
Codeschool in a Box: A Low-Barrier Approach to Packaging
Programming Curricula

Yoshi Malaise a, Evan Cole b and Beat Signer c

Web & Information Systems Engineering Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Keywords: Curriculum Packaging, Programming Education, Exercise Generation, Smart Learning.

Abstract: The tech industry is a fast-growing field, with many companies facing issues in finding skilled workers to fill
their open vacancies. At the same time, many people have limited access to the quality education necessary to
enter this job market. To address this issue, various small and often volunteer-run non-profit organisations have
emerged to up-skill capable learners. However, these organisations face tight constraints and many challenges
while trying to design and deliver high-quality education to their learners. In this position paper, we discuss
some of these challenges and present a preliminary version of a curriculum packager addressing some of these
issues. Our proposed solution, inspired by first-hand experience in these organisations as well as computing
education research (CER), is based on a combination of micromaterials, study lenses and a companion mobile
application. While our solution is designed for the specific context of small organisations providing vocational
ICT training, it can also be applied to the broader domain of learning environments facing similar constraints.

1 INTRODUCTION

The tech industry is a fast-growing field and accord-
ing to Voka, the Flemish Network of Enterprises,
Belgium is facing a severe shortage of technically
schooled people (Voka, 2019). Belgium is hardly the
only country facing these issues since according to
Statista, the worldwide full-time employment in the
ICT sector is projected to reach 62 million in 2023.1

At the same time, many countries are dealing with
large groups of socially vulnerable people with lim-
ited access to the job market. For example, the Bel-
gium federal agency for the reception of asylum seek-
ers (Fedasil) accommodated a total of 31 808 asy-
lum seekers2 in January 2023. These conditions
gave rise to multiple initiatives all over the world,
trying to provide up-skilling opportunities to people
with limited access to the labour market by training
them in specific highly demanded skills in their local
ICT industries. A few examples of such organisations
are HackYourFuture (Denmark, The Netherlands and
Belgium), MigraCode or Girls Who Code.

a https://orcid.org/0000-0002-3228-6790
b https://orcid.org/0000-0001-8190-0446
c https://orcid.org/0000-0001-9916-0837
1https://www.statista.com/statistics/1126677/it-

employment-worldwide/
2https://www.fedasil.be/en/statistics

Unfortunately, due to the shortage of ICT-skilled
people, there also exists a shortage of career and tech-
nical education teachers capable of teaching these
courses (Devier, 2019). This implies that these or-
ganisations are often run by people with little to no
technical experience, and courses are taught on a vol-
unteer basis by tech professionals who do not neces-
sarily have any pedagogical experience. Furthermore,
these organisations cannot even fall back on open uni-
versity courses as research indicates that universities
are often not addressing all the industry’s specific
needs (Akdur, 2022) and mainly offering long-form
programmes, making the material a less than ideal fit
for our target audience.

In order for a curriculum packaging solution to
best serve learners, it is vital that the management
is not distracted from operations and the progress of
their learners, and that volunteer mentors can focus on
what they know best; working one-to-one with learn-
ers and preparing examples of well-written code. We
set out to create a solution that makes it easy for vol-
unteers to create materials following educational best
practices. It should further be easy for educational
directors to remix and reuse existing online materi-
als. In this paper, we outline a low-barrier approach to
packaging programming curricula based on our own
experience and inspired by computing education re-
search (CER).

Malaise, Y., Cole, E. and Signer, B.
Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula.
DOI: 10.5220/0011967900003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 1, pages 281-288
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

281



2 CONTEXT

In order to highlight the novelty and importance of
the work presented in this paper, it is important to
introduce the specific context in which we want the
proposed tools to operate, how this context might
differ from the traditional university-level courses or
k-12 education that are typically studied by comput-
ing education research, and how existing freely avail-
able resources do not address the needs of vocational
ICT training. Let us start by formulating some key
characteristics of the stakeholders in this context.

