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Abstract: Living off the Land (LotL) is a well-known method in which attackers use pre-existing tools distributed with
the operating system to perform their attack/lateral movement. LotL enables them to blend in along side
sysadmin operations, thus making it particularly difficult to spot this type of activity. Our work is centered on
detecting LotL via Machine Learning and Feature Engineering while keeping the number of False Positives
to a minimum. The work described here is implemented in an open-source tool that is provided under the
Apache 2.0 License, along side pre-trained models.

1 INTRODUCTION

Living of the Land (LotL) is not a brand-new concept.
The knowledge and resources have been out there
for several years now. Still, LotL is one of the pre-
ferred approaches when we are speaking about highly
skilled attackers or security professionals. There are
two main reasons for this:

• Experts tend not to reinvent the wheel;

• Attackers like to keep a low profile/footprint (no
random binaries/scripts on the disk).

The industry standard approach the LotL detection in-
volves SIEM Alerting (i.e. static-rules). Static rules
are often too broad or too limited, thus the output
becoming somewhat unreliable. Some well known
downsides of static rules:

(a) They are dependent highly on the experience of
the SME (Subject Matter Experts) that creates
them;

(b) They can generate a high number of False Posi-
tives (because of the thin line in terms of tools and
syntax between sysadmin operations and attacker
operations) or miss well known LotL activity;

(c) Their rules grow organically, to the point where it
is easier to retire and rewrite rather than maintain
and update.

a https://orcid.org/0000-0003-1416-915X

In our previous work (citation will be added af-
ter the blind review process) we introduced a super-
vised model aimed at distinguishing between normal
operations and LotL activity, which was trained on a
custom designed dataset. The model was a Random
Forest (Pal, 2005) and the dataset was composed of
7.9M examples with a ratio of 0.02% (2/10000) be-
tween benign and malicious examples.

Since then, we focused on increasing the size and
quality of our dataset (see Section 3) and explored
deep-learning alternatives that are able to learn mean-
ingful patterns and latent representations for our cor-
pus/task (see Section 5). Our evaluation shows that
the deep-learning approach provides better F-scores
for both the initial and updated datasets.

Furthermore we discuss how the enhancements on
the model influence the accuracy of the classifier and
provide an in-depth analysis on how various feature
classes contribute (Section 6). Finally, we present our
conclusions and future work plans (Section 7).

2 RELATED WORK

Classical intrusion detection systems, including LotL,
fall in three main categories: (a) Signature-Based
(SB); (b) Anomaly-Based (AB) and (c) Hybrid-
Based (HB).

While signature-based relies on predefined pat-
terns(Modi et al., 2013), anomaly-based detection is

194
Boros, T. and Cotaie, A.
Deep Dive into Hunting for LotLs Using Machine Learning and Feature Engineering.
DOI: 10.5220/0011968700003482
In Proceedings of the 8th International Conference on Internet of Things, Big Data and Security (IoTBDS 2023), pages 194-199
ISBN: 978-989-758-643-9; ISSN: 2184-4976
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



data-oriented. It works by spotting behavioral out-
liers and by assuming that bad-actor activity will be
included in this category (Boros et al., 2021; Bu-
tun et al., 2013; Lee et al., 1999; Silveira and Diot,
2010). Both categories show strengths and weak-
nesses. For instance, in signature-based systems, a
high number of rules implies high accuracy, but this
approach scales poorly, is high-maintenance and does
not cope well with previously unseen attack methods.
Thankfully, there are ways to automatically append
rules and signatures, including the well-known honey
pots strategy (Kreibich and Crowcroft, 2004). On the
other hand, because anomaly-based systems rely on
data modeling, they can automatically scale to new
attack methods. However, not all anomalies are bad
actor activity and, as a rule of thumb, the number of
false-positives is high for this class of detection, often
hinging production.

One class of hybrid methods refers to machine
learning supervised classification. ML is hard to in-
clude into one of SB or AB categories, since it shares
similar traits with both. Given that the classifiers work
on anything from raw data to engineered features and
that they require labeled data, they fit well into the HB
category.

3 DATASET

Our initial dataset was composed of 1609 examples of
LotL commands compiled from open data-sources1

and 7.9M benign examples, which were obtained
by random sampling2 logs from our infrastructure .
Since then, we focused on further refining and in-
creasing our corpus for the second iteration of our
models.

The present version of the dataset contains 1826
LotL examples and 24M benign examples.

There two important notes about the skewness of
our dataset:

• The ratio between malicious and benign exam-
ples is closer to real-life scenarios - in practice,
you don’t have 1/2 split between LotL activity and
normal operations;

• By preserving the same ratio during training, vali-
dation and testing, we ensure that reported results
are close to how the classifier behaves in produc-
tion environments.

