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Abstract: Misconfiguration of IoT devices and backend containerized-cluster systems can expose vulnerable areas at
the network level, potentially allowing attackers to penetrate the network and disrupt workload and the flow
of data between system components. This paper describes a self-healing model based on a Markov decision
process that can recover the misconfiguration and its impact on the workload and data flow at the network
level. The results show that the proposed controller led to accurate results in performance and reliability.

1 INTRODUCTION

Misconfiguration might emerge when essential se-
curity settings of in edge devices and system clus-
ters parameters are either not implemented or imple-
mented with errors such as leaving the default config-
uration settings unchanged, erroneous configuration
changes, or other technical issues (Samir and Dagen-
borg, 2023) that impact the workload and data flow
within and across systems. Multi-layered vulnera-
bilities can leave devices vulnerable and allow unau-
thorized access. Thus, the change in workload and
data flows due to misconfiguration might result in
poor quality assessment, ineffective resource utiliza-
tion, latency, high cost, and a decline in service qual-
ity.

Several works have looked at the management of
workload and information flow (Moothedath et al.,
2020), (Kraus et al., 2021), (Nie et al., 2021b), (Nie
et al., 2021a), (Tang et al., 2018), (DCMS, 2018),
(Jin et al., 2022), (George and Thampi, 2019). How-
ever, more work is needed to recover the miscon-
figuration of edge devices and containerized clusters
and to optimize the system’s performance and relia-
bility (Dass and Namin, 2021), (Mascellino, 2022),
(Rahman et al., 2023), (Wang et al., 2018).

In this paper, we proposed a self-healing con-
troller that fixes the misconfiguration of edge devices
and backend containerized services to mitigate its im-
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pact on the workload and the data flow. The pro-
posed controller is based on Markov Decision Pro-
cesses (MDPs), which have been shown useful for a
wide range of optimization problems via reinforce-
ment learning. We chose MDP to manage the un-
certainty of the system’s performance at a particular
time and to allow multiple components to select the
same actions to reduce the total number of actions re-
quired. Recovery occurs by replacing or reconfigur-
ing the edge devices and containers-based cluster set-
tings when they do not meet the performance evalua-
tion metrics (e.g., utilization, latency, response time,
network congestion, and throughput). The controller
applies the recovery based on the type of misconfigu-
ration (Samir and Dagenborg, 2023), considering the
selection of the optimal recovery policy.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the misconfiguration under cluster
and edge device levels in our system. Section 3 in-
troduces the self-healing controller and describes the
mechanism of finding the optimal recovery policy.
Section 4 evaluates the controller. Section 5 discusses
the related work. Section 6 concludes the paper and
presents the direction of future work.

2 OVERVIEW OF THE SYSTEM
MODEL

We consider IoT-enabled systems that consist of var-
ious edge devices that connect via the Internet (e.g.,
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Figure 1: An example of a multi-cluster architecture for
edge-based fog computing.

5G or WiFi) to backend clusters with nodes that con-
tain one or more services. For instance, in the health-
care industry, heart monitoring software might be de-
ployed to a container on a backend server, while medi-
cal sensors and mobile applications run on the edge to
collect health metrics from patients. Misconfiguration
makes such systems and edge devices prone to several
attacks (e.g., distributed denial of service attacks, ran-
somware, security compliance breaches, privilege es-
calation attack) that facilitate further breaches, stress
the system clusters and devices, and degrade system
performance. A network gateway could provide the
starting point to launch malicious activities that affect
the system’s resources. In our medical example, see
Figure 1, the cluster contains a pool of nodes, pods,
and containers that provide resources for the health-
care system. The cluster includes the healthcare appli-
cation, which resides in the Docker Hub repository to
share and access containers’ images. The system in-
cludes services for its control, continuous integration,
and deployment. To configure Kubernetes, configu-
ration files are used to describe clusters, users, and
contexts. They are stored in version control before
being pushed to the cluster to simplify the configu-
ration change and aid cluster re-creation and restora-
tion. Misconfiguration might occur at different levels;
at the edge device level, misconfiguration (e.g., CVE-
2019-6538) could affect the scores of the heart rate
monitor (e.g., Medtronic device) that allows a nearby
attacker to change the settings of a patient’s cardiac
device by manipulating radio communications be-
tween it and control devices (inject, replay, modify,
and intercept the telemetry data to reprogram the car-
diac device). At the cluster level, misconfiguration
(e.g., CVE-2019-5736, CVE-2022-0811) might occur

due to network rules, root/less privileged user access,
wrong pod label specifications, manual errors like ty-
pos, or forgetting to enforce network policies after
writing them. Hence, misconfigured might allow an
adversary to exploit container processes.

