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Abstract: JavaScript engines are security-critical components of Web browsers. Their different features bring challenges
for practitioners that intend to detect and remove vulnerabilities. As these JavaScript engines are open-source
projects, security insights could be drawn by analyzing the changes performed by developers. This paper aims
to characterize security-related commits of open-source JavaScript engines. We identified and analyzed com-
mits that involve some security aspects; they were selected from the widely used engines: V8, ChakraCore,
JavaScriptCore, and Hermes. We compared the security-related commits with other commits using source
code metrics and assessed how security-related commits modify specific modules of JavaScript engines. Fi-
nally, we classified a subset of commits and related them to potential vulnerabilities. The results showed that
only six out of 44 metrics adopted in the literature are statistically different when comparing security-related
commits to the others, for all engines. We also observed what files and, consequently, the modules, are more
security-related modified. Certain vulnerabilities are more connected to security-related commits, such as
Generic Crash, Type Confusion, Generic Leak, and Out-of-Bounds. The obtained results may help to advance
vulnerability prediction and fuzzing of JavaScript engines, augmenting the security of the Internet.

1 INTRODUCTION

JavaScript engines are responsible for compiling and
executing code of highly-interactive pages and are es-
sential for modern Web browsers. The engines run
locally (in the host computer) JavaScript code served
from any web page on the Internet accessed by end
users; this makes them a security-critical part of the
browser. As a run time compiler with particular assets
in memory, the vulnerabilities in the engines could al-
low hijacking system execution with unique resources
manipulated for exploitation. That occurs because
JavaScript engines have special features associated
with the real-time compiler that may generate distinct
vulnerabilities. The engines have different mecha-
nisms for code compilation, so when the same block
of JavaScript code is executed more than once, it may
trigger in particular cases optimization mechanisms
causing flawed outcomes; this brings specific security
risks (Kang, 2021). The engines may have particular
issues due to memory allocations and improper data
validation that turn them promising targets for secu-
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rity research.
Due to these characteristics, JavaScript engines

have been a trendy topic of many security confer-
ences and projects, e.g., OffensiveCon (Offensive-
Con, 2022) and the CodeAlchemist project (Han
et al., 2019). Although there is an extensive
body of knowledge about software security in gen-
eral, there is still much to be addressed regarding
JavaScript engines security. In addition to indus-
trial initiatives, like National Vulnerability Database
(NVD) (US-Government, 2023), there are initia-
tives from academia to create datasets that extend
CVE (Common Vulnerabilities and Exposures) en-
tries from NVD with commits’ information and
source code metrics (Gkortzis et al., 2018; Kiss and
Hodován, 2019). This kind of datasets has been used
to support empirical studies on software vulnerabil-
ities and their relation to different metrics (Zaman
et al., 2011; Alves et al., 2016; Iannone et al., 2022).
In general, the end goal is to come up with metrics
that are good predictors for pinpointing unknown vul-
nerabilities in the source code (Shin and Williams,
2008; Shin et al., 2011; Jimenez et al., 2019).

Furthermore, most of these studies are built on top
of labeled data from NVD or other repositories; this
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may bias the results in favor of publicly known vul-
nerabilities and overlook other relevant security as-
pects. Another point is that most research on vul-
nerabilities introduces approaches to prevent, detect,
and fix issues which are extracted only based on
the code (Lin et al., 2019; Park et al., 2020; Mao
et al., 2018). But other related software elements can
also be considered, e.g. information extracted from
commits. The commits are mainly patch codes that
change the current application code base for some
specific reasons, including security. Any project’s
commit can be retrieved and analyzed, investigating
its timeline, and code before and after the patch.

All these points serve as motivation for the present
work, which utilizes commit information to charac-
terize security-related code of open-source JavaScript
engines. The main idea is to identify security-related
commits by analyzing the content of commits mes-
sages. Once such commits are identified, the main
characteristics of the modified code are captured
through software metrics. The modified files are also
related to specific modules of JavaScript engines, and
for a subset of these commits, the vulnerability type
present in the code is analyzed and classified. In this
sense, we go beyond the existing labeled data from
NVD and other repositories by selecting any security-
related commits. For this end, we selected commits
from four widely used engines: V81, ChakraCore2,
JavaScriptCore3, and Hermes4.

To identify the security-related commits we used
a Machine Learning (ML) classifier. By using the
PyDriller and Understand tools, we extracted met-
rics values for the security-related commits and oth-
ers non-related ones randomly selected. The re-
sults showed statistical difference for only six out
of 44 metrics adopted in the literature when com-
paring security-related commits to the others, for all
engines. We also observed that the optimizer and
compiler modules of the engines are more security-
related modified. Some types of vulnerabilities such
as Generic Crash, Type Confusion, Generic Leak
and Out-of-Bounds, are the most related to security-
related commits in JavaScript engines.

The main contribution of this work is to char-
acterize security-sensitive code and components of
JavaScript engines by using information extracted
from commits. This represents a novel initiative. The
commit texts are generally technical-driven, and secu-

1https://v8.dev/
2https://blogs.windows.com/msedgedev/2015/12/05/o

pen-source-chakra-core/
3https://developer.apple.com/documentation/javascript

core
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rity context is not always explicit. However, our ap-
proach can interpret the commits messages and iden-
tifies security-related commits, which bring advan-
tages for our analysis: i) the message description
can explain how and why a commit acts on the base
code. The messages introduce technical data and so-
cial aspects of the commit, allowing readers to under-
stand the context where the commit is applied, con-
sequently to understand the security-related scenar-
ios; ii) many vulnerabilities are being discovered and
fixed in JavaScript engines (US-Government, 2023),
but some of them are not usually mentioned in the
commits, then, a simple search for keywords is not
enough; our ML algorithm is capable of finding more
relevant commits. This allows the identification of
other kinds of vulnerabilities beyond NVD; and iii)
the classification permits retrieving an increased num-
ber of security-related commits that could be ana-
lyzed, creating a bigger dataset to guide future re-
search.