The learners in our target audience are typically
people who do not have access to full-time contin-
ued education. They are typically following these up-
skilling classes in combination with a full-time job
and are often also taking care of a family. There-
fore, the presented content should be flexible for asyn-
chronous consumption when it fits within their sched-
ule and they cannot always have the guidance of a
teacher in the room. Having content accessible in
multiple forms that can be accessed in different con-
texts is a major benefit for these learners.

In our context, content creators are well-meaning
software developers who want to contribute to educa-
tion as volunteers by making content in the domain of
their expertise available to the previously-mentioned
learners. These volunteers are a very valuable re-
source as their expertise carries a lot of value to the
learners, but they are frequently not trained as edu-
cators. Often, they also do not have experience with
what makes good educational content and what the
typical progression of students looks like. Therefore,
we want to make sure that they can spend their time
doing what they do best, creating code samples for
the material they want to cover. We then need to in-
clude a system to automatically create exercises of
varying difficulty levels about this content so students
can progress naturally. More invested volunteers can
also be a major help if we guide them in the creation
of what good online resources look like. Using this
guidance, they can contribute by developing a small
application instead of directly writing content.

The curriculum designers are typically members
of organisations that want to combine these open ed-
ucation resources into a holistic curriculum covering
enough content to prepare learners to take an entry-
level position in a specific role, such as a web devel-
oper dealing with in-demand frameworks. The cur-
riculum designers often have limited pedagogical or
technical expertise, and given the fact that they are
likely part of a small non-profit organisation with lim-
ited funding and popular technologies evolve quickly,
they normally do not have the luxury to spend a year

in designing a brand new curriculum. Given these
constraints, it is important for curriculum designers to
find adequate resources—often created by the volun-
teer developers mentioned earlier—that can be reused
and repurposed to fit their needs.

Even though these constraints have a major impact
on what kind of material might work and what will
not (precluding many theoretically ideal approaches),
we feel that it is valuable to specifically target this
challenging context, given that these learners are not
reached by traditional university education, and they
stand to gain the most by switching to a stable job in
the information technology sector. Note that every-
thing that we present can also form an added value
for regular education.

3 SYSTEM COMPONENTS

In the following, we introduce the key components
necessary to properly construct a curriculum for our
target audience. These components consist of a set
of independent online resources focusing on a nar-
row learning objective, while providing immediate
feedback in order for students to practise and im-
prove even when no teacher is nearby, a new way
to explore existing source code in order that students
can learn from pedagogically sound content gener-
ated from samples provided by content creators, and
a mobile companion application that allows students
to practise some exercises in a gamified environment
while they are on the go and do not have access to a
desktop computer or laptop.

3.1 Micromaterials

In the field of education, we have units of learn-
ing materials called learning objects (LO), with each
learning object having well-defined goals on what
they are trying to teach. When authors of these learn-
ing objects take the necessary precautions to ensure
that they can be openly reused by other educators,
these learning objects might be referred to as open
education resources (OER). The 2019 UNESCO def-
inition describes OER as “teaching, learning and re-
search materials that make use of appropriate tools,
such as open licensing, to permit their free reuse, con-
tinuous improvement and repurposing by others for
educational purposes”.3 It is clear from this defini-
tion that it is not enough to simply be freely available
to others to be classified as an OER, but it should be
realistic to incorporate these resources into existing

3https://opencontent.org/definition/

CSEDU 2023 - 15th International Conference on Computer Supported Education

282



larger curricula as educators see fit. The comput-
ing education research field has already made great
strides towards not only developing some of these re-
sources, but also making them available to a larger
community. For example, every year authors can sub-
mit nifty assignments that they used in their lectures
to the nifty assignments track of the Technical Sym-
posium of the ACM Special Interest Group on Com-
puter Science Education (SIGCSE) and present them
to their peers. It is important to note that during the
submission process authors have to provide additional
metadata about an assignment, such as the intended
target audience, additional context or its strengths as
well as weaknesses. This additional metadata is of vi-
tal importance for educators who do not simply want
to use existing open education resources as they are,
but possibly repurpose them for their own situations.
After the conference, the artefacts are uploaded to the
nifty assignments page of Stanford University4 where
they can be found with all the necessary metadata.