The controller in our system model aims to re-
cover such misconfiguration and mitigate their impact
on workload (overloaded resources) and prevent se-
quences of abnormal data flow paths. We focused on
the common misconfiguration at Kubernetes, Azure,
and Docker Swarm (Samir and Dagenborg, 2023) re-
ported in 2022 and 2023 by CVE, the National In-
stitute of Standards and Technology (NIST) SP 800-
190, OWASP Container Security Verification Stan-
dards, OWASP Kubernetes Security Testing Guide,
and OWASP A05:2021 – Security Misconfiguration.

We adopt the Monitor, Analysis, Plan, Exe-
cute, and Knowledge (MAPE-K) architecture for self-
healing systems as shown in Figure 2. Our controller
consists of (1) Monitor that collects the performance
and the configurations of edge devices and cluster-
based nodes and containers; (2) Analysis that detects
misconfiguration and identifies its type to apply a suit-
able recovery action. The detection and identifica-
tion are not the scopes of this paper; more details
in (Samir and Dagenborg, 2023); (3) Plan and Exe-
cute that selects the optimal recovery policy from a
set of recovery actions to heal the misconfiguration
and its impact on workload considering the provision
of system resources. The recovery actions are stored
in the Knowledge storage to keep track of the number
of applied actions to the anomalous component. We
created pre-defined misconfiguration description pro-
files with common misconfiguration types and stored
them in the knowledge storage to be used in the re-
covery process.

Figure 2: System model.
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3 SELF-HEALING CONTROLLER

In this section, the self-healing controller is presented
that selects the optimal recovery policy with the most
proper recovery action(s) for the containers-based
cluster or edge device according to its status. The
following extends our previous controller (Samir and
Pahl, 2019), (Samir and Pahl, 2020) to detect and
identify the misconfiguration at the edge device(s)
and containers-based cluster (Samir and Dagenborg,
2023).

3.1 Recovery Process Assumption

Our controller consists of the agent, which is a learner
or decision-maker, and the environment, which is ev-
erything surrounding the agent (system under obser-
vation). In our case, the agent represents the Recov-
ery phase and the environment reflects both the Kube
Nodes (nodes, container, services) and the patient’s
edge device. The controller, at the recovery phase,
chooses an action according to the misconfiguration
types identified in (Samir and Dagenborg, 2023) and
observes the performance of the environment after ap-
plying the action as shown in Figure 3. Then, corre-
sponding to the applied action, the controller receives
a reward, which refers to the performance enhance-
ment for the observed monitoring metrics. If the ac-
tion is applied successfully, the controller marks the
component as recovered and keeps a profile for the
applied actions in the knowledge to learn the opti-
mal action at each state in the environment and to en-
hance the recovery procedure in the future. Here, the
state refers to clusters, nodes, containers, services, or
edge devices. However, if the applied action didn’t
enhance the anomalous behavior of the misconfig-
ured state (e.g., network congestion), the controller
applies another action from the recovery actions list
defined for that type of misconfigured state through
the Reconfiguration Executor. For each type, The Ex-
ecutor follows a set of configuration steps predefined
and stored in the Knowledge storage. Based on the
applied actions, observations, and rewards obtained
from the applicable actions, the controller continu-
ously updates the recovery policy to find an optimal
policy that maximizes the expected cumulative long-
term reward received during the recovery process.