1https://gtfobins.github.io/ and https://lolbas-
project.github.io/

2Random sampling was used to reduce the risk of in-
cluding actual LotL activity as benign

Currently, we are unable to share the dataset, be-
cause it likely contains sensitive information. How-
ever, we are working on a public version of the
dataset that can open-sourced. This would likely pro-
vide a common testing and reporting grounds for re-
searchers. Until then, we are only able to offer some
information regarding the composition of our dataset.
Figure 1 shows the distribution between benign and
LotL examples on a log scale, for the top 10 com-
mands based on three metrics:

(a) commands that mostly appear in benign exam-
ples: java, postgres, mv, ps, chown, sleep,
sshd, docker, vi, du;

(b) commands that mostly appear in LotL examples:
rvim, rlogin, masscan, byebug, socat, dirb,
cobc, ghc, ltrace, nc;

(c) ambiguous commands that appear in both types
of activity: jrunscript, xxd, mknod, tftp,
mkfifo, smbclient, aria2c, which, whois,
rvim.

4 FEATURE EXTRACTION

Given the sparsity of command lines, parameters and
attributes, performing adequate feature extraction is
crucial to preventing the over-fitting of the model.
This is primarily achieved by observing and captur-
ing re-occurring security-related events and avoiding
features that are based on rare yet discriminative pat-
terns that would likely led to poor generalization of
the machine learning algorithms.

We distinguish 5 classes of features that we use in
our approach, which are based on (a) binaries, (b) pa-
rameters, (c) paths, (d) networking and (e) LotL Pat-
terns. Although they are well described in our previ-
ous paper, for completeness we will present them here
as well:

(a) Binaries. Binaries carry a significant weight in
determining if LotL activity is happening on a
station, since they capture the capabilities of a
command line. For instance, “netcat” usually
means bi-directional network communication ca-
pabilities, “tcpdump” means monitoring capabil-
ities and “whoami” indicates standard reconnais-
sance capabilities. Of course, whether these tools
are actually used for malicious purposes or if they
can be successfully exploited, depends on the con-
text. For a complete set of commands that are
used as features, see Table 2;

(b) Parameters. Most of the tools we monitor are
multipurpose and their parameters help determine
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Figure 1: Command (binary) distribution in the dataset: (a) mostly used in benign activity; (b) mostly used in LotL activity;
(c) ambiguous usage.

Table 1: List of paths that are included in the feature-set.

/dev/mem /dev/tcp /dev/udp /dev/kmem
/dev/null /inet/tcp /bin/sh /inet/udp
/etc/crontab /var/spool/cron /bin/bash /etc/passwd
/etc/issue /etc/shadow /proc/version /etc/ssh/sshd_config
/etc/services /etc/network/interfaces /etc/sysconfig/network /etc/resolv.conf
/etc/fstab /etc/group /etc/hostname /etc/hosts
/etc/inetd.conf /boot .ssh/ /etc/fstab
/etc/profile /bin/bash /tmp/bash /etc/sudoers
/etc/vncpasswd /proc/ /var/tmp/ /dev/tty
/bin/ssh /tmp/ /usr/bin/yum

Table 2: List of commands that are included in the feature-set.

cat chmod cp curl sqlite3 postgres runuser
ldapsearch adduser export ftp history ping egrep
bzip ifconfig kill last mkdir mv passwd
lsof nkf ps rm sshd tar node
uname unzip nc useradd userdel vi vim
wget whoami sshd w socat telnet pip
easy_install nmap scp sftp smbclient tftp whois
finger crontab cpan apt-get byebug cobc cpulimit
rvim ltrace nohup top nice netstat find
pwd ls ssh gdb sudo netdiscover chroot
lsbrelease cut awk gawk chowm chkconfig selinux
visudo runlevel slapd openssl auditctl usermod groups
chgrp cobc emacs journalctl ltrace rsync strace
rvim cpan mkfifo perl lpstat python arp
php ruby node jrunscript ifconfig tcpdump echo
strings mono mknod backpipe tee busybox exec
route emacs rlogin xxd view rpcclient dnsdomainname
aria2c mysql debugfs iptables masscan bash tmux
screen gcc grep for while gpg hostname
sleep dpkg which fstab env set base64
sed dd ssh-keyscan locate unset printenv crash
miner minerd dirb mount ldconfig lld ftp
proxytunel yum mailcap openvpn valgrind rpm xargs
java postfix ansible git docker slsh hexdump
ghc chef salt showmount zsh go chattr
sha1sum syn.scan modprobe lsb-release du df timeout
time bzip apt-key chown javac more ssldump
traceroute ldapsearch mtr ntpdate csvtool

if the actual intent is malicious or not. For in-
stance, “netcat” can be used by legitimate scripts
to determine if an application is up and running,
by checking if a specific port is listening and
maybe sending a specific greeting message. On

the other hand, “netcat” used in conjunction
with “-e” or with pipes and redirects to “bash”,
likely indicates reverse shell activity;