In short, the results herein presented may support
future studies in security of JavaScript engines and
contributes to a more secure Internet. This study may
help to advance vulnerability prediction and fuzzing
of JavaScript engines, augmenting the security of
Web browsers. To support future replications, we
make all the scripts and a detailed guide available as
an experimental package5.

The paper is organized as follows. Section 2 con-
tains background on JavaScript engines. Section 3 de-
scribes the experimental setting. Section 4 presents
and discusses the results. Section 5 discuss some
threats to validity, while Section 6 reviews related
work. Finally, Section 7 concludes the paper.

2 BACKGROUND

The JavaScript language is the key feature to develop
rich and dynamic Web applications, complementing
HTML and CSS. To run JavaScript code, modern Web
browsers such as Google Chrome, Microsoft Edge,
Apple Safari, and Mozilla Firefox, have a JavaScript
engine in their core. The engine is a piece of software,
in those cases written in C/C++, where the JavaScript
code is parsed, interpreted, compiled, and optimized.
The first JavaScript engine introduced on a browser
was the SpiderMonkey, developed for Netscape in
1995. Google released V8, almost ten years later, for
Chromium-based browsers in 2014, which is now be-
ing used on Microsoft browsers too. Microsoft re-
leased the ChakraCore in 2014 as well, to support the

5https://github.com/brunogoliveira-ufpr/security-com
mits-characterization

Characterizing Security-Related Commits of JavaScript Engines

87



Microsoft browsers at the time, and then it was re-
placed in 2018 by V8. Numerous engines have been
implemented, some of them target specific contexts.
For instance, Hermes is a lean engine optimized for
fast start-up of React Native apps, and can be easily
integrated to mobile apps.

JavaScript is a multi-paradigm programming lan-
guage and features dynamic typing. The variables’
types are not determined during the compilation;
they can only be resolved through dynamic execu-
tion (Kang, 2021). The JavaScript engines generally
share the same architecture with the following mod-
ules: parser, interpreter, baseline compiler, and op-
timizer, as shown in Figure 1. Initially, the parser
generates the Abstract Syntax Tree (AST) from the
source code. However, in exceptional cases, if this
process takes too long to terminate, the engines might
not parse the code entirely; this step operates differ-
ently in each engine. The compiler takes the outcome
from the interpreter and transforms it into bytecode,
along with profiling data. If necessary, the interpreter
will send the bytecode and the profiling data to the
JIT compiler (optimizer) to speed up the execution.

Figure 1: Basic architecture of a JavaScript engine.

The security issues of browsers are mainly related
to the JavaScript engines, so the vulnerabilities are
usually triggered by exploits written in JavaScript that
are loaded into the browser and then coax the end user
computer to execute arbitrary commands or other ma-
licious activity. The attacker may access the browser’s
context while exploiting it, enjoying the user’s privi-
lege on the system. There are different vulnerabilities
commonly found in JavaScript engines. For example,
Use-After-Free (UAF), where a freed memory can be
reused, corrupting pre-existing memory allocations.
In many cases, allowing the execution of arbitrary re-
mote commands.

The attackers can take advantage of the JavaScript
engines vulnerabilities by providing an HTML file
with a malicious JavaScript. Figure 2 shows a code
snippet that triggers a vulnerability in ChakraCore,
identified by CVE-2019-0609 (SSLAB, 2021).

In this case, line 11 defines a big size object
with enough number of initialized members that will

1 function test() {

2 function a() {

3 function d() {

4 let e = function() {};

5 return e;

6 }

7 function b() {

8 let fun_d = [d];

9 return fun_d;

10 }

11 var obj = [big-size object];

12 return b();

13 }

14 return a();

15 }

16 var f = test();

17 function test1() {

18 var obj = [big-size object];

19 print(f[0]);

20 }

21 test1();

Figure 2: Illustrative Example - CVE-2019-0609.

exceed that initially computed boundaries of the ob-
ject, overwriting then the function’s stack. This
causes a memory corruption that could be leveraged
for remote command execution.

This vulnerability is classified as an Out-Of-
Bounds (OOB) by the CWE classification (CWE-
787). The Common Weakness Enumeration (CWE)
is a standard classification for software vulnerabili-
ties, including description, scores, and technical in-
formation, widely adopted by practitioners and re-
searchers (MITRE, 2023). The vulnerability trig-
gered by the code in Figure 2 is fixed with a commit
that patches two files: EngineInterfaceObject.cpp and
JavascriptLibrary.cpp.

The patch adds new functionality to existing func-
tions; both files are part of the compiler module. By
collecting data from security-related commits sim-
ilar to this one, we can characterize the modified
files using metrics, count and group files more re-
lated to security, evaluate the main modules affected
by security-related commits, and identify the poten-
tial vulnerability types that are more associated with
JavaScript engines.

3 STUDY SETTING

In order to characterize potential vulnerable code of
JavaScript engines by using information extracted
from security-related commits, we formulated the fol-
lowing research questions (RQs):
RQ1: What Are the Differences Between Security-
Related Commits to Other Commits in JavaScript
Engines? This question aims to characterize secu-
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rity related commits in comparison with other com-
mits from a software metric perspective; to do so, we
adopt well-known metrics used in other bug and vul-
nerability prediction studies.
RQ2: Which Are the Files and Modules in
JavaScript Engines Most Modified by Security-
Related Commits? This question identifies the most
modified files by security-related commits; this may
indicate security critical parts of the JavaScript en-
gine. So, this information may guide further security
analysis on the software and flag components where
the security problems may happen in the future. Be-
sides the files, this question also maps, when appli-
cable, to the modules discussed in Section 2 (namely,
parser, interpreter, compiler, and optimizer).
RQ3 What Are the Vulnerability Types Poten-
tially Connected to Security-Related Commits of
JavaScript Engines? This question analyzes a subset
of security-related commits and their potential con-
nection to known vulnerability types.