3.2 Recovery Actions

The applied action could be one or more possible ac-
tions, denoted as ai, such as terminate, reconfigure,
redeploy, restart, or do nothing. Here, terminate is
represented as ai=1, which denotes that the system’s

Figure 3: Self-Healing Controller - Recovery Using MDP.

state (e.g., containers deployed services) will be ter-
minated if a container escapes vulnerability and al-
lows an attacker to obtain host root access, and the
recovery actions don’t heal the anomalous behavior.
The ai=2 represents a combination of two actions,
reconfigure and redeploy, and it indicates that the
anomalous state will be reconfigured and redeployed.
In case the ai=2 action didn’t heal the anomalous state,
another action, ai=3, will be applied to reconfigure
and restart the whole cluster. If the status of the state
cannot be obtained, do nothing action ai=4 will be ap-
plied. The restart action ai=0 is the default applicable
action to avoid trying multiple actions and to mini-
mize the time and cost of the recovery process.

3.3 Recovery States: Environment

For each misconfigured state, denoted as s, an action
ai from the action space A at time t where A contains
a set of actions available for the misconfigured state,
At ∈ A(st). The misconfigured state s at a specific pe-
riod constitutes the controller’s input, which belongs
to a state space S that includes possible situations for
each misconfigured state: 1) the state is at the initial
status (misconfigured) sInt , 2) the state is successfully
recovered sSR, 3) the state recovery failed sRF , and 4)
the state is recovered sR. Hence, if the state is sInt ,
then a recovery action from the A is applied. In case
the action is applied successfully, the state transits to
sSR to indicate the success of recovery, and the state
is marked as recovered sR; otherwise, the state turns
to sRF , and another action is applied. The controller
monitors the performance evaluation metrics after ap-
plying the action. Whenever the metrics are beyond
the dynamic threshold, the controller considers it a
recovered state; otherwise, a recovery process will be
continued until the misconfigured state is recovered.
For each applicable action on state s, the controller re-
ceives a reward r at time t, where r ⊂ R, and R is the
cumulative reward. The recovered state sR returns to
its optimal status at st+1. The transition from one state
status to another, denoted as Pa

s =P(sSR,sR,ai=2) = 1,
and referred to the probability of transiting from state
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sSR to state sR upon applying action ai=2 and receiving
reward ra

s . If the state recovery failed sRF , the proba-
bility of transition Pa

s = P(sInt ,sRF ,ai=2) = 0, and we
assign a constant failure rate CFR for the state un-
der recovery with an exponential failure distribution
as shown in (1) to measure the conditional probabil-
ity of failure per time unit.

F(t) =CFR× exp−CFR(t+t ′) (1)

3.4 Recovery Rewards

The reward could be a positive value, which refers to
a successfully applied recovery action that enhanced
the observed metrics, or a negative value which refers
to an unsuccessfully applied recovery action that de-
clined the observed metrics. The value of the reward
is determined by measuring the performance for ev-
ery anomalous state based on the action applied at
each time slot. We obtained the number of rewards
for each anomalous state, as shown in (2).

rs = [rt+1 | st ] (2)

To optimize the controller rewards, we computed
the total amount of rewards, as shown in (3), received
by the controller at time t while performing action
ai=2 to transits from state status (sSR) to (sR).

R(t) = r(t +1)+ r(t +2)+ · · ·+ r(T ) (3)

For the recovery failed sRF state status, the con-
troller applies recovery actions until the state is re-
covered and the controller transits to (sR). However,
if the sRF can’t be recovered by the applicable actions,
the controller enters into a loop as it isn’t able to tran-
sit to (sR), and a self-transitions happens to the (sR)
with zero rewards. Thus, to avoid infinity, we defined
a discount factor DF to give immediate or future re-
wards according to the status of the sRF state so that
the controller could exit the loop of the anomalous
state and flag the state as not-recovered. The optimal
value for DF lies between 0.2 to 0.8 so that the sum
of the rewards received at time steps u over the future
is maximized according to a discount rate DF that de-
termines the value of future rewards as shown in (4).

R(t) =
T−t−1

∑
u=0

DFurt+u+1 (4)

3.5 Appropriate Actions Selection

To select the proper recovery action for each state in
terms of the rewards, we expanded (4) so that the con-
troller follows a recovery policy π to take action a in

state s at time t, as shown in (5), with a probability
distribution over the actions taken for each state as
shown in (6).

Rπ(s,a, t) = [
T−t−1

∑
u=0

DFu rt+u+1 | St = s, At = a] (5)

π(a|s) = ρ[At = a|St = s] (6)

From (5) and (6), the controller selected action a2
as a suitable recovery option for s2 as the greater the
value of Rπ(s,a, t), the better a specific action for a
state is, as shown in Table 1.