(c) Paths. Features based on paths play an impor-
tant role in determining the legitimate/illegitimate
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usage of binaries. From sensitive locations
such as “/etc/passwd” to block devices such
as “/dev/tcp”, paths are a strong indicator that
something less than honest is happening on a box.
Of course, there are many paths that can be lever-
aged on a system, but thankfully, most of the paths
used in LotL attacks belong to a finite set (see Ta-
ble 1 for a complete set of paths we are using in
the feature extraction process);

(d) Networking. Communication to other hosts rep-
resents an notable use-case for LotL attacks.
While the exact IP address, range or ASN is a
strong indicator of compromise, it is a highly
volatile information and requires a reliable Threat
Intelligence (TI) source of information. Also, it
becomes obsolete very quickly. Instead, our net-
working features provide macro-level information
about the nature of communication (internal, ex-
ternal, loop-back or localhost references) trading
specificity and accuracy for stability over time and
TI independence;

(e) Well-known LotL Patterns. Features based on
known LotL patterns are regular expressions that
look for what can be considered as important sig-
natures that disambiguate the usage of a tool be-
tween legitimate and illegitimate. The number of
rules is significant and we are unable to include
them in the paper. However, if one wants to gain
access to them, they are available in the constants
file from our public repository.
For every raw command-line, we perform the fea-

ture extraction process and enrich the examples with
tags that are later used in the classification process.
We don’t rely on any text-based features in our pro-
cess (for instance n-grams) in order to reduce data
sparsity, avoid classifier over-fitting and gain better
generalization on previously unseen examples.
Note 1. The tags or features are discreete values
formed by concatenating a “class” prefix with the
command, parameter, path, networking or pattern at-
tribute that we detect. For example, if a command line
contains “netcat”, “bash”, “/var/tmp” and con-
nects to a public IP address, the extracted features
are: COMMAND_NC, COMMAND_BASH, PATH_/VAR/TMP
and IP_PUBLIC. While we could skip this step and
move directly to a ML-friendly representation (n-hot
encoding or embedding), we prefer to explicitly do
this in our tool, and present the tags along side the
classification, because this increases visibility into
the dataset and makes it easier for an analyst to un-
derstand why a command-line has been classified as
LotL.
Note 2. Sometimes, connection information is not
present in the command line itself. However, most

implementations for collecting system logs rely on
Endpoint Detection and Response (EDR) solutions,
that enrich data with inbound/outbound connections.
In such cases, it is recommended that the IP ad-
dress(es) is/are concatenated to the command line, so
that the feature extraction process will pick it up and
generate the appropriate tag. All our training data has
been semi-automatically enhanced with this informa-
tion (automatically for benign examples and manually
for the LotL examples).
Note 3. There is one more tag called
“LOOKS_LIKE_KNOWN_LOL”, which is not used
in the training process, but it is used during run-time
to override the decision of the classifier when a
previously unseen command resembles something
malicious in our dataset. More details about the tag
can be found in our initial work. However, we must
mention that it is not used the model evaluation or in
the ablation study.
Note 4. Tags for patterns don’t follow the same nam-
ing convention. Instead, we allow for selecting the
name of the tag that is generated whenever a regu-
lar expression matches and multiple expressions can
yield the same tag.

5 ENHANCED CLASSIFICATION
USING CUSTOM DROPOUT

Dropout is a well-established regularization technique
(Srivastava et al., 2014), that is preponderantly used
in the training process to prevent overfitting. Dur-
ing each training iteration, every unit (neuron) has
a pre-defined probability of being masked (dropped
out) or, in some cases, of being scaled up. We extend
this framework to perform full input-feature which is
aimed at reducing the impact of two major issues:

(a) Because we have a complex feature extrac-
tion process, some of the features might be re-
dundant and increase model instability, since
they are not linear-independent: “COMMAND_SSH”,
“KEYWORD_-R” and “SSH_R” are usually triggered
at the same time;

(b) Regular expression-based feature extraction is not
error-free and some rules might not trigger in all
cases, while their binary, keyword and IP-based
counterparts will work.

To clarify, by full-feature dropout we mean that
we randomly mask input features or their correspond-
ing embeddings and we don’t perform any scaling on
the features that are left untouched. This way, the
model is able to learn to predict whether an example
is LotL or not using less features than the superfluous
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set we generate in our FE process. This yields a ro-
bust model with higher F-scores on previously unseen
data (see Section 6 for details).

To asses the performance of our methodology
we perform 5-fold validation on our previous dataset
(small) and static validation with fixed train/dev/test
on our newly created dataset (large)3.