Responses for these RQs give insights about the
JavaScript engines and their security flaws, helping to
define what is expected to be identified on this type of
software. The findings can also support developers to
quantify in which types of vulnerability the develop-
ment effort for security (commits) has been spent or
still instruct researchers while assessing the engines.

Analyzed Projects: To gain access to all pieces of
information needed to answer the RQs, we first opted
for JavaScript engines that are open source and avail-
able in GitHub. Second, we prioritized engines that
are embedded in popular Web browsers. Finally, we
also considered the domain and balanced different
projects age. The 4 engines selected are briefly de-
scribed as follows.

V8 is a JavaScript engine developed by Google
in the context of the Chromium project. Initially re-
leased in 2008, it powers the current market leader
Google Chrome, as well as other Chromium browsers
like Microsoft Edge, Opera, and Samsung Inter-
net. V8 is a mature project that also has contribu-
tors from different corporations, beside Google. V8
has also been adopted in popular server-side run-
times like Node.js and Deno.js. JavaScriptCore is
the JavaScript engine of Apple’s Web browser frame-
work WebKit. Starting in 2001, it powers several
Apple software products like MacOS and iOS Safari
browser. ChakraCore is a fork of the proprietary en-
gine developed and used in Internet Explorer since
2009. In 2015, it was made open source by Microsoft,
although newer versions of Edge use V8, ChakraCore
is still maintained and remains a community project.
Hermes is a JavaScript engine, developed by Face-

book, optimized for mobile devices; it was released
in 2019. Hermes helps to reduce start-up time and de-
crease memory usage in mobile apps developed using
the cross-platform framework React-Native.

Table 1 gives an overview of the 4 JavaScript en-
gines projects; it shows the number of commits, num-
ber of unique contributors (#Devs), main sponsor and
uses, lines of code (LoC), number of files, number
of classes, and number of methods. Concerning size
in LoC, V8 is the biggest project: 68,036 commits,
more than 1,900 KLoC, and also the project with
more C/C++ files, as well as classes and methods.

Next, it is ChakraCore with more than 1,012
KLoC, 1,377 classes and 33,373 methods. While
JavaScriptCore is the 3rd project in size (around 673
KLoC), it has more commits than ChakraCore and
more developers involved in the project than in V8.

Hermes is the smallest and youngest project, with
517.6 KLoC and 2,602 commits. It also has only con-
tributors from Facebook.

Commit Selection. To answer the posed questions,
we first need to propose a reliable mean to retrieve
security-related commits from the projects. Dif-
ferently from previous work (Chang et al., 2011;
Neuhaus and Zimmermann, 2010), we aim to go be-
yond known CVE vulnerabilities and analyze com-
mits that handle any aspect of security. For this
end, this study intends to include refactoring, minor
bug fixes, and new features that are in some way re-
lated to security. Clearly, major vulnerabilities (with
CVE or not) are also taken into account. As in other
works (Barnett et al., 2016; Wang et al., 2021), we
leverage the message sent along with a Git commit to
identify and classify security-related commits. As the
selected projects are maintained by major software
companies, the contributions are mostly performed by
their employees and follow best practices like accu-
rate descriptions of commits’ messages. To collect
Git information, we adopted PyDriller (Spadini et al.,
2018).

To scale the selection of security-related commits,
we developed a classifier that uses the commit mes-
sage to identify whether it is security-related or not.
First, we manually inspected and classified a dataset
of 200 commit messages: half were related to some
aspect of security, and the other half were not related.

The messages were retrieved from the Git reposi-
tories of the 4 selected JavaScript engines. The mes-
sages were randomly chosen and then analyzed until
finding 25 security-related commits and 25 not related
(others), for each engine.

The classification of commit messages was per-
formed by the first author, who is a software security
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Table 1: Overview of the JavaScript engines projects.

Engine #Commits #Devs Sponsor Main uses LoC #Source Files #Classes #Methods
ChakraCore 12,929 281 Microsoft IE/Edge 1,012,041 1,853 1,377 33,373

Hermes 2,602 219 Facebook React Native 517,614 1,399 2,475 22,289
JavaScriptCore 18,747 1,597 Apple Safari, iOS 673,558 2,788 841 15,916

V8 68,036 911 Google Chrome, Node.js 1,900,848 3,033 4,398 84,229

professional with more than 12 years of experience.
The classification was also reviewed by the other au-
thors with experience on mining software reposito-
ries; inconsistencies were discussed in sync meetings.

During the manual analysis of the messages, we
selected keywords that may characterize a security as-
pect of commit. To do so, we extracted characteristics
using Bag-of-Words (Zhang et al., 2010) to break the
messages into a vector for further analysis. From the
vectored messages, stop-words were removed and the
most utilized words related to security were identi-
fied. We also extended this set of keywords with ex-
pert knowledge of the researchers involved.

The following keywords and their frequency were
used as features to train the classifier: access, auth,
bypass, confus, CVE, CWE, danger, denial of service,
disclosure, ensure, exception, exploit, failure, harm-
ful, incorrect, issue, leak, malicious, null, overflow,
pass, password, prevent, safe, secur, sensitive, state,
unauth, uninitialized, user-after-free, vulnerab.

We opted to train a classifier because a simple key-
word search would not detect all relevant commits.
We used the Python library scikit-learn (Pedregosa
et al., 2011) to train a classifier using the keywords
and the dataset of 200 commit messages labeled man-
ually. After the training with six different algorithms
and using 10-fold cross-validation, we selected the
best classifier, which adopts Perceptron and achieved
84.5% accuracy and 84.2% F1-score.

As we are interested in the source code of the en-
gines, we filtered out modifications to files that are
not C/C++ code (namely, file extensions .c, .cc, .cpp
and .h). We also removed commits without changes
to source code. The classifier indicated 4,482 com-
mits as security-related from a total of 102,314 com-
mits analyzed. These security-related commits are
distributed as shown in Table 2. We then randomly se-
lected the same number of commits, per engine, clas-
sified as other (no security-related) for our analysis.