There is a subset of open education resources re-
ferred to as micromaterials, a term coined by Adam
Leskis.5 In order for an open education resource to
classify as a micromaterial, there are additional con-
straints that need to be satisfied. A micromaterial
should be directly usable by the learner and the mi-
cromaterial should be able to provide automated feed-
back so the learner can improve without additional
oversight by an educator. This way of working is
a perfect match with our target audience of learners
who might be practising at home after a workday. Al-
though it is not a strict requirement to be considered
a micromaterial, many existing micromaterials con-
tain automatically generated content and are mobile
friendly. This provides the user with a virtually end-
less amount of content they can work through until
they grab the concept that they are trying to learn.

In order to further illustrate the idea of a microma-
terial, we provide three examples of micromaterials
that have been developed to be used by our students.

• King’s Scroll. In this browser-based game stu-
dents are shown a randomly generated piece of
JavaScript code that modifies four boolean vari-
ables (helmet, sword, shield and cape) (Malaise
and Signer, 2023). They have to interpret the
piece of JavaScript code and select the hero that
satisfies the constraints of these variables at the
end of execution of the code. The micromaterial
is used to help students practise the control flow
of JavaScript programs.

4http://nifty.stanford.edu
5https://micromaterialsblog.wordpress.com

Figure 1: Screenshot of King’s Scroll micromaterial.

• SQL Study Buddy. This browser-based appli-
cation uses sql.js6 (an SQLite version transpiled
to WebAssembly) and allows students to write
queries to be executed in their browser. This helps
to lower the barrier as nothing needs to be in-
stalled locally and students cannot mess up their
database given that it is recreated for every exer-
cise. Students are asked to write SQL queries to
perform certain operations in the online code ed-
itor. Every time a student executes their query,
a set of assertions are run. By looking at which
assertions pass and which fail, students can keep
improving their queries until all checks pass.

• HTML Study Buddy. HTML Study Buddy is a
browser-based application to practise the basics of
HTML markup. Students are presented a screen
that is divided into three parts. In the right part
of the screen, they see a webpage that they have
to recreate. Further, in the left part of the screen,
they are presented jigsaw puzzle pieces based on
Google’s Blockly library. Those jigsaw pieces
contain specific HTML markup. The available
pieces are determined by the elements used on the
page the students have to recreate, to prevent them
from being overwhelmed. Students can snap the
pieces together in order to construct the webpage.
The webpage resulting from the markup on the as-
sembled jigsaw pieces is updated in the centre of
the screen as soon as a student drags one of the
pieces.

3.2 Study Lenses

As discussed earlier in Section 2, there exists an am-
ple number of online sample projects for nearly every

6https://sql.js.org

Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula

283



given topic in programming. Programmers like to
write blog posts about new technologies that they
think are exciting which can also be beneficial for
them to attract new employers. The main issue how-
ever is that these posts are typically not written by
pedagogical experts and the sample code does often-
times not have actionable goals for students to learn
from in a step-by-step manner. This led to the idea of
study lenses.7

The concept of study lenses is straightforward; we
want to empower students to be able to learn from any
online code the learner encounters, but still do so in
a pedagogically sound way. In order to achieve this
goal, raw source code is used as input for different
lenses and each lens is used to generate materials for
a specific learning objective (e.g. reading or tracing).
A wide variety of views are possible and one of the
more basic examples can highlight the code’s syntax
and overlay a canvas to enable students to annotate
and highlight parts of the code. A different lens might
take the code file, parse it and present the code as a
flowchart to help students focus on the control flow,
or the execution of the program could be visualised
in tools such as PythonTutor8 to help student focus
on what goes on in the program’s memory during ex-
ecution. Some micromaterials can also be packaged
as lenses. For example, we have lenses that ask stu-
dents questions about their code or lenses that intro-
duce errors in the code that a student has to fix. The
study lenses environment builds on a plugin-based ar-
chitecture where educators and developers can intro-
duce new lenses on demand.