Table 1: State Action Value.

Misconfigured Components s2
Actions a1 a2
Values 0.3 0.8

From (5) and (6) given any state s and action a at
t, we computed the probability of each possible pair
of the next state s

′
and reward r as shown in (7). Here,

the controller responds at (t +1) to transit to the next
state and reward. Given that we obtained: (1) the
reward for any state action pair as shown in (8), (2)
the state transition probabilities as shown in (9), and
the expected rewards for the state action, next state as
shown in (10).

p(s
′
,r|s,a) = Pr{Rt+1 = r,St+1 = s

′ |St = s,At = a},
s ∈ St ,a ∈ At

(7)

r(s,a) = ε[Rt+1|St = s,At = a] = ∑
r∈R

r

∑
s′∈S

p(s
′
,r|s,a)

(8)

p(s
′ |s,a) = Pr{St+1 = s

′ |St = s,At = a}=

∑
r∈R

p(s
′
,r|s,a) (9)

r(s,s
′
,a) = ε[Rt+1|St = s,At = a,St+1 = s

′
] =

∑
r∈R

r ∗ p(s
′
,r|s,a)/p(s

′ |s,a) (10)

For each state si, we measured the average recov-
ery time ART , which refers to the mean time µ of
applying a specific action a j under a particular pol-
icy π knowing the monitored metric type MoM{type}
(e.g., type: CPU, Memory, Network) that exists in the
performance function Per and belongs to the state s
as shown in (11). Hence, the performance of the re-
covery process for a specific state is the overall per-
formance for recovering a state s during the whole re-
covery process at time T with state probability matrix
P[si].
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ART =
N

∑
i=1

P[si]
M

∑
j=1

µ
i
t,a j
×π(a j|si),

∀MoM{CPU}∃ Per, ∈ si

(11)

3.6 Find the Optimal Recovery Policy

To find the optimal recovery policy for each state con-
sidering the recovery actions, we considered the pol-
icy that achieves more rewards than other policies and
optimizes the performance over time as follows:

3.6.1 Policy Selection and Evaluation

We assumed that a policy denoted π is defined to be
better than or equal to another policy denoted π

′
if

the value of state s under the policy π denoted υπ(s)
is the expected return for taking action a in state s and
is greater than or equal to π

′
for all states and actions

under that policy. We measured the expected return
from each state under a given policy by obtaining the
transition probabilities and the expected reward r for
applying action a in state s under a given policy π

and a discount factor value DF of the next state s
′

as shown in (12) and (13). Then, we obtained the
maximum return overall policies that can be achieved
at any state s by obtaining the optimal state value as
shown in (14) and the optimal state-action value as
shown in (15). A policy whose states and actions val-
ues are optimal is an optimal policy; we can find that
by taking their maximum as shown in (16). These
steps are repeated for each state-action pair that be-
longs to the state space and action space under a se-
lected policy to evaluate the selection of the optimal
actions in a state to maximize Qoptimal(s,a). The eval-
uation is stopped when the convergence between the
old and the new values is small.

υπ(s) = ∑
a

π(a|s)∑
s′ ,r

p(s
′
,r|s,a)[r+DFυπ(s

′
)]

(12)

Qπ(s,a) = ∑
s′ ,r

p(s
′
,r|s,a)[r+DFυπ(s

′
)] (13)

υoptimal(s) = maxπ υπ(s),∀ s ∈ S (14)

Qoptimal(s,a) = maxπ Qπ(s,a),∀ s ∈ S,∀ a ∈ A (15)

π
optimal(s) = arg maxa Qoptimal(s,a) (16)

3.6.2 Policy Update

We update the optimal policy obtained from the pre-
vious steps to select the action a that maximizes the

future rewards if we take action a in state s and follow
policy π as shown in (17). The policy π

′
must be bet-

ter than the previous policy πoptimal , which indicates
that π

′
improves the chances of getting more future

rewards starting from the state s as shown in (18). The
policy update stops when the policy stops improving,
as shown in (19), or when the optimal policy obtained
from the previous section πoptimal(s) is better than the
π
′
(s), in such a case, we consider πoptimal(s) is the

best policy that maximizes the future rewards for the
state action values.