In Table 3, MLP-300-300-300 represents the cur-
rent model on which we apply full input-feature
dropout. The model is a three layer Perceptron with
a gated activation function (tanh · sigmoid). The size
of each layer is 300, but the output is halved, since
we use 1/2 of the units for computing sigmoid and
the other 1/2 for computing tanh, after which they
are combined by element-wise multiplication. As can
be observed, the MLP-300-300-300 outperforms all
other classifiers on the small dataset by a large mar-
gin and by a smaller gap on the larger dataset, prob-
ably because there is less chance of overfitting on the
later mentioned dataset.

The dropout rates for input and hidden layers is set
to 10%. For the layer sizes we used truncated grid-
search on the small datasets: we tested the same layer
size throughout the model from the set {50, 100, 150,
200, 250, 300, 350, 400, 500} by training on a fixed
train/dev/test split of the small corpus.

6 ABLATION STUDIES

We set out to evaluate two aspects of our approach:
(a) the effect of full input dropout and (b) the effect
of different classes of features (commands, keywords,
paths, IP and regular expressions).

In order to see how full input dropout affects the
F-score of the MLP classifier on previously unseen
data we conducted our experiments on both the small
and the large dataset, by training the same classifier
with and without full input dropout4. In all cases
we used a static train/dev/test split, because train-
ing the classifier is a time-consuming process. Table
4 shows the the full input dropout versions outper-
form the non-input dropout experiments. The gap is
larger on the smaller dataset, since there is a higher
chance of over-fitting the classifier. Using full input
feature dropout we achieve F-scores around 0.97 on
both datasets showing the dataset size has less impact
when this type of masking is applied.

3The size of this new dataset prevented us for reporting
k-fold validation

4When we removed the full input-dropout we added in-
place dropout on the internal layers. The reported results
are for 10% dropout, a rate that provided best results

Next, we asses how features belonging to the 5
different classes (commands, keywords, paths, IP in-
formation and patterns) contribute to the overall ac-
curacy of the model. The full input-feature dropout
scheme is no longer useful for this ablation study and
since the MLP is harder to train than the Random
Forest, we prefer to use the later mentioned classi-
fier in our experiments. We use the merged training
and development set to build the classifier (Random
Forest does not require validation) and train 6 mod-
els by masking features belonging to each class, with
an additional model that only relies on the regular ex-
pressions.

Table 4 shows the results for all experiments and
the baseline results obtained by training a model on
the entire feature set. As seen, commands, keywords,
IP information and paths, each taken on its own have
relatively small contributions to the overall accuracy,
with the smallest measured disruption for IP informa-
tion and largest for command lines. This is somewhat
expected, since there is an overlap between the reg-
ular expressions and features belonging to the afore-
mentioned classes. The contribution of regular ex-
pressions (i.e. human expert knowledge) is extremely
important. Without this class of features, the overall
F-Score of the model drops to 79.23. To make sure
the model does not only rely on the REGEX feature
class, we trained a classifier only on this type of fea-
tures and we got an F-Score of 87.97. While this is a
really high score, it is still nowhere near the full model
(96.49), which shows that there is a significant num-
ber of features from the other classes that contribute
to reaching top-accuracy.

7 CONCLUSIONS AND FUTURE
WORK

As discussed in the paper, we made significant efforts
to further improve our LoTL classifier and dataset. In
this endeavour, we increased the size of the dataset
and we introduced a custom dropout strategy, targeted
for our overlapping features, which had significant
impact on the robustness of the model on previously
unseen data.

To better understand the way features influence
the model, we trained the same classifier on versions
of the same dataset obtained by truncating the feature
set, the results showing a strong contribution of the
“human expert knowledge” to the overall accuracy.

All the work presented here, except the dataset, is
reflected in the public Github repository5, which we

5https://github.com/adobe/libLOL
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Table 3: F-Score results in the small dataset using 5-fold validation and on the large dataset using static train/dev/test split.

Classifier Dataset F1-score Standard deviation Avg. train time
Random forest SMALL 0.9564 0.013 18 minutes
SVM SMALL 0.9518 0.027 3.5 hours
Logistic regression SMALL 0.9309 0.014 1.2 hours
MLP-300-300-300 SMALL 0.9722 0.062 6 hours
Random Forest LARGE 0.9649 N/A 35 minutes
MLP-300-300-300 LARGE 0.9756 N/A 23 hours

Table 4: Results of ablation experiments.

Classifier Dataset Experiment F1-score

MLP-300-300-300
SMALL Full features and input dropout 0.9717

Full features and w/o input dropout 0.9421

LARGE Full features and input dropout 0.9756
Full features and w/o input dropout 0.9609

Random Forest LARGE

Full features 0.9649
Full features w/o commands 0.9123
Full features w/o keywords 0.9517

Full features w/o paths 0.9589
Full features w/o IP 0.9609

Full features w/o regex 0.7923
Only regex 0.8797

actively maintain and in the PIP-packaged version of
the code6.
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