When designing new lenses, there are a couple of
important constraints to take into consideration. First,
it is important that lenses work on plain code. Any
code should run fine in the target environment and
content creators should not need to change the way
they write the examples to fit the study lenses environ-
ment. Second, lenses should be designed with a “peel
away” principle in mind, where early lenses can pro-
vide a lot of additional context on top of the code, but
the more advanced lenses should do so less and less,
in turn revealing a general-purpose development en-
vironment that matches realistic industry setups. This
way we can satisfy the expertise reversal (Kalyuga
et al., 2009) and the skill transfer (Chiaburu and Mari-
nova, 2005) principles. Finally, lenses should not cre-
ate any platform lock. Content created to be used with
the lenses should not rely on any custom syntax and
the content should still be usable (to some extent) in
a different environment. This is why there is a strong
push towards using open web standards that can be

7https://github.com/colevandersWands/study-lenses/
8https://pythontutor.com

reused everywhere in addition to regular code files for
all aspects of curriculum packaging.

The current implementation of study lenses is
available open source and as a Node.js package that
can be installed globally on a student’s system. Stu-
dents can run the study command from any place in
their file system to explore the current directory in the
study lenses environment. There also exists a study
lenses version that can be embedded into packaged
curricula as described later in Section 4.

3.3 Companion App

The need for mobile learning environments has been
discussed in the past (Göksu and Atici, 2013) and
its importance has also been highlighted to us during
conversations we had with students of different up-
skilling courses. Many students emphasise the use-
fulness of having access to some material on the go
when they happen to have some time available to en-
gage with content during free time, such as when they
are taking public transportation. Therefore, we im-
plemented an initial prototype of a mobile companion
application; not to replace the study lenses environ-
ment or the online resource, but as an additional way
of consuming content. In order to make the applica-
tion fully portable, we opted for a smartphone appli-
cation that stores its content offline and thus can be
used even without any cellular connection.

The mobile app has two main functionalities. First
it can be used to view (short) presentations about im-
portant topics as a refresher, which might be useful to
do right before a class or before students start working
on their laptops when getting home. Second the app
also includes small exercises that are generated from
code files. The app further includes some gamifica-
tion elements such as push notifications to remind stu-
dents to get their daily practise, and daily goals such
as completing 10 exercises every day. After complet-
ing a certain number of exercises, badges can be un-
locked and shown in the application. Further, exer-
cises are presented according to the Leitner box sys-
tem where exercises that have never been completed
have the highest chance of being selected, and the
more often an exercise has been successfully com-
pleted, the less frequently it is shown. In the following
we list the currently supported types of exercises.

• Parsons Problem. Parsons problems have been
used for a long time in computing education re-
search (Du et al., 2020). When given a Parsons
problem, students receive all the lines of a code
snippet in a shuffled form. By dragging and drop-
ping the lines, students need to recreate the orig-
inal code snippet. Whenever a line is placed at

CSEDU 2023 - 15th International Conference on Computer Supported Education

284



the right position, a green checkmark is shown on
that line. This way, users incrementally work on
the problem until they have solved the exercise.

• Comment Slots Exercise. In a comment slots ex-
ercise, a user is presented a snippet of code, but
all the comments have been replaced with combo
boxes. It is up to the student to interpret the code
and match every comment with the corresponding
line of code.

• Parameter Chooser. In a parameter chooser ex-
ercise, users are presented with a function that
takes at least two parameters. However, all oc-
currences of the parameters in the body will be
replaced by combo boxes. By reading and un-
derstanding the surrounding code, it is up to the
learner to infer which of the parameters is used.

