the p-value of 0.065 using a
paired t-Test as the baseline.

Table 4: Counting metrics for the EfficientNet V2-B0.

Median error Mean error SD error R2

7 10.05 10.12 0.9798
7 10.33 10.85 0.9779
7 9.91 9.50 0.9811
8 10.34 10.56 0.9777
7 10.14 10.24 0.9789

8.5 10.34 10.68 0.9783
7 9.62 10.09 0.9798

7.5 9.92 10.19 0.9793
8 10.20 9.91 0.9799

7.5 9.82 10.08 0.9795
Average 7.45 10.07 10.22 0.9792

The last analysis in this context was real-time
awareness. We perform this study by evaluating the
time intervals taken to count each image. Our dataset
has 134 images, and we performed the evaluation us-
ing both models.

The average time to perform all measurements us-
ing the MobileNet as backbone was 0.410 ± 0.118
s. The application using the EfficientNet V2-B0
as backbone took an average time of 0.474± 0.122
s. The paired t-test indicated that the difference
between these times is statistically significant (p <
0.05). These results are displayed in Figure 7.

Figure 7: Boxplots indicating the time per using each back-
bone.

The results indicate that the application using the
EfficientNet V2-B0 model as the backbone can per-
form circa 182278 predictions per day. Meanwhile,
the application can perform 210731 predictions per
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day using the MobileNet as its backbone, with no sig-
nificant quality loss. Any real-time sampling using
this technology must consider these constraints.

The final observations on the set of tests display
the first set of evidence that a system using this tech-
nique is feasible for the counting and density predic-
tion tasks. Both the model evaluation and the final
counting show promising outcomes, supporting the
further development of this technology. The same
methods can be employed in future applications to
perform counting tasks in dense and sparse scenes
within other contexts.

6 CONCLUSIONS

In this work, we proposed and validated a CNN-based
method to count ants and predict their spatial distribu-
tion. We created the whole set of tools necessary to
generate this solution, including a system to annotate
the dataset in the shape of a dot map. Our results dis-
play promising evidence of the feasibility of the de-
signed approach.

Our proposed method standardizes the image di-
mensions and evaluates each section individually us-
ing a convolutional neural network backbone. Then it
compiles the results into a density map and uses the
produced data to estimate the number of ants in an im-
age. We evaluated the proposed solution considering
the capability of qualitatively predicting the density of
each section and quantitatively predicting the number
of ants per image.

Our results indicate that the system can predict the
distribution with promising quality. It predicted the
density with good approximation, and the counting
approached the ideal with a coefficient of determina-
tion that approached the ideal. Therefore, the experi-
ments validate the feasibility of this approach, encour-
aging future developments.
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