
JShelter: Give Me My Browser Back

Libor Polčák1 a, Marek Saloň1, Giorgio Maone2, Radek Hranický1 b and Michael McMahon3

1Brno University of Technnology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno, Czech Republic
2Hackademix, via Mario Rapisardi 53, 90144 Palermo, Italy

3Free Software Foundation, 51 Franklin Street Fifth Floor, MA 02110 Boston, U.S.A.
fi

Keywords: Browser Fingerprinting, Web Privacy, Web Security, Webextension APIs, JavaScript.

Abstract: The web is used daily by billions. Even so, users are not protected from many threats by default. This paper
builds on previous web privacy and security research and introduces JShelter, a webextension that fights to
return the browser to users. Moreover, we introduce a library helping with common webextension develop-
ment tasks and fixing loopholes. JShelter focuses on fingerprinting prevention, limitations of rich web APIs,
prevention of attacks connected to timing, and learning information about the device, the browser, the user,
and the surrounding physical environment and location. During the research of sensor APIs, we discovered a
loophole in the sensor timestamps that lets any page observe the device boot time if sensor APIs are enabled
in Chromium-based browsers. JShelter provides a fingerprinting report and other feedback that can be used
by future web privacy research. Thousands of users around the world use the webextension every day.

1 INTRODUCTION

Most people interact with web pages daily. Nowa-
days, many activities are often carried out exclusively
in a web browser, including shopping, searching for
travel information, and performing leisure activities.
For several years, browser vendors have been adding
new JavaScript APIs to solicit the development of rich
web applications (Snyder et al., 2016).

Consequently, web visitors face several threats
like hostile tracking (Matte et al., 2020; ICO, 2019;
APD, 2022), fingerprinting (Laperdrix et al., 2020;
Iqbal et al., 2021), and malware (Bergbom, 2019).

This paper presents JShelter, a web browser ex-
tension (webextension) that allows users to tweak
the browser APIs. Additionally, JShelter detects and
prevents fingerprinting. Moreover, JShelter blocks
attempts to misuse the browser as a proxy to ac-
cess the local network. JShelter educates users by
explaining fingerprinting APIs in a report. JShel-
ter integrates several previous research projects like
Chrome Zero (Michael Schwarz and Gruss, 2018)
and little-lies-based fingerprinting prevention (Niki-
forakis et al., 2015; Pierre Laperdrix, 2017). As cur-
rent webextension APIs lack a reliable way to mod-

a https://orcid.org/0000-0001-9177-3073
b https://orcid.org/0000-0001-6315-8137

ify JavaScript APIs in different contexts like iframes
and web workers, we needed to solve the reliable in-
jection. This paper introduces NoScript Commons
Library (NSCL)1 that other privacy- and security-
related webextensions can reuse to solve common
tasks like the reliable injection of JavaScript code into
the page JavaScript context before the page scripts
can access the context. We implemented JShelter for
Firefox and Chromium-based browsers like Chrome,
Opera, and Edge.

This paper is organised as follows. Section 2
overviews related work and specifies the threat model
that we adopted. Section 3 provides the design deci-
sions. Section 4 evaluates the JShelter features. Sec-
tion 5 concludes this paper.

2 THREATS AND RELATED
WORK

JShelter focuses on threats that affect the mainstream
population. The considered adversary attacks or de-
rives information in a way that works in mainstream
browsers. The attacker focuses on these browsers and
attacks that are light on performance.

1https://noscript.net/commons-library

PolÄ Ãąk, L., SaloÅĹ, M., Maone, G., HranickÃ¡, R. and McMahon, M.
JShelter: Give Me My Browser Back.
DOI: 10.5220/0011965600003555
In Proceedings of the 20th International Conference on Security and Cryptography (SECRYPT 2023), pages 287-294
ISBN: 978-989-758-666-8; ISSN: 2184-7711
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

287

Threat 1 (T1): User Tracking. is a threat to fun-
damental rights identified by both academia (Matte
et al., 2020) and European data protection authorities
(APD, 2022; ICO, 2019). Historically, trackers stored
user identifiers in third-party cookies. As browser
vendors limit third-party cookies, trackers move to al-
ternative ways of identifying users, like browser fin-
gerprinting (Laperdrix et al., 2020).