• Code Snippet to/from Flowchart. Code Snippet
to/from flowchart exercises present the user with
an original code snippet and three flowcharts. One
of the flowcharts is the correct translation of the
code snippet, the other two are based on slightly
altered versions of the code snippet. It is up to the
user to determine which of the three flowcharts
matches the original snippet. An inverted version
of this exercise is also possible where users re-
ceive one flowchart and three pieces of JavaScript
code.

• Multiple Choice Questions. The multiple choice
question exercises have been inspired by “ques-
tions about learners’ code (QLCs)” (Lehtinen
et al., 2021). In these exercises, the application
analyses a code snippet shown to a student and
asks them questions about the code. Examples of
questions include “What is the name of the func-
tion?”, “Is function X asynchronous?” or “Which
of the following variables are declared in loop ini-
tialisers?”.

4 CURRICULUM PACKAGER

There is a strong need for many organisations to set up
new courses as well as to update existing ones. These
courses could be both long-term formation such as
‘Introduction to Web Development’ over a period of
up to a year, or an advanced follow-up course such
as ‘Reactive Programming’ with a duration of two
months only. It is essential for organisations to be
able to set up these smaller curricula in order to ac-
commodate for the specific professional needs in their
geographical area.

In recent years, research on how to best pack-
age a curriculum has been conducted by the Curricu-

lum Materials Working Group.9 However, their re-
search mainly targets long-form traditional university
courses making use of existing learning managements
systems (LMS). Similar research lead to open stan-
dards such as SCORM,10 that allow moving material
between LMS’s. However, such a setup is not a per-
fect fit for our intended use case of ad-hoc volunteers,
working together to come up with a set of open learn-
ing materials. The management of an LMS requires a
substantial effort and the time learners spend on learn-
ing to work with the LMS is time they could have
spent on learning about the concrete content. There-
fore, we strive for our learning environment to be as
close to the industry tools that coaches and learners
will be using throughout their careers. The prelim-
inary version of the packager combines the compo-
nents introduced in the previous section into a holistic
self-contained online curriculum that can be deployed
to any cloud hosting service. Note that our packager
currently supports JavaScript-based curricula, but we
plan to add other programming languages.

In our solution, the source of a curriculum is made
up from a set of folders, with each folder represent-
ing one learning object (e.g. LO1) as illustrated in
Figure 2. Such a learning object can consist of any
type of files, but the following files are given a special
meaning during the packaging process:

• Readme.md. The readme.md file is used to de-
scribe general information about the learning ob-
ject in markdown format. Typically, it is rec-
ommended for the description to list the main
goals of the learning object and to refer to rele-
vant online resources such as videos or blog posts.
We also strongly encourage any learning object
to link to relevant micromaterials using the pro-
vided markdown functionality. Since the system
uses traditional readme files, the learning objects
can easily be used outside of our environment and
content developers do not need to learn any cus-
tom syntax.

• curriculum.json. The optional
curriculum.json file contains metadata
for the packager. The name property can be
used to set how the name of the learning object
should appear in the generated curriculum. The
ignoreList property tells the exercise generator
which files to ignore when generating exercises.
Further, the requires property can be used
to indicate which learning objects should be
completed before the user can partake in this
learning object. The idea for this metadata was

9https://cssplice-cm.github.io
10https://scorm.com

Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula

285



Source Material

LO3

intro.presentation.md

readme.md

code  
sample 2

LO2

Online Resources

video

blog

micromaterial

links to

package

Study Lenses

Web Server

Presentations

Web Interface Companion App

Generated Exercises

Packaged Curriculum

publish

LO1

requires

code 
sample 1

curriculum.json

LOs

Figure 2: Curriculum packager overview.

inspired by Harper-Lite,11 a similar system that
strives to make lesson (learning object) discovery
easier by having authors include a harper.yaml
file in the root directory of each lesson.

• study.json. Optionally, a study.json file
can be placed in any folder with code samples
(e.g. code sample 1) to configure the default op-
tions and lenses to be used by the study lenses en-
vironment.