Table 2: Classification Results.

Engine #Security-related commits
V8 3,407

ChakraCore 649
JavaScriptCore 233

Hermes 193

Metrics Collection. To answer RQ1, we adopted
code metrics to characterize and distinguish the
security-related commits from other commits. The
first metrics are related to modified lines and meth-
ods; we used PyDriller (Spadini et al., 2018) to col-
lect the following metrics: i) lines added; ii) lines re-
moved; iii) lines added + removed; iv) diff methods:
the difference of added and removed methods; and v)
changed methods. We also used the Understand tool,
adopted in other security-related papers (Zhou et al.,
2021; Medeiros et al., 2017; Shin et al., 2011). We
collected a total of 39 metrics. More details about
these metrics are found in our experimental package.

Thus for each commit, we selected the metrics’
values for each file changed, and then mean val-
ues were calculated. To make comparisons, we first
performed the Mann-Whitney U, a non-parametric
test, to identify the statistical difference between the
security-related and other commits, for each metric.
For a significance level of 0.05 (p-value < 0.05),
the result indicates that there is a statistical differ-
ence between them. To measure the effect size, we
used Cliff’s ∆, also recommended for non-parametric
tests (Kitchenham et al., 2017). Using reference val-
ues from the literature (Kitchenham et al., 2017), val-
ues under 0.112 indicate a negligible effect; values be-
tween 0.112 and 0.276, a small effect; between 0.276
and 0.428 medium; and values greater than 0.428 in-
dicate a large effect size.

For RQ2 we calculated how many modifications
(frequency) were made in source code files. We also
mapped each of the Top-10 most modified files, per
engine, to the main modules composing a JavaScript
engine (see Section 2). This mapping was done by
first checking the documentation in the file’s header,
and the folder structure of the file. We also observed
relevant comments in other parts of the file. Finally,
we inspected the source code to determine which
module the file was linked to. We skipped files that
are related to different modules like tests.

Concerning RQ3, we randomly selected 5% of
the security-related commits and manually classified
355 security-related commits, 65 from ChakraCore,
50 from JavaScriptCore, 190 from V8 and 50 from
Hermes, with respect to potential vulnerability types.
As 5% of the commits for JavaScriptCore and Hermes
correspond to few commits, we decided to select a
larger sample with 50 commits for them.
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The types of vulnerabilities were defined while
inspecting the commits, using as basis the CWE.
For the classification, we first observed the com-
mit title and messages, searching for keywords that
could indicate the type of vulnerability. Then, we
checked external references as CVE IDs if avail-
able, which can also disclose technical information
about the vulnerability. Finally, we tried to under-
stand the issue treated in the messages for the clas-
sification. We skipped commits with lacking infor-
mation. CWE has multiple classifications for types of
vulnerabilities; for example, Out-Of-Bounds (OOB)
can be described as OOB Read (CWE-125) and OOB
Write (CWE-787), so we grouped these related cate-
gories. We also grouped vulnerabilities with parent-
child relations, such as Generic Crash (CWE-248),
Generic Leak (CWE-200), Generic Overflow (CWE-
119), and Arbitrary Privileges (CWE-269). We clas-
sified the security-related commits using the entire
CWE database and ultimately, 9 types of vulnerability
were observed: Arbitrary Privileges, Generic Crash,
Generic Leak, Generic Overflow, Out-Of-Bounds
(OOB), Race Condition, Use-After-Free (UAF), Type
Confusion, and Null Pointer Dereference.

4 ANALYSIS OF RESULTS

In this section we analyze the information collected
from the selected commits to answer the RQs.

4.1 RQ1: Security-Related Commits
and Others

Table 3 shows for each metric and engine, whether
security-related commits are different from other
commits (p-value), and how meaningful is the differ-
ence via effect size (Cliff’s ∆). For a given metric in
a row, symbol + represents a statistically significant
difference (p-value < 0.05), otherwise symbol − is
used (p-value ≥ 0.05). Observe that no metric has a
large or medium effect size in any engine, so all effect
size values are below 0.276. A small effect is repre-
sented with the symbol ∗ and no mark is used for a
negligible effect size.

In ChakraCore, security-related commits are dis-
tinguished from other commits: there is statistical dif-
ference for 42 metrics (out of 44). For 38 metrics
the effect size is small, and for only 6 is negligi-
ble. JavaScriptCore and Hermes show intermediate
results. In JavaScriptCore there is statistical differ-
ence for 30 metrics; for 29 the effect size is small, and
for 15 is negligible; while for Hermes there is statisti-
cal difference for 23 metrics, for 20 metrics the effect

size is small, and for only one the effect is negligible.
In V8, the differences are subtle: only for 16 out of 44
metrics, there is a significant difference, and all effect
sizes are negligible.

There is statistical difference for only six metrics
(around 14% of them) when all the four projects are
considered. These metrics are highlighted in red in
Table 3 and characterize some complexity aspects of
the code. For other 22 metrics there is statistical dif-
ference in 3 projects: most of these metrics are related
to counting lines or statements.

There is difference for five metrics in only one
project, and for one metric (lines added+removed,
highlighted in blue) there is no statistical difference
in any project.

For 17 metrics the effect size is small for 3 projects
(7 metrics are complexity-related and 10 count code
structures). For other five metrics (4 from PyDriller)
the effect size is negligible in all projects. The top 5
highest effect size values are for metrics in Chakra-
Core: 0.245 for MaxNesting, 0.243 for SumCy-
clomaticModified, 0.242 for SumCyclomaticStrict,
0.239 for SumEssential, and 0.236 SumCyclomatic.
On the other hand, the lowest values of effect size are
for V8 and Hermes.

Figure 3 shows boxplots for (a) MaxEssential and
(b) lines added+removed. MaxEssential is one of the
6 metrics that are statically different for all projects.
Notice that security-related commits and others are
pretty similar for V8 and Hermes (negligible effect),
while there are more differences in JavaScriptCore
and ChakraCore (higher values of effect size). For
lines added+removed, we observe more similarity
(no statistically difference and negligible effect size).