JShelter protects users from tracking by modify-
ing the results of the APIs used by fingerprinters and
other actors trying to uniquely identify users. To mit-
igate browser fingerprinting, JShelter implements a
technique employed by Brave browser that modifies
API differently on different domains and in differ-
ent sessions. The goal is to create a unique finger-
print for each domain and session. Such fingerprints
cannot be used for cross-domain linking of the same
browser. Additionally, JShelter can detect and block
fingerprinting attempts, as explained in Section 3.1.

Threat 2 (T2): Very Rich Browser APIs. Web
pages can communicate with the web browser and the
underlying operating system through APIs support-
ing video calls, audio and video editing, navigation,
and augmented and virtual reality. Nevertheless, most
web pages do not need these advanced APIs (Sny-
der et al., 2017). Service Worker API allows Man-
in-the-Middle adversaries inject long-lasting track-
ers (Polčák and Jeřábek, 2023).

Webextensions like NoScript Security Suite and
uMatrix Origin allow users to block resources, includ-
ing JavaScript code, based on their domain. Neverthe-
less, malicious code may be only a part of a resource;
the rest of the resource can be necessary for correct
page functionality. In contrast, JShelter blocks spe-
cific calls. Hence, other code can render the page as
expected, and only dangerous APIs are affected.

Threat 3 (T3): Local Network Scanning. A web
page can try to exploit the web browser as a proxy be-
tween the remote website and resources in the local
network. (Bergbom, 2019) demonstrated that execut-
ing arbitrary commands on a local machine is possi-
ble under certain circumstances (in this case, it was
an insecure Jenkins configuration). Subsection 4.3
explains that JShelter mitigates the possibility of ex-
ploiting the browser as a proxy to a local network.

Threat 4 (T4): Microarchitectural Attacks. Pre-
vious research also focused on side-channel attacks
that can reveal what the user has recently done with
the device. For example, content-based page dedu-
plication performed by an operating system or a vir-
tual machine hypervisor can reveal if specific images

or websites are currently opened (Gruss et al., 2015)
on the same device (hardware), possibly on another
virtual machine. JShelter modifies timestamps in all
APIs to make attacks requiring precise time measure-
ments harder.

3 DESIGN DECISIONS

This section covers the design decisions of JShelter
and the countermeasures we decided to implement.

JShelter consists of (1) JavaScript Shield (JSS)
that modifies or disables JavaScript APIs, (2) Finger-
print Detector (FPD) that provides heuristic analysis
of fingerprinting behaviour, and (3) Network Bound-
ary Shield (NBS) that detects attempts to misuse the
browser as a proxy to the local network (T3).

3.1 Fingerprint Detector

Fingerprint Detector (FPD) monitors APIs that are
commonly used by fingerprinters and applies a heuris-
tic approach to detect fingerprinting behaviour in real-
time (see threat T1). When a fingerprinting attempt is
detected, FPD notifies the user. The user can con-
figure JShelter to reactively block subsequent asyn-
chronous HTTP requests initiated by the fingerprint-
ing page and clear the storage facilities where the
page could have stored a (partial) fingerprint. How-
ever, this behaviour may break the page. The goal of
the aggressive mode is to prevent the page from up-
loading the full fingerprint to a server. However, the
fingerprinter can gradually upload detected values,
and a partial fingerprint can leak from the browser.

The heuristics are based on prior studies (Laper-
drix et al., 2020; Englehardt and Narayanan, 2016;
Iqbal et al., 2021) that proved it to be a viable ap-
proach with a very low false-positive rate. FPD counts
calls of JavaScript API endpoints known to be used
for fingerprinting (Iqbal et al., 2021; Fietkau et al.,
2021)2.

FPD is not based on code analyses, so it over-
comes any obfuscation of fingerprinting scripts.

FPD provides a report that summarises FPD find-
ings on the visited web page, see Figure 1. The report
aims to educate users about fingerprinting and clari-
fies why FPD notified the user and optionally blocked
the page. As the report can be generated from pas-
sive observation of a web page (no API blocking), we

2Including fingerprinting tools like FingerprintJS, https:
//github.com/fingerprintjs, Am I Unique, https://amiunique.
org/, and Cover Your Tracks, https://coveryourtracks.eff.
org/. Furthermore, we analysed FPMON (Fietkau et al.,
2021) and DFPM https://github.com/freethenation/DFPM

SECRYPT 2023 - 20th International Conference on Security and Cryptography

288

expect that other researchers will use passive FPD to
study fingerprinting in more detail.