• *.presentation.md. Files with a filename
*.presentation.md will be interpreted as pre-
sentation files by the curriculum packager. The
content of the file should contain valid mark-
down that will be turned into a presentation by the
revealjs12 JavaScript library.

• *.js. All JavaScript files detected in the folder
will be parsed and analysed in order to generate
exercises based on the code. In future versions of
the curriculum packager, we also plan to support
other programming languages.

As we can see from the previous description, there
is no need for curriculum authors to become spe-
cialised in custom tools. Their main work consists
of coming up with realistically looking examples of
the code in action. The markdown files can easily be
reused in different contexts regardless of what learn-
ing environment is being used. This way we can avoid
a vendor lock-in to our solution. Since all learning
objects are simple folders that can be checked-in to
GitHub, we satisfy all requirements that open learning
objects should have according to the Curriculum Ma-
terials Working Group, namely that we should be able
to create, fix, revise, reuse, share, find, track, pull,
push, evaluate and credit open learning materials.

Once the curriculum designers have collected the
learning objects they wish to include in their curricu-
lum, they can run our curriculum packager desktop
application and select all the relevant folders. The

11https://third-bit.com/ideas/harper/
12https://revealjs.com

packer will then run through these folders and gen-
erate a prepackaged curriculum. The generated cur-
riculum will be a Node.js project using an Express
web server to host all its content. This project can
then easily be deployed online or be made available
on GitHub for students to run it locally. When access-
ing content from the web server, users are presented
with all the learning objects in card form. On these
cards, users can see the content of the readme.md file.
Further, there are buttons to access the content of the
learning object via the included study lenses server or
to watch any of the presentations on the online slide
presentation screen. At the top of the page there is a
QR code that can be scanned by the companion appli-
cation to download the curriculum’s material (i.e. the
mobile exercises and the presentation) for offline use.

In a future version of the packager, we are plan-
ning to add support for automatically generating
learning spaces on GitHub based on workflows re-
fined over several years of running ICT courses on
GitHub. These would provide a low maintenance al-
ternative to traditional learning management systems.
Organisations willing to run a new class would be able
to specify a list of students, and the system would au-
tomatically generate a GitHub repository where stu-
dents can find an outline of their syllabus, indicate
their progress on the Kanban board and post issues if
they get stuck, while using the same tools and work-
flows they will use in their professional career.

5 CHALLENGES AND FUTURE
WORK

Let us now discuss some of the main challenges that
we expect to face when further developing the cur-
riculum packager, as well as some interesting research
directions that we plan to address in the near future.

CSEDU 2023 - 15th International Conference on Computer Supported Education

286



5.1 The Reusability Paradox

Some criticism has arisen from researchers about the
dangers of taking learning concepts out of their origi-
nal context. The claim is that the context itself forms
part of the material to learn, and that material that is so
context agnostic that it can be used anywhere actually
does not provide any real value anywhere (South and
Monson, 2000). This problem has been named the
re-usability paradox and represents one of the main
challenges when building a curriculum out of exist-
ing components and designing the reusable compo-
nents. This is something that one always has to keep
in mind. However, research has shown that there def-
initely is still value in the creation of reusable com-
ponents in education as long as effort is done to find
the right balance between de-contextualisation and
usefulness (Wiley et al., 2004). This means that we
should not go overboard by reducing the size of the in-
dividual topics and that it is okay that some individual
objects still cover more than strictly one topic (Bart
et al., 2019). A rule of thumb proposed by Wiley
is that we should ask ourselves “Can you imagine
wanting to teach some portion of this topic without
teaching the other parts?”. If the answer is no, all
the subtopics belong to one learning object. We be-
lieve there is still room to construct a set of guide-
lines on the scoping of learning objects that can be
shared with other researchers interested in designing
reusable learning objects.