Response to RQ1: When the 4 JavaScript en-
gines are taken into account, there is statisti-
cal difference between security-related commits
and others commits in the values of only six
metrics: AvgCyclomaticModified, AvgEssential,
MaxEssential, SumCyclomatic, SumCyclomat-
icModified, and SumCyclomaticStrict. The ef-
fect sizes are most of the times small. No
major pattern was observed for all engines;
for JavaScriptCore and ChakraCore engines, the
metrics seem to distinguish security-related com-
mits, while for V8 does not.

Implications: Complexity metrics demonstrated a
reasonable difference, even with a small effect size.
The difference indicates a relationship between com-
plexity metrics and software security. Similar re-
sults were also found in the literature with another
JavaScript engine, and complexity metrics seem to
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Table 3: Metrics Statistics and Effect Size (RQ1).

Metric ChakraCore Hermes JavaScriptCore V8
p-value Cliff’s ∆ p-value Cliff’s ∆ p-value Cliff’s ∆ p-value Cliff’s ∆

lines added 0.0397022 (+) 0.070 0.4109654 (−) 0.013 0.5696935 (−) 0.030 0.0029788 (+) 0.042
lines removed 0.0283019 (+) 0.074 0.4853447 (−) 0.002 0.6036602 (−) 0.027 0.5924578 (−) 0.008
lines added+removed 0.5288805 (−) 0.021 0.4382905 (−) 0.009 0.5302839 (−) 0.033 0.0693821 (−) 0.026
diff methods 0.4209284 (−) 0.022 0.0654076 (−) 0.078 0.3749170 (−) 0.042 0.0265228 (+) 0.029
changed methods 0.0000325 (+) 0.137 ∗ 0.4611209 (−) 0.006 0.0720051 (−) 0.093 0.0000000 (+) 0.092
AltAvgLineBlank 0.0000007 (+) 0.168 ∗ 0.2571563 (−) 0.033 0.0003598 (+) 0.176 ∗ 0.0010343 (+) 0.047
AltAvgLineCode 0.0000000 (+) 0.197 ∗ 0.0232725 (+) 0.112 ∗ 0.0003807 (+) 0.183 ∗ 0.1188857 (−) 0.023
AltAvgLineComment 0.0000008 (+) 0.182 ∗ 0.4054388 (−) 0.009 0.0190639 (+) 0.109 0.7179380 (−) 0.004
AltCountLineBlank 0.0000002 (+) 0.192 ∗ 0.1087684 (−) 0.068 0.2519423 (−) 0.060 0.0237610 (+) 0.031
AltCountLineComment 0.0001801 (+) 0.127 ∗ 0.1160282 (−) 0.065 0.1767363 (−) 0.070 0.0010902 (+) 0.045
AvgCyclomatic 0.0000001 (+) 0.213 ∗ 0.0357629 (+) 0.101 0.0008727 (+) 0.171 ∗ 0.1178244 (−) 0.023
AvgCyclomaticModified 0.0000001 (+) 0.221 ∗ 0.0228974 (+) 0.112 ∗ 0.0009687 (+) 0.170 ∗ 0.0011943 (+) 0.047
AvgCyclomaticStrict 0.0000000 (+) 0.224 ∗ 0.0585249 (−) 0.087 0.0007105 (+) 0.174 0.2543875 (−) 0.017
AvgEssential 0.0000002 (+) 0.189 ∗ 0.0060227 (+) 0.139 ∗ 0.0012841 (+) 0.163 ∗ 0.0091896 (+) 0.037
AvgLine 0.0000002 (+) 0.195 ∗ 0.0472579 (+) 0.094 0.0002501 (+) 0.189 ∗ 0.1424444 (−) 0.022
AvgLineBlank 0.0000003 (+) 0.174 ∗ 0.2609203 (−) 0.032 0.0003401 (+) 0.176 ∗ 0.0024615 (+) 0.044
AvgLineCode 0.0000001 (+) 0.209 ∗ 0.0174867 (+) 0.119 ∗ 0.0002139 (+) 0.191 ∗ 0.1698936 (−) 0.021
AvgLineComment 0.0000003 (+) 0.190 ∗ 0.3514346 (−) 0.017 0.0061876 (+) 0.124 ∗ 0.6741754 (−) 0.005
CountDeclClass 0.0013618 (+) 0.104 0.3910023 (−) 0.021 0.0665574 (−) 0.090 0.0033923 (+) 0.043
CountLine 0.0000002 (+) 0.193 ∗ 0.0203062 (+) 0.116 ∗ 0.3304187 (−) 0.051 0.0258001 (+) 0.030
CountLineBlank 0.0000000 (+) 0.204 ∗ 0.0865085 (−) 0.075 0.0602482 (−) 0.098 0.9704849 (−) 0.002
CountLineComment 0.0002615 (+) 0.124 ∗ 0.1128739 (−) 0.066 0.2500900 (−) 0.060 0.1964651 (−) 0.017
CountLineInactive 0.0012380 (+) 0.110 0.1949235 (−) 0.056 0.0015683 (+) 0.164 ∗ 0.0046214 (+) 0.039
CountSemicolon 0.0000000 (+) 0.215 ∗ 0.0079426 (+) 0.137 ∗ 0.0000623 (+) 0.207 ∗ 0.1354262 (−) 0.022
CountStmt 0.0000000 (+) 0.220 ∗ 0.0078057 (+) 0.138 ∗ 0.0000582 (+) 0.208 ∗ 0.1404430 (−) 0.022
CountStmtDecl 0.0000000 (+) 0.213 ∗ 0.0061338 (+) 0.143 ∗ 0.0000884 (+) 0.202 ∗ 0.1250137 (−) 0.023
CountStmtEmpty 0.0000000 (+) 0.222 ∗ 0.2410181 (−) 0.036 0.0072206 (+) 0.115 ∗ 0.0000000 (+) 0.094
CountStmtExe 0.0000000 (+) 0.221 ∗ 0.0096755 (+) 0.133 ∗ 0.0000679 (+) 0.205 ∗ 0.0631482 (−) 0.028
MaxCyclomatic 0.0000000 (+) 0.202 ∗ 0.0915054 (−) 0.073 0.0002143 (+) 0.191 ∗ 0.0075584 (+) 0.039
MaxCyclomaticModified 0.0000000 (+) 0.234 ∗ 0.0784226 (−) 0.078 0.0001546 (+) 0.195 ∗ 0.0005768 (+) 0.050
MaxEssential 0.0000001 (+) 0.194 ∗ 0.0294790 (+) 0.106 0.0000961 (+) 0.201 ∗ 0.0210106 (+) 0.034
RatioCommentToCode 0.0003504 (+) 0.122 ∗ 0.0266136 (+) 0.119 ∗ 0.0587783 (−) 0.098 0.0612620 (−) 0.025
SumCyclomatic 0.0000000 (+) 0.236 ∗ 0.0047370 (+) 0.148 ∗ 0.0001487 (+) 0.195 ∗ 0.0419466 (+) 0.030
SumCyclomaticModified 0.0000000 (+) 0.243 ∗ 0.0037159 (+) 0.153 ∗ 0.0001438 (+) 0.196 ∗ 0.0151174 (+) 0.036
AltCountLineCode 0.0000000 (+) 0.200 ∗ 0.0110735 (+) 0.130 ∗ 0.3856598 (−) 0.045 0.0580866 (−) 0.026
CountLineCodeDecl 0.0000019 (+) 0.162 ∗ 0.0022665 (+) 0.162 ∗ 0.0001502 (+) 0.196 ∗ 0.1233321 (−) 0.023
CountDeclFunction 0.0000000 (+) 0.216 ∗ 0.0043810 (+) 0.150 ∗ 0.0003753 (+) 0.183 ∗ 0.1004145 (−) 0.025
CountLinePreprocessor 0.0000716 (+) 0.135 ∗ 0.4422296 (−) 0.014 0.0251957 (+) 0.117 ∗ 0.4300351 (−) 0.010
CountLineCode 0.0000000 (+) 0.194 ∗ 0.0061900 (+) 0.142 ∗ 0.0000690 (+) 0.205 ∗ 0.3708459 (−) 0.014
CountLineCodeExe 0.0000000 (+) 0.185 ∗ 0.0019733 (+) 0.165 ∗ 0.0000473 (+) 0.210 ∗ 0.1910002 (−) 0.020
MaxCyclomaticStrict 0.0000000 (+) 0.209 ∗ 0.1103473 (−) 0.067 0.0001969 (+) 0.192 ∗ 0.0110004 (+) 0.037
SumCyclomaticStrict 0.0000000 (+) 0.242 ∗ 0.0054549 (+) 0.145 ∗ 0.0001287 (+) 0.197 ∗ 0.0404654 (+) 0.030
SumEssential 0.0000000 (+) 0.239 ∗ 0.0019284 (+) 0.165 ∗ 0.0002034 (+) 0.191 ∗ 0.1094146 (−) 0.024
MaxNesting 0.0000000 (+) 0.245 ∗ 0.0075804 (+) 0.138 ∗ 0.0027461 (+) 0.154 ∗ 0.0752023 (−) 0.027