Figure 1: An excerpt from an FPD report on AmIUnique.
org. A user sees what APIs the visited page called.

3.2 JavaScript Shield

JSS focuses on timestamp spoofing (threat T1 and
T4), fingerprint modifications (threat T1) and dis-
abling APIs available to visited pages (threat T2).

JShelter currently modifies 113 APIs,
which include APIs considered by previous
works (Michael Schwarz and Gruss, 2018; Iqbal
et al., 2021; Snyder et al., 2017) and APIs that Apple
declined to implement. For each API, we decide its
relevance on an individual basis. Usually, we do not
modify APIs already explicitly permitted by the user.
However, the analysis might provide an example
where the user still wants to limit the precision of the
API. For example, Geolocation API allows the page
to learn a very precise location while the user might
be interested in services in the city. Hence, JShelter
allows fine-tuning the precision of the Geolocation
(and other APIs).

Additionally, the slightest mismatch between the
results of two APIs can make the user more visi-
ble to fingerprinters (Laperdrix et al., 2020). Hence,
we consider each protection that we decide to imple-
ment in JShelter from the point of fingerprintability,
the threat of leaking information about the browser or
user and other threats presented in Section 2. JShelter
tries to mimic a stationary device with consistent and
plausible readings.

JSS provides a profile that focuses on making the
browser appear differently to distinct fingerprinting
origins by slightly modifying the results of API calls
(little lies) (Nikiforakis et al., 2015; Pierre Laperdrix,
2017). The little lies approach builds on the Far-

bling protection implemented in Brave3 and applies
the same or very similar protection. These little lies
result in different websites calculating different fin-
gerprints. Moreover, a previously visited website cal-
culates a different fingerprint in a new browsing ses-
sion. Consequently, cross-site tracking is more com-
plicated.

Another profile focuses on limiting the informa-
tion provided by the browser by returning fake val-
ues from the protected APIs. Some are blocked com-
pletely, some provide meaningful but rare values, and
others return meaningless values. This level makes
the user fingerprintable because the results of API
calls are generally modified in the same way on all
websites and in each session.

3.2.1 Interaction Between JavaScript Shield and
Fingerprint Detector

Both JSS and FPD aim to prevent fingerprinting. Both
are necessary for JShelter.

The blocking mode of FPD breaks pages. Users
are typically tempted to access the content even when
they know they are being fingerprinted. Conse-
quently, they turn FPD off for such pages. JSS en-
sures that these users are not linkable across origins
and sessions.

The JSS profile focusing on limiting information
access will likely result in the same fingerprint for all
domains; hence, we strongly advise users of this pro-
file to activate FPD.

We expect most users to stick with the default pro-
file creating little lies. Future research should val-
idate the current approach. For example, JShelter
and Brave create indistinguishable changes to can-
vas readings. These are sufficient for a fingerprinter
that creates a hash of the readings. Nevertheless, an
advanced fingerprinter might, for example, read the
colours of specific pixels to determine a presence of
a font (different fonts produce a different pixel-wise-
long output of the same text). As both Brave and
JShelter modify only the least significant bit of each
colour, the fingerprinter can ignore this bit and get the
information on installed fonts. Hence, FPD is benefi-
cial as it offers additional protections.

3.2.2 Sensors

JShelter tries to simulate a stationary device and con-
sequently completely spoofs the readings of Ambient-
Light, AbsoluteOrientation, RelativeOrientation, Ac-
celerometer, LinearAcceleration, Gravity, Gyroscope,

3See https://github.com/brave/brave-browser/issues/
8787 and https://github.com/brave/brave-browser/issues/
11770

JShelter: Give Me My Browser Back

289

and Magnetometer sensors. JShelter also spoofs Ge-
olocation API that can be either completely blocked
or return a modified location derived from the reading
from the original API.

Instead of using the original data, JShelter returns
artificially generated values that look like actual sen-
sor readings. Hence the spoofed readings fluctuate
around a value that is unique per origin and session.