5.2 Automatic Exercise Generation

A future direction we wish to further explore are
other ways to automatically generate exercises based
on codebases. Ideally, these exercises should cover
all aspects of the PRIMM (Predict-Run-Investigate-
Modify-Make) principle (Sentance et al., 2019) to en-
sure that students can improve step by step over the
given codebase. In our current implementation, all
exercise generation is done by parsing the JavaScript
files using Acorn13 and analysing the abstract syntax
tree. We are convinced that this technique can be
used to generate even more interesting exercises be-
sides the ones we are generating today. Apart from
this method, we are also looking into other ways to
generate exercises based on machine learning. Inter-
esting research towards automatic exercise generation
based on the code-trained Natural Language Model
Codex presented by OpenAI (Chen et al., 2021) has
recently been presented at ICER (Sarsa et al., 2022).
This is definitely another promising direction that we
are planning to further investigate.

13https://github.com/acornjs/acorn

5.3 More Ways to Look at Code

We will keep advancing the study lenses platform and
search for interesting and useful new lenses that could
benefit our learners. We feel like the concept of using
existing files as a basis and providing students differ-
ent ways of interacting with and analysing these files,
is an interesting concept to further explore. The ver-
satility of the study lenses and the additional content
they provide out of the box—as long as there is some
example code given in a domain—leads to a great
amount of new content for learners to take in with a
small time investment needed by content creators.

In its current form, the study lenses implementa-
tion works as a web environment, which is great given
the flexibility and ease-of-use this provides. We are
further investigating what it could look like to have
the plug-in-based study lenses concept incorporated
into existing Integrated Development Environments
(IDEs). This would not only allow students to ben-
efit from the layers of interactivity and perspectives
on top of the code right where they are already work-
ing but it would also allow the students to take this
environment with them and use those tools to help
them understand work related code as they graduate
towards their first internships.

5.4 Knowledge and Content Modelling

In recent years, there has been a push towards the
use of knowledge graphs in education. A knowledge
graph is a formal way to describe all the topics and
their relations that are covered within a field of ed-
ucation. The topics are represented as nodes, while
the directed edges indicate which topics are prerequi-
sites of other topics (Rizun, 2019). This representa-
tion allows for automated reasoning and might enable
future intelligent tutoring systems. In past work, the
knowledge graph representation has been used to find
ways on how to model students’ progression (Ilkou
and Signer, 2020), as well as to build recommenda-
tion engines suggesting only exercises in a learner’s
zone of proximal development, both in traditional ed-
ucation (Baker et al., 2020) as well as in sports edu-
cation (Malaise and Signer, 2022).

We are planning to further investigate the use of
student modelling to adapt the content to the learn-
ers. This modelling will consist of two parts. First,
we will model the learners’ constraints and prefer-
ences (i.e. “What devices do they have access to?”
or “Can they study for long sessions or do they typ-
ically have multiple short sessions?”). Second, we
will also use personal knowledge graphs to model
the progression of individual learners throughout the

Codeschool in a Box: A Low-Barrier Approach to Packaging Programming Curricula

287



global knowledge graph. Based on this additional in-
formation, we would like to introduce an intelligent
tutoring system in order to better recommend exer-
cises to the students. One can, for instance, imag-
ine that the application does not simply show exer-
cises based on the Leitner box system, but makes
informed suggestions based on a student’s past per-
formance for specific individual skills. It might fur-
ther be used to detect a user’s knowledge gaps. In
this domain, the EduCOR ontology14 could be a good
fit, as it models both the education side of things but
also incorporates the mapping to labour-market skills.
Recently, GraphBRAIN has been used to power an
initial implementation of an intelligent tutoring sys-
tem (Ferilli et al., 2022). GraphBRAIN allows users
to utilise ontologies as database schema on top of a
graph database. Exploring the direction of having our
model conceptualised as an ontology (in combination
with EduCOR) is a promising direction as it means
that all generated data could easily be shared across
systems with other projects in the field of computing
education research.