be effective for vulnerability prediction (Shin and
Williams, 2008). Source files with high complex-
ity metrics are common targets for security profes-
sionals to pursue vulnerabilities and significantly im-
prove static and dynamic analysis results (Shin and
Williams, 2011). This fact seems valid for JavaScript
engines, though other metrics are significantly differ-
ent only for some engines. Based on the observed
effect size, it is advisable to complement metrics’ val-
ues (as the ones shown in this RQ) with other features
when analyzing the security of JavaScript engines.

4.2 RQ2: Files and Modules Most
Modified

To answer RQ2 we generated Figure 4. This figure
shows the top 10 files that are most modified in the

security-related commits we analyzed. We also gener-
ated a rank of the top 10 files modified by other com-
mits. Files that belong to both ranks are highlighted
in purple in the same figure.

In ChakraCore (Figure 4a), the most modified file
is GlobOpt.cpp (modified by 100 commits, around
16%). This file implements multiple optimization
techniques, such as Optimize, OptLoops, and For-
wardPass. When looking at top 10 most modified files
in other commits (not security-related), only one file
(Lower.cpp – also related to optimizations) appears in
both types of commits we analyzed. Overall, 860 files
are modified by security-related commits and 1,462
modified by other commits; there is an intersection of
622 files (∼72%) modified by both types of commits,
and 238 (27%) files modified only by the security-
related ones.
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Figure 3: Comparing security-related commits and others.

In Hermes (Figure 4b), the most modified file
is HadesGC.cpp (modified by 21 commits, ∼10%).
This file is related to the garbage collector, cleaning
the memory from unnecessary allocations and speed-
ing up the execution. There are 3 files that are in the
top-10 most modified of both types of commits; an ex-
ample is Runtime.cpp, a file related to the compiler.
Overall, 394 files are modified by security-related
commits and 271 files modified by other commits;
there is an intersection of 177 (∼44%) files modified
by both types of commits, and 217 (∼55%) files mod-
ified only by the security-related ones.

In JavaScriptCore (Figure 4c), the most modified
file is JSGlobalObject.cpp (by 32 commits, around
13%). This file handles the objects created during

(a) ChackraCore.

(b) Hermes.

(c) JavaScriptCore.

(d) V8.
Figure 4: Top-10 most modified files by security commits
and their intersection with other commits.

the execution. There are 2 files that are in the top-
10 most modified of both types of commits: JSOb-
ject.cpp that manipulate JavaScript objects and a JS-
Cell.h, a header file utilized by the compiler. Over-
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all, 372 files are modified by security-related commits
and 1081 files modified by other commits. There is
an intersection of 338 (∼90%) files modified by both
types of commits, and 34 (∼10%) files modified only
by the security-related ones.