We observed sensor readings from several devices
to learn the fluctuations of stationary devices in dif-
ferent environments. Most of the sensors have small
deviations. However, magnetometer fluctuates heav-
ily. JShelter simulates the fluctuations by adding mul-
tiple sines for each axis. Each sine has a unique am-
plitude, phase shift, and period. The number of sines
per axis is chosen pseudorandomly. JShelter currently
employs 20 to 30 sines for each axis. Nevertheless,
the optimal configuration is subject to future research.
More sines give less predictable results at the cost of
increased computing complexity.

3.2.3 User in Control

The number of modified APIs is high. We expect that
users will encounter pages broken by JShelter or that
do not work as expected. For example, the user might
want to play games with a gamepad device on some
pages or make a call on others.

JSS allows each user to fine-tune the protection for
each origin. Some users reported that they would pre-
fer to avoid digging into the configuration. Those can
disable JSS for the domain with a simple ON/OFF
popup switch. More experienced users can react to
information provided by FPD and turn off JSS fin-
gerprint protection when the visited site does not be-
have as a fingerprinter. The most experienced users
can fine-tune the behaviour per API group. Figure 2
shows an example of a user accessing a page that al-
lows video calls. The user sees the groups with APIs
that have been called by the visited page at the top and
can quickly fix a broken page.

Figure 2: JSS reports back which APIs are being used by
the page.

3.3 Effective Modifications of the
JavaScript Environment

Both JSS and FPD depend on replacing (wrapping)
of the built-in JavaScript APIs and built-in object

behaviour. JShelter employs the same mechanism
proposed by (Michael Schwarz and Gruss, 2018) in
Chrome Zero. However, Chrome Zero was a proof-
of-concept with no modification in the last four years.
(Shusterman et al., 2021) identified several problems
with Chrome Zero:

1. Unprotected prototype chains (issue 1): the origi-
nal implementation is available through the proto-
type chain because Chrome Zero protects a wrong
property.

2. Delayed JavaScript environment initialisation (is-
sue 2): Current webextension APIs lack a reliable
and straightforward way to inject scripts modify-
ing the JavaScript environment before page scripts
start running. JShelter and Chrome Zero allow
configurable protection that may differ per origin,
so they need to load the configuration during each
page load. Hence, a naı̈ve implementation with
asynchronous APIs may allow page scripts to ac-
cess original, unprotected API calls. Note that
once page scripts can access the original API im-
plementation, they can store the unprotected ver-
sion. A webextension cannot reverse the leak.

3. Missed context (issue 3): Chrome Zero does not
apply protection in iframes and worker threads.

In addition, Firefox suffers from a long-standing
unfixed bug (Mozilla Bugzilla, 2016) that prevents
Firefox webextensions from working correctly on
pages whose Content Security Policy (CSP) forbids
inline scripts (issue 4).

JShelter tackles issue 1 in two steps. (1) Develop-
ers analyse the prototype chain and pick the correct
object implementing the property or method to wrap.
(2) The injection code checks at runtime the correct
position to apply the wrapper.

To overcome issues 2–4, we needed to develop a
reliable cross-browser early script injection. As the
same issues affect several privacy and security webex-
tensions, we refactored the code from NoScript Secu-
rity Suite into NSCL and made it publicly available
for reusing and contributing back.

NSCL abstracts common functionality shared
among security and privacy webextensions to min-
imise the development and maintenance burden on
webextension maintainers. For example, an adver-
sary can access an API through the window object, an
iframe, or a worker. A webextension modifying the
API needs to modify each possibility. By modifying
only some ways to access the API, the webextension
not only gives an attacker the possibility to learn orig-
inal values offered by the API but also reveals that
the browser behaves strangely. Additionally, NSCL
provides consistent implementation across multiple

SECRYPT 2023 - 20th International Conference on Security and Cryptography

290

browser engines. Hence, developers do not need to
study browser-dependent implementation details.

NSCL tackles issue 2 by preprocessing URL-
dependent configuration inside a BeforeNavigate
event handler that has access to the destination URL
and JShelter can build a configuration object in ad-
vance and have it ready during the document start
event (before any page script can run). However, due
to race conditions, when the configuration object is
missing in the document start event, NSCL provides
SyncMessage API to retrieve the correct settings be-
fore it is interleaved with concurrent scripts.

To address issue 3, manifest.json (the con-
figuration of the webextension) registers code in-
jection into all the newly created windows, in-
cluding subframes. Unfortunately, window.open(),
contentWindow, and contentDocument.window al-
low access to a new window object immedi-
ately after its creation (synchronously) before any
initialisation (including the injection registered in
manifest.json) occurs. NSCL wraps the affected
calls to recursively wrap the newly created window
just before the window is accessible to page scripts.

A further possibility to access unwrapped APIs
are subframe windows of all kinds, also immedi-
ately available at creation time by indexing their par-
ent window as an unwrappable pseudo array (e.g.
window[0] is a synonym of window.frames[0]).
NSCL automatically patches all not yet patched
window[n] objects every time the DOM structure is
modified, potentially creating new windows. This re-
quires that NSCL wraps all methods and accessors by
which the DOM can be changed in JavaScript.

Regarding web workers, JShelter disables them.
NSCL provides another option: wrapping workers by
injecting the wrappers in their own browser context
via its patchWorkers() API.

Finally, NSCL works around issue 4 by leverag-
ing a Firefox-specific privileged API meant to safely
share functions and objects between page scripts and
WebExtensions4.

4 EVALUATION

This section evaluates the different JShelter parts.

4https://developer.mozilla.org/en-US/docs/Mozilla/
Add-ons/WebExtensions/Sharing objects with page
scripts

4.1 JavaScript Shield

4.1.1 Fingerprinting Inconsistencies

Besides a few bugs that we intend to fix, we are aware
that a fingerprinter may observe some inconsisten-
cies. For example, JShelter modifies each read can-
vas. Should the page scripts probe a single-colour-
filled canvas, JShelter would introduce small changes
in some pixels. Hence, a page script might learn that
protection against canvas fingerprinting is in place.

The little lies modifications (see Section 3.2) have
a performance hit. For all APIs that allow obtaining
hardware-rendered data like the Canvas, WebGL, and
WebAudio APIs, JShelter needs to access all data in
two iterations, first to create a hash that controls the
modifications in the second iteration. Hence, the same
content is deterministically modified the same way,
and different content is modified differently.

AudioBuffer.prototype.getChannelData al-
lows quick access to pulse-code modulation audio
buffer data without data copy. A fingerprinter might
be interested in a couple of samples only. However,
the spoofing mechanism needs to access all data, so
the method is much slower (learning that the time of
getChannelData takes too long is usable for finger-
printing).

We are not aware of any isolated side-effect
that reveals JShelter. For example, page scripts
can detect some similar webextensions by calling
Function.prototype.toString for the modified
APIs. Should toString return the wrapping code
modifying the API rather than the original value, it
might reveal a unique text as other webextensions
modifying the same API call by the same technique
will likely use a different code. Nevertheless, we
are aware and do not hide that users of JShelter are
vulnerable to focused attacks. Our goal is to offer
protections indistinguishable from another privacy-
improving tool for each modified API. Nevertheless,
a focused observer will very likely be always able to
learn that a user is using JShelter if they aggregate
the observable inconsistencies of all APIs produced
by JShelter.

4.1.2 Timing Events

JShelter implements rounding and afterwards, by de-
fault, randomises the timestamps as Chrome Zero
does (Michael Schwarz and Gruss, 2018). In com-
parison, Firefox Fingerprinting Protection and Tor
Browser implement only rounding, which makes the
technique visually easily detectable. Compared with
Chrome Zero, JShelter modifies all APIs that produce

JShelter: Give Me My Browser Back

291

timestamps, including events (see threat T1), geolo-
cation, gamepads, virtual reality and sensors.

4.1.3 Sensor Timestamp Loophole

We discovered a loophole in the Sensor.timestamp
attribute5. The value describes when the last
Sensor.onreading event occurred in millisecond
precision. We observed that the reported time is the
time since the last boot of the device. Exposing such
information is dangerous as it allows fingerprinting
the user easily as devices boot at different times.

JShelter protects the device by provisioning the
time since the browser created the page context
(the same value as returned by performance.now().
Such timestamps uniquely identify the reading with-
out leaking anything about a device. Future work can
determine if such behaviour appears in the wild. If
all devices and browsers incorporate the loophole, we
should provide a random boot time.

4.1.4 Fake Magnetometer Evaluation

Figure 3 shows readings from a real and fake magne-
tometer. The left part (a) shows a stationary device.
The magnetic field is not stable due to small changes
in Earth’s magnetic field and other noise. The middle
part of the figure (b) shows a device that changed its
position several times during the measurement.

Figure 3 (c) shows readings generated by JShelter
fake magnetometer. The values look like actual sen-
sor readings. Nevertheless, the generator uses a series
of constants whose optimal values should be the sub-
ject of future research and improvements.

4.2 Fingerprint Detector Effectivity

The FPD heuristics were designed to keep the num-
ber of false positives as low as possible. As FPD can
optionally block all subsequent requests by a finger-
printing page and JShelter provides complementary
protections, FPD blocks only indisputable fingerprint-
ing attempts. We conducted real-world testing of FPD
and refined its detection heuristics accordingly.

Regarding testing methodology, we manually vis-
ited homepages and login pages of the top 100 web-
sites from the Tranco list6. We randomly replaced in-
accessible websites by websites from the top 200 list.

5Tested with Samsung Galaxy S21 Ultra; An-
droid 11, kernel 5.4.6-215566388-abG99BXXU3AUE1,
Build/RP1A.200720.012.G998BXXU3AUE1, Chrome
94.0.4606.71 and Kiwi (Chromium) 94.0.4606.56 and
Xiaomi Redmi Note 5; Android 9, kernel 4.4.156-perf+,
Build/9 PKQ1.180901.001, Chrome 94.0.4606.71

6https://tranco-list.eu/list/23W9/1000000

Before visiting a website, we wiped browser caches
and storage to remove previously-stored identifiers.
Hence, the visited pages may have deployed finger-
printing scripts more aggressively to identify the user
and reinstall the identifier.

To boost the probability of fingerprinting even
more, we switched off all protection mechanisms of-
fered by the browser. However, we blocked third-
party cookies because our previous experience sug-
gests that the missing possibility to store a perma-
nent identifier tempts trackers to start fingerprinting.
We repeated the visits with both Google Chrome and
Mozilla Firefox.

We used FPMON (Fietkau et al., 2021), DFPM7,
and JShelter to find the ground truth. For each visited
page, we computed its fingerprinting score. FPMON
reports fingerprinting pages with colour. We assigned
yellow colour 1 point and red colour 3 points. DFPM
reports danger warnings. If DFPM reports one danger
warning, we assign 1 point to the page. For a higher
number of danger warnings, we assign 3 points to the
page. Therefore, each page gets a fingerprinting score
from 0 to 6. We consider each page with the score
of 6 or 4 to engage in fingerprinting. Additionally, we
inspected pages with the score lower than 4 flagged by
FPD. We detected five additional fingerprinting pages
after manual inspection.

Table 1 shows the accuracy and the sum of true
positives and true negatives of the tested tools. In to-
tal, we tested 98 home pages and 81 login pages; 2
home pages are actually login pages, we removed du-
plicate login pages, and some sites do not have a lo-
gin page. JShelter is more accurate in fingerprinting
detection when compared with the scenario when FP-
MON and DFPM have low confidence in fingerprint-
ing detection (they score 1 point). JShelter is slightly
worse compared to the scenario in which the other
tools are confident that they detected fingerprinting.
The differently evaluated pages are typically border-
line cases. For example, JShelter does not detect
fingerprinting on Google and Facebook login pages,
while both FPMON and DFPM detect fingerprinting.
As the number of accessed APIs is not high and users
would likely turn FPD off for these pages, we do not
intend to modify FPD heuristics.

4.3 Network Boundary Shield

4.3.1 Localhost Scanning

Some web pages, like ebay.com, scan (some users) for
open local TCP ports to detect bots with open remote
desktop access or possibly to create a fingerprint. The

7https://github.com/freethenation/DFPM

SECRYPT 2023 - 20th International Conference on Security and Cryptography

292

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 600

t [s]

m
ag

ne
tic

 fi
el

d
[u

T
]

 0 100 200 300 400 500

(a) Stationary device

-60

-40

-20

 0

 20

 40

 60

 80

 0 100 200 300 400 500 600 600

 t [s]

m
ag

ne
tic

 fi
el

d
[u

T
]

-60

-40

-20

 0

 20

 40

 60

 80

 0 100 200 300 400 500

(b) Moving device

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 600

 t [s]

m
ag

ne
tic

 fi
el

d
[u

T
]

 0 100 200 300 400 500

(c) Fake readings

x

y

z

M

Figure 3: Magnetometer readings.