6 CONCLUSION

In this position paper we presented a number of
challenges and constraints faced by small organisa-
tions offering professional training and up-skilling for
learners who are not served by traditional education.
We introduced a preliminary version of a curriculum
packager combining micromaterials, study lenses and
a companion mobile app to address some of these
challenges. It is important to note that most of the
content designed to work in the presented context and
its constraints will also be usable in general contin-
ued education. We further discussed some remaining
challenges and future research directions. The pro-
posed research is essential for reaching under-served
learners and to expand the body of knowledge in com-
puting education research.

REFERENCES

Akdur, D. (2022). Analysis of Software Engineering Skills
Gap in the Industry. ACM TOCE.

Baker, R. et al. (2020). The Results of Implementing Zone
of Proximal Development on Learning Outcomes. In
Proc. of EDM 2020.

Bart, A. C., Hilton, M., Edmison, B., and Conrad, P. (2019).
The Problem of Packaging Curricular Materials. In
Proc. of SIGCSE 2019.

14https://tibonto.github.io/educor/

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
et al. (2021). Evaluating Large Language Models
Trained on Code. arXiv.

Chiaburu, D. S. and Marinova, S. V. (2005). What Predicts
Skill Transfer? An Exploratory Study of Goal Orien-
tation, Training Self-Efficacy and Organizational Sup-
ports. International Journal of Training and Develop-
ment, 9(2).

Devier, B. H. (2019). Teacher Shortage and Alternative Li-
censure Solutions for Technical Educators. The Jour-
nal of Technology Studies, 45(2).

Du, Y., Luxton-Reilly, A., and Denny, P. (2020). A Review
of Research on Parsons Problems. In Proc. of ACE
2020.

Ferilli, S., Redavid, D., Di Pierro, D., and Loop, L. (2022).
An Ontology-driven Architecture for Intelligent Tu-
toring Systems with an Application to Learning Ob-
ject Recommendation. IJCISIM, 14.

Göksu, İ. and Atici, B. (2013). Need for Mobile Learn-
ing: Technologies and Opportunities. Procedia - So-
cial and Behavioral Sciences, 103.

Ilkou, E. and Signer, B. (2020). A Technology-enhanced
Smart Learning Environment Based on the Combina-
tion of Knowledge Graphs and Learning Paths. In
Proc. of CSEDU 2020.

Kalyuga, S., Ayres, P., Chandler, P., and Sweller, J. (2009).
The Expertise Reversal Effect. Educational Psychol-
ogist, 38(1).

Lehtinen, T., Santos, A. L., and Sorva, J. (2021). Let’s
Ask Students About Their Programs, Automatically.
In Proc. of ICPC 2021.

Malaise, Y. and Signer, B. (2022). Personalised Learning
Environments Based on Knowledge Graphs and the
Zone of Proximal Development. In Proc. of CSEDU
2022.

Malaise, Y. and Signer, B. (2023). King’s Scroll: An Ed-
ucational Game to Practise Code Prediction. In Proc.
of SIGCSE 2023.

Rizun, M. (2019). Knowledge Graph Application in Educa-
tion: A Literature Review. Folia Oeconomica, 3(342).

Sarsa, S., Denny, P., Hellas, A., and Leinonen, J. (2022).
Automatic Generation of Programming Exercises and
Code Explanations Using Large Language Models. In
Proc. of ICER 2022.

Sentance, S., Waite, J., and Kallia, M. (2019). Teaching
Computer Programming With PRIMM: A Sociocul-
tural Perspective. Computer Science Education, 29(2-
3).

South, J. B. and Monson, D. W. (2000). A University-
wide System for Creating, Capturing, and Delivering
Learning Objects. The Instructional Use of Learning
Objects.

Voka (2019). Voka: “The Shortage of Technical Profiles is
Threatening to Become the Achilles’ Heel of Innova-
tion in Flanders”. Stanley Milton.

Wiley, D., Waters, S., Dawson, D., Lambert, B., Barclay,
M., Wade, D., and Nelson, L. (2004). Overcoming the
Limitations of Learning Objects. JEMH, 13(4).

CSEDU 2023 - 15th International Conference on Computer Supported Education

288