In V8 (Figure 4d), the most modified file is ob-
jects.cc (modified by 32 commits (∼9%)); this file is
generic, and it has multiple functions imported from
all modules. Because of that, the same file happens
to be the most modified in other commits too. There
are 7 files that are in the top-10 most modified of both
types of commits: objects.cc, api.cc, objects.h, flag-
definitions.h, objects-inl.h, v8.h and heap.cc. Over-
all, 1,616 files are modified by security-related com-
mits and 3,033 files modified by other commits; there
is an intersection of 1,341 (∼81%) files modified by
both types of commits, and 275 (∼19%) files modi-
fied only by the security-related ones.

Security-related commits modified a set of files
smaller than other commits, except for Hermes.
While around half of the total files are modified by
both types of examined commits, (around 55%, con-
sidering all engines), yet there is a reasonable number
of files (∼ 17%) that are changed only by security-
related commits during this restricted analysis. This
evinces that some files are more impacted by security
aspects, and the results herein presented may be used
to pinpoint them.

Figure 5 shows the modules modified by the top-
10 files in security-related commits, per engine. Ob-
serve that security-related commits interfere mostly in
the optimizer in the ChakraCore, JavaScriptCore, and
Hermes. In V8, the most modified type of module is
the compiler, followed by the optimizer. The second
most modified type is the compiler. The interpreter
comes in third and the parser appears in ChakraCore
and JavaScriptCore.

Response to RQ2: We identified the top 10 most
modified files by security-related commits. Most
of them (∼67%) are not in the top 10 most mod-
ified files of the other commits. While there ex-
ists an intersection of files modified by both types
of commits, ∼33% (13) of Top-10 files, most
of them are changed only by security-related
commits. The most-modified files in Hermes,
ChakraCore, and JavaScriptCore relate directly
to the optimizer, while in V8, the most-modified
file relates to the compiler. Overall, the mod-
ules optimizer and compiler are the main focus of
security-related commits, while the types parser
and interpreter are less changed.

Implications: The information about files modified
by security-related commits is essential for further
research. Most of state-of-the-art fuzzing tools for
JavaScript engines (Han et al., 2019; Lin et al., 2019;
Holler et al., 2012) utilize PoC (Proof-of-Concept)
files from existing vulnerabilities as seeds for input
generation, which means that new security problems
often come from known issues affecting the same file
in different versions (Lee et al., 2020).

Our paper extends the existing results in the liter-
ature (Lee et al., 2020) and includes security-related
commits that go beyond the ones that are CVE-
related. This information could be used to boost the
selection of files and modules targeted in a security
assessment. We also extended the results, pinpoint-
ing which are the most affected modules by security-
related commits. We can utilize this data and ensure
that the top files and modules modified by security-
related commits have enough attention or need a
deeper inspection from a security perspective.

Figure 5: Modules modified by security-related commits.

4.3 RQ3: Vulnerability Types in
Security-Related Commits

To answer RQ3 we refer to Figure 6, which shows,
per engine, the distribution of vulnerability types that
may be related to the security-related commits we an-
alyzed. Some vulnerabilities are more prevalent: in
ChakraCore, the Top-3 types that appear more are:
Out-Of-Bounds, Generic Crash, and Type Confusion;
in Hermes, they are: Generic Leak, Type Confu-
sion, and Generic Crash; in V8, they are: Generic
Crash, Generic Leak, and Type Confusion; and in
JavaScriptCore, they are: Generic Crash, Type Confu-
sion and Out-Of-Bounds. Notice that Generic Crash
and Type Confusion are prevalent in all engines; the
types Generic Leak and Out-Of-Bounds appear in 2
engines.

By looking at the most prevalent types associated
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to security-related commits, we observe that all en-
gines may be subjected mostly to specific vulnerabil-
ities. Generic Crash is concerned to whenever the en-
gine can not handle an exception, it stops the execu-
tion. Type Confusion is a security issue frequently
exploited in JavaScript engines (Sun et al., 2022); it
typically explores the optimization feature by forcing
the engine to identify a variable as a specific type,
and then a function handles the variable as another
type, causing the vulnerability that can be leveraged
to compromise memory data.

Generic Leak and Out-Of-Bounds are also preva-
lent. Generic Leak occurs when any information is
disclosed arbitrarily; for instance, relevant system ad-
dresses could be leaked and then utilized for bypass-
ing memory randomization protection.

Out-Of-Bounds happens when an index refers to
a memory location outside of the buffer’s boundaries;
for example, when there is an array and an arbitrary
index is provided, the program would return or over-
write arbitrary data. Considering all engines, Use-
After-Free (UAF), Arbitrary Privileges, Race Condi-
tion are the types of vulnerabilities that are least fre-
quent. Generic Overflow and Null Pointer Derefer-
ence do not occur a lot too (less than 10%).

Figure 6: Types of vulnerabilities identified.

Response to RQ3: Security-related commits in
JavaScript engines are related to 9 different types
of vulnerability. Generic Crash and Type Con-
fusion are in the Top-3 potential vulnerabilities,
found in all engines. Generic Leak and Out-Of-
Bounds are prevalent in 2 engines. Other vul-
nerabilities occur in few commits, such as Use-
After-Free, Arbitrary Privileges, Race Condition,
Generic Overflow, and Null Pointer Dereference.

Implications: We may draw a vulnerability portrait
about which vulnerabilities often occur in JavaScript
engines and provide insights to define methods

for their identification. For example, the Kop-
Fuzzer (Sun et al., 2022) took advantage of this kind
of specific knowledge to define a technique focused
on Type Confusion. Such a type of security issue is
prevalent in JavaScript engines; the authors reported
the identification of at least 21 bugs in ChakraCore
and JavaScriptCore. Knowing the vulnerability types
associated to security-related commits would help se-
curity professionals to establish procedures for un-
covering vulnerabilities, as well as determine patterns
to detect them with tools like CodeQL.

Along with the findings of RQ2, we can build (i)
a reduced attack surface for researchers where a spe-
cific vulnerability type is targeted (e.g., by defining
specific oracles); and (ii) an opportunity for develop-
ers to review the common development mistakes that
lead to these security bugs in the JavaScript engines.

5 THREATS TO VALIDITY

This study is subjected to some threats we dis-
cuss next. The study did not consider all existing
JavaScript engines, so the results may not general-
ize. To mitigate this, we selected a diverse set of
engines, varying their browsers, main use cases, and
project age. To define the training set, we manually
classified the commit messages into security-related
or not. While the classification was reviewed, some
commits may be misclassified. Some commits may
be wrongly flagged by our classifier, besides its high
values of accuracy and F1-score. To assess the need
for further training iterations, we manually checked
random samples of 100 commits per engine labeled
by the classifier. We found an accuracy of 85%.

As for RQ2 and RQ3, we performed steps that in-
volved the manual classification of modules (associ-
ating files to engine modules) and potential relation
to vulnerability types. The number of analyzed com-
mits for distinguishing the type vulnerability is small,
but they are representative and provided preliminary
results. Besides, several steps of our analyses were
automated by scripts and existing tools. Hence, the
results may be impacted by flaws in the classifica-
tion and implementation. We cross-checked the re-
sults and constantly discussed about them in order to
mitigate those potential threats.

6 RELATED WORK

Several studies investigate the relation between secu-
rity and software metrics (Zaman et al., 2011; Alves
et al., 2016; Iannone et al., 2022). Most of them
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have as focus to understand vulnerabilities, by us-
ing metrics to predict them or to pinpoint where they
are (Shin and Williams, 2008; Shin et al., 2011;
Jimenez et al., 2019). To this end, a first step is to
collect data about security and vulnerabilities. To ob-
tain pieces of information about vulnerabilities, pop-
ular sources like CVEs and NVD are used to search
for known software vulnerabilities. There are also
repositories like Exploit-DB and Metasploit. More-
over, there are some initiatives from academia. For
instance, Gkortzis et al. (Gkortzis et al., 2018) put to-
gether a dataset of 8,694 open source projects with
known vulnerabilities from NVD, along with essen-
tial metrics like the number of files and lines of code.
Kiss and Hodován (Kiss and Hodován, 2019) de-
veloped a tool to acquire security-related commits
from open source web browser projects. They lever-
aged security-labeled data in the GitHub and Bugzilla
repositories to track issues and commits.

Other studies follow similar approaches to obtain
a dataset for analyses. Zaman et al. (Zaman et al.,
2011) analyze bugs related to the security and per-
formance for the Firefox project. The authors ob-
served that security bugs are organized and fixed
much faster, involve more developers and usually im-
pact more files in the project. Alves et al. (Alves
et al., 2016) analyzed 2,875 security patches from 5
open-source projects. They observed differences in
functions’ metrics between the vulnerable functions
and non-vulnerable functions. Iannone et al. (Iannone
et al., 2022) analyzed 3,663 vulnerabilities from 1,096
GitHub projects to determine how developers intro-
duce vulnerabilities to the software.

A popular line of research is to adopt software
metrics and other pieces of information to predict vul-
nerabilities. Shin et al. (Shin and Williams, 2008) in-
vestigate two metrics: the modified cyclomatic com-
plexity and strict cyclomatic complexity for which
determined that vulnerable functions have distinctive
characteristics from non-vulnerable functions. The
authors validated the hypothesis that functions iden-
tified as more complex, with more loops and condi-
tionals, indicated vulnerabilities in the future. In an
extended study (Shin et al., 2011), the authors worked
on how metrics can predict vulnerabilities. The pre-
diction models were validated using the software re-
leases and data sources such as Bugzilla, NVD, and
the Red Hat Security Advisory. They could predict
70.8% of the known vulnerabilities in Firefox and
68.8% in the Linux Kernel.

Existing studies on vulnerability prediction have
been criticized; Jimenez et al. (Jimenez et al., 2019)
argue that they do not provide realistic results since
they take in consideration only the “ideal” world for

prediction. Using three state-of-the-art prediction ap-
proaches, the authors observed a meaningful drop of
predictive effectiveness when employing a more real-
istic scenario. Another explored direction is to avoid
relying on historical data. For instance, Du et al. (Du
et al., 2019) developed a framework named LEOP-
ARD that identifies vulnerabilities in source code.
The tool relies on a combination of heuristics and
code metrics for C/C++ programs, being able to un-
cover multiple memory corruption vulnerabilities.

While the aforementioned works seek to investi-
gate their questions in security-critical applications,
none focuses on JavaScript engines and their char-
acteristics, which is the focus of this paper. More-
over, we went beyond the existing labeled data from
NVD and other repositories by selecting any security-
related commits. The results herein presented may
support future studies in security of JavaScript en-
gines and contribute to this emergent research topic.

7 CONCLUDING REMARKS

This paper characterizes security-related commits of
four widely used JavaScript engines. We analyzed
code metrics, the most modified files and compo-
nents, as well as the potential types of vulnerabili-
ties associated. The obtained results show statisti-
cal difference between the security-related commits
and others for mainly code complexity-related met-
rics. We observed that the modules most-affected by
security-related commits are the optimizer and com-
piler. Nine different vulnerability types were asso-
ciated with the security-related commits; the most
prevalent are Generic Crash, Generic Leak, Type
Confusion, and Out-of-Bounds.

Future replications may be conducted with more
JavaScript engines and analyzing other security as-
pects. The presented results can be leveraged in
future; the direct application would be to employ
pieces of information about security-related commits
for vulnerability prediction in JavaScript engines. The
results can also determine a more focused attack sur-
face for fuzzing tools, increasing the effectiveness and
efficiency in uncovering new vulnerabilities.
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