π
′
(s) = arg maxa Qπ(s,a) (17)

Qπ(s,π
′
(s)) = maxa Qπ(s,a)≥

Qπ(s,πoptimal(s)) = υπ(s)
(18)

Qπ(s,π
′
(s)) = maxa Qπ(s,a) =

Qπ(s,πoptimal(s)) = υπ(s)
(19)

4 EVALUATION

In this section, a brief discussion is stated for the re-
covery evaluation.

4.1 Environment Setup

To evaluate the effectiveness of the proposed con-
troller, our setup consisted of four nodes. Three
main nodes (i.e., VM instances). One node is for
the heart rate monitor; one is for correctly config-
ured containers-based clusters, and one is for the con-
troller. The fourth node is for the misconfiguration
scenarios. For each node, we deployed a set of con-
tainers and services. Each node is equipped with Lin-
uxOS (Ubuntu 18.10 version), one VCPU, and 2GB
VRAM. A K8s cluster running on VMs consisting
of one master node and three worker nodes was de-
ployed using Kubeadm, running K8s version 1.19.2.
We created 30 namespaces, each with 4 microservices
(pods) used for performance measurements, and as-
signed the same number of network policies. The
number of created policies was 900, which were or-
dered, managed, and evaluated using Calico, Open
Policy Agent, and Styra DAS, respectively. We veri-
fied the ability of the controller using a long time-span
dataset (from 1 July 2021 to 1 November 2022). The
model was trained for all-day and daytime-only on the
collected data.
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4.2 Data Collection and System
Monitoring

Agents are installed to collect data about CPU, Mem-
ory, Network, filesystem changes, information flow
(i.e., no. of flows issued to component), patient health
information, device operation status, the device id,
and service status from the system components. The
agents exposed log files of system components to the
storage to be used in the analysis. The agent adds
a data interval function to determine the time inter-
val at which the data collected belongs. The agent
clears outliers from the collected data and monitors
them using selected resource performance monitoring
tools. The agent is configured to connect to the sys-
tem automatically with valid credentials for authen-
tication. Edge devices with similar functionality are
grouped and allocated to a respective group (pool of
heart monitor edge devices).

We used the Datadog tool to obtain a live data
stream for the running components and to capture the
request-response tuples and associated metadata. The
captured data were streamed out of the cluster to be
analyzed further. Prometheus is used to group the col-
lected data (latency, throughput, bandwidth, throttling
congestion, errors, number of requests, and resource
utilization) and to store them in a time series database
using Timescale-DB. We used the Logman command
in Kubernetes and Docker to trace remote procedure
call (RPC) events to forward container logs as event
tracing in the window. We used NNM iSPI Per-
formance to collect data about the information flow
from the system under observation (e.g., device id,
device type, max/mean/min size of the packet sent,
total packets, max/mean/min amount of time of active
flow, duration of flow). The configuration files of the
components are stored in the GitOps version control
to simplify the rollback of configuration change. We
wrote our configuration files using YAML. We man-
aged the configurations, deployments, and dependen-
cies using kubectl and Skaffold.

The datasets were extracted from the monitoring
tools and log files, and they were in a variety of sizes.
The dataset used to train the model was divided into a
70% training set and 30% testing set.

4.3 Misconfiguration Scenarios

We trained our model on one of the identified
misconfiguration types in (Samir and Dagenborg,
2023), which is the unauthenticated connection that
happens because the pod was incorrectly config-
ured with parameters made true for privileged and
hostPID. Moreover, some misconfiguration types

(e.g., CVE-2019-5736, CVE-2022-0811, CVE-2019-
6538, CVE-2021-21284, CVE-2019-9946, and CVE-
2020-10749) that allow privilege escalation was con-
sidered during the performance evaluation. We chose
these types as they allow root access to the host,
and they resulted in a sudden increase at the cluster
level in request latency and the request rate falling,
which caused excessive consumption of resource us-
age (CPU, memory, network). Furthermore, some
of these types of misconfiguration might lead to im-
proper access occurring at the edge level (e.g., CVE-
2019-6538) due to no encryption to secure the com-
munication protocol, and the protocol lacks authenti-
cation for legitimate devices.