Table 1: Fingerprint detection accuracy of tested webexten-
sions based on the manual crawl of the top 100 web pages
according to the Tranco list.

Home pages Login pages
JShelter Detected 96 (98.0 %) 77 (95.1 %)
FPMON red 79 (80.6 %) 66 (81.5 %)

red/yellow 96 (98.0 %) 80 (98.8 %)
DFPM 2+ dangers 70 (71.4 %) 66 (81.5 %)

1+ dangers 98 (100 %) 81 (100 %)

web page instructs the browser to connect to the local-
host (127.0.0.1) and monitors the errors to detect if
the port is opened or closed.

When we developed NBS we did not anticipate
localhost port scanning. When we first encountered
the eBay port scanning case, we knew that this be-
haviour should trigger NBS as the requests cross net-
work boundaries. We accessed ebay.com, detected the
scanning by Web Developer Tools and checked that
NBS is indeed triggered and works as expected.

4.3.2 Comparison with Private Network Access

Recently, Google announced Private Network Ac-
cess (PNA)8 that should become W3C standard9.
PNA solves the same problem as NBS, but the so-
lution is different. PNA-compatible browsers send
HTTP Requests to the local networks with the
additional header: Access-Control-Request-Private-
Network: true.

The local resource can allow such access with
HTTP reply header Access-Control-Allow-Private-
Network: true. If it does not, the browser blocks the
access.

NBS works differently. Firefox version leverages
DNS API to learn that a public web page tries to ac-
cess the local network and blocks the request before
the browser sends any data. Chromium-based brow-
sers do not support DNS API, so the first request goes
through. NBS learns the IP address during the re-

8https://developer.chrome.com/blog/
private-network-access-prefilght/

9https://wicg.github.io/private-network-access/

ply processing. NBS blocks any future request be-
fore it is made once it learns the IP address during
the reply processing. Hence, NBS limits the network
bandwidth and prevents any state modification on a
local node that may be caused by a request going
through, except for the learning phase in Chromium-
based browsers. Both approaches solve threat T3; it
is up to the user what solution they prefer.

Note that Google plans to fully deploy Chrome
PNA in version 113, so Chrome users without JShel-
ter or another webextension with similar capabilities
are not protected at the time of the writing of this pa-
per10.

5 CONCLUSION

Previous research established that browser secu-
rity, privacy, and customizability are important top-
ics (Laperdrix et al., 2020; Michael Schwarz and
Gruss, 2018; Bergbom, 2019). The imminent danger
of third-party cookie removal forces trackers to em-
ploy even more privacy-invading techniques. Real-
time bidding leaves users easy targets for various
attacks, including gaining information about other
applications running on the local computer (Gruss
et al., 2015). Moreover, continuous additions of new
JavaScript APIs open new ways for fingerprinting
the browsers and gaining additional knowledge about
the browser or user preferences and physical envi-
ronment. One of the major concerns is a need for
more effective tools that everyday user wants to use.
Current methods to tackle web threats are list-based
blockers that might be evaded with a change of URL,
specialised browsers, or research-only projects that
are quickly abandoned.

In contrast, JShelter is a webextension that can
be installed on major browsers and does not re-
quire the user to change the browser and routines.
We integrate and improve several previous research
projects like Chrome Zero (Michael Schwarz and

10https://chromestatus.com/feature/5737414355058688

JShelter: Give Me My Browser Back

293

Gruss, 2018), little-lies-based fingerprinting preven-
tion (Nikiforakis et al., 2015; Pierre Laperdrix, 2017),
and ideas for limiting APIs brought by Web API Man-
ager (Snyder et al., 2017). JShelter comes with a
heuristic-based fingerprint detector and prevents web
pages from misusing the browser as a proxy to access
the local network and computer. We solved issues
with reliable environment modifications that stem
from insufficient webextension APIs that open many
loopholes that previous research exploited (Shuster-
man et al., 2021). In addition to JShelter, we in-
troduced NSCL. Both NoScript Security Suite and
JShelter include NSCL. Moreover, NSCL is available
for other privacy- and security-related webextensions.

In cooperation with Free Software Foundation, we
aim for long-term JShelter development; thus, users’
privacy and security should be improved in the future.

ACKNOWLEDGEMENTS

This project was funded through the NGI0 PET Fund,
a fund established by NLnet with financial support
from the European Commission’s Next Generation
Internet programme, under the aegis of DG Commu-
nications Networks, Content and Technology under
grant agreement No 825310 as JavaScript Restric-
tor and JShelter projects. This work was supported
in part by the Brno University of Technology grant
Smart information technology for a resilient society
(FIT-S-23-8209).

REFERENCES

APD (2022). Decision on the merits 21/2022 of 2
February 2022. APD — Autorité de protec-
tion des données. Available online at https:
//www.autoriteprotectiondonnees.be/publications/
decision-quant-au-fond-n-21-2022-english.pdf,
unofficial translation from Dutch.

Bergbom, J. (2019). Attacking the internal network
from the public internet using a browser as a
proxy. Forcepoint research report available at https:
//www.forcepoint.com/sites/default/files/resources/
files/report-attacking-internal-network-en 0.pdf.

Englehardt, S. and Narayanan, A. (2016). Online tracking:
A 1-million-site measurement and analysis. In CCS
’16, pages 1388–1401.

Fietkau, J., Thimmaraju, K., Kybranz, F., Neef, S., and
Seifert, J.-P. (2021). The elephant in the background:
A quantitative approach to empower users against web
browser fingerprinting. In WPES ’21, page 167–180.

Gruss, D., Bidner, D., and Mangard, S. (2015). Prac-
tical memory deduplication attacks in sandboxed

Javascript. In Computer Security – ESORICS 2015,
pages 108–122. Springer International Publishing.

ICO (2019). Update report into adtech and real
time bidding. ICO — Information Commis-
sioner’s Office. Available online at https://ico.
org.uk/media/about-the-ico/documents/2615156/
adtech-real-time-bidding-report-201906.pdf.

Iqbal, U., Englehardt, S., and Shafiq, Z. (2021). Finger-
printing the fingerprinters: Learning to detect browser
fingerprinting behaviors. In IEEE Symposium on Se-
curity & Privacy, pages 1143–1161.

Laperdrix, P., Bielova, N., Baudry, B., and Avoine, G.
(2020). Browser fingerprinting: A survey. volume 14.
ACM.

Matte, C., Bielova, N., and Santos, C. (2020). Do cookie
banners respect my choice? Measuring legal compli-
ance of banners from IAB Europe’s Transparency and
Consent Framework. In 2020 IEEE Symposium on Se-
curity and Privacy (SP), pages 791–809.

Michael Schwarz, M. L. and Gruss, D. (2018). Javascript
zero: Real javascript and zero side-channel attacks. In
NDSSS 2018.

Mozilla Bugzilla (2016). [meta] Page CSP should not apply
to content inserted by content scripts (v2 issue). Avail-
able online at https://bugzilla.mozilla.org/show bug.
cgi?id=1267027.

Nikiforakis, N., Joosen, W., and Livshits, B. (2015). PriVar-
icator: Deceiving fingerprinters with little white lies.
In WWW ’15, pages 820—-830.

Pierre Laperdrix, Benoit Baudry, V. M. (2017). FPRandom:
Randomizing core browser objects to break advanced
device fingerprinting techniques. In 9th International
Symposium on Engineering Secure Software and Sys-
tems, page 17.

Polčák, L. and Jeřábek, K. (2023). Data protection and se-
curity issues with Network Error Logging. In Pro-
ceedings of the 20th International Conference on Se-
curity and Cryptography. SciTePress - Science and
Technology Publications.

Shusterman, A., Agarwal, A., O’Connell, S., Genkin,
D., Oren, Y., and Yarom, Y. (2021). Prime+Probe
1, JavaScript 0: Overcoming browser-based Side-
Channel defenses. In USENIX Security 21, pages
2863–2880.

Snyder, P., Ansari, L., Taylor, C., and Kanich, C. (2016).
Browser feature usage on the modern web. In IMC
’16, pages 97–110.

Snyder, P., Taylor, C., and Kanich, C. (2017