4.4 The Recovery Assessment

This section focuses on evaluating the controller by
measuring the reliability of recovery, deployment, and
performance of the controller.

4.4.1 Reliability Evaluation

We used Mean Time to Recovery (MTTR) to eval-
uate the average time the recovery process takes to
recover a component after observing a failure on the
monitored metrics. The failure refers to a component
that cannot meet its expected performance metrics. A
higher MTTR indicates the existence of inefficiencies
within the recovery process or the component itself.
We conducted two scenarios. The first one corre-
sponds to the selection of the optimal policy. The
second relates to selecting a random policy, where
the agent randomly selects one or more actions with
uniform distribution. For each scenario, we aimed
to assess the average time that the recovery process
took to recover a container and an edge device. In
the first scenario, the MTTR for the edge device was
20 s, and the MTTR to recover the container was ap-
proximately 43 s with a grace period of 80 s (default
30 s in Kubernetes) for service image size (110 MB)
with service image number 30. For the second sce-
nario, the MTTR for the edge device was 53 s, and
the MTTR to recover the container was roughly 71
seconds under the same settings. We noticed that the
container and the edge device function normally af-
ter that interval in both scenarios regarding the as-
signed rewards. The result of the first scenario led
to a significantly short recovery time as the average
achieved rewards through the optimal policy were re-
markably higher than the random policy. Moreover,
for some actions, such as reconfiguring and redeploy-
ing action, the more rewards are assigned during the
recovery process, the average time decreases as the
detection time was short, demonstrating a significant
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difference in the controller performance. However, to
recover from failure efficiently, the average recovery
time increased when the failure rate increased.

4.4.2 Deployment and Performance Evaluation

We verified if the captured variation in performance
was due to a misconfiguration within the clusters and
edge devices. Hence, spearman’s rank correlation co-
efficient is used to estimate the correlation between
valid configurations and normal system performance
based on observing monitored metrics as the correct
system behavior (more details, see (Samir and Pahl,
2019)). The decrease in the correlation degree tells
that the observed degradation is not due to misconfig-
uration; otherwise, it refers to its existence. The gen-
eral observation indicated a higher number of notice-
able correlations between the misconfiguration and
the performance indicators. The highest correlation
was 0.82, and the lowest correlation was 0.34.

The configuration settings were checked against
the benchmarks for misconfigurations during the de-
ployment of a component (edge devices, containers,
edge gateway, and clusters). The controller iterated
all the security policies and guidelines (Azure, CIS
Docker, and Kubernetes Benchmarks). In case of a
mismatch between the settings and the requirements
of secure deployment in one or more component(s),
the controller reevaluates the deployment of the im-
pacted component, applies the required reconfigura-
tion, and redeploys the component. Otherwise, the
component settings are secure as per security guide-
lines, and the controller proceeds with the deploy-
ment. The controller checked the misconfiguration,
which needs to be addressed in components as a flag.
Hence, we measured the average redeployment time
for the component after observing anomalous behav-
ior until the successful recovery of a component. The
container redeployment average time was 210 sec-
onds, with no observing overheads associated with
Kubernetes and Docker Swarm. For the edge de-
vice, the average redeployment time required to send
a redeployment request and to receive a response to
the corresponding edge gateway successfully was 185
seconds for the redeployment package with 110 MB.
For the edge gateway, the average redeployment time
was 95 seconds. Over multiple runs, the average rede-
ployment time was reduced by 15∼30%, and the per-
formance improved by 20% depending on the content
and structure of the container’s image and the avail-
able network bandwidth. In this sense, the platform
had a significant impact on the redeployment time.

Moreover, the results show that the average
amount of resource consumption (CPU, memory, net-
work), with no misconfiguration, was approximately

the same, with respective values varying around
30%∼60% (normal behavior). Resource consump-
tion due to misconfiguration increased and was over
98% (overloaded resources), demonstrating the im-
pact of improper configuration on the system re-
sources. The recovered misconfiguration impacted
the saturated resource as the values of the monitored
resources varied around 38.4%∼64.6% (normal be-
havior). The controller performance was almost the
same, with a minor recovery time deviation of around
100 seconds for some failure types, like container
privileged access and wrong pod label. The devia-
tion returned to the correlation with the failure in the
system. Hence, we used the sequence of failures oc-
curring during the recovery process to reflect the type
of failure, which represents the failures that share the
same observations corresponding to a unique fault. If
the container privileged access and wrong pod label
sequence of failures occurred, we focus on the con-
tainer privileged access failure to represent its failure
type and relate it to its fault, which is Privilege Ac-
cess Escalation Management. We choose the initial
failure that occurred as it is representative enough of
the observations to which it belongs, which allows us
to save the recovery time without trying many recov-
ery actions.

In the end, we found that some anomalous behav-
ior in the test set, such as CVE-2022-0811, is not cov-
ered by the training set, which might impact accuracy.
The result stated that the controller performed better
with the increase in the training dataset size. More-
over, we measured the average rate of successfully
recovered components to the total number of mis-
configurations in all anomalous components. After
multiple runs, the average rate was around 97.66%,
which means that the recovery could not handle a
small number of misconfigurations, though the un-
handled anomalous behavior decreased dramatically
with more training data.

5 RELATED WORK

This section explores the recovery of misconfigura-
tion in literature.

Various frameworks for managing workload and
information flow in Edge/Fog environments have
been developed; however, they provided limited
scope for integrating different policies to manage the
configurations of medical edge devices and clusters
dynamically. In particular, existing frameworks have
paid limited attention to the critical role of efficient
recovery management (Mascellino, 2022), (Nie et al.,
2021b), (Nie et al., 2021a), (Tang et al., 2018), (Taft,

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

250



2022), (Fairwinds, 2023), (Pelletier, 2020), (Alspach,
2022), (Dass and Namin, 2021).

In Pranata et al. (2020), the relationship between
the service behavior and the value of some perfor-
mance metrics is identified to discover the miscon-
figuration of cloud services using principal compo-
nent analysis. In Durán and Salaün (2016), a protocol
that reconfigures cloud applications is presented. It
focuses on reconfiguring a set of interconnected com-
ponent failures hosted on remote VMs. In Chiba et al.
(2019), a performance-centric configuration frame-
work for containers on Kubernetes is proposed. The
framework gives unified key-value data, including
configurations and metrics, to analysis plugins by pro-
viding a built engine for processing defined rules in
analysis plugins. In Assuncao and Cunha (2013), a
dynamic reconfigurable workflow framework is pro-
vided to manage failures of unavailable resources and
variations in service quality. The framework recov-
ers from failures in long-running workflow either by
human intervention or a predefined task. In Vaquero
et al. (2012) provides an architecture to control the
behavior of the applications deployed in the cloud by
using a set of defined rules. The rules are defined to
create and configure the VMs. The architecture en-
ables the re-definition of policies at the service and
VM levels to describe their behavior.

Our work is similar to the ideas presented above.
However, the presented controller extended the work
in (Samir and Pahl, 2020), (Samir and Pahl, 2019) by
mapping the observed performance degradation (fail-
ure) on performance metrics to its hidden abnormal
flow of information (fault) and misconfiguration type
(error) to analyze the misconfiguration and its conse-
quence of threat within IoT edge devices and a cluster
of containers running on cluster nodes; more details
see (Samir and Dagenborg, 2023). Based on the map-
ping, the controller that is presented in this paper re-
covers the misconfiguration by selecting the optimal
recovery policy with optimum actions to optimize the
performance and the reliability of the system under
observation.

6 CONCLUSIONS AND FUTURE
WORK

Securing workloads and information flow in
containers-based clusters Kubernetes and edge
medical devices is an important part of overall
system security. This paper presented a self-healing
controller that recovers the misconfiguration of
edge medical devices and container-based cluster
systems using Markov Decision Processes (MDPs).

The proposed controller optimizes the recovery
process by selecting the optimal recovery policy with
optimum actions to maximize the performance of
observed metrics. The results show that the proposed
controller is able to recover the misconfiguration with
more than 97%, which demonstrates the suitability of
the solution.

The aim of this paper was to introduce the recov-
ery part of the controller architecture with its key pro-
cessing steps. In the future, we will expand the recov-
ery mechanism and carry out further experiments to
fully confirm these given conclusions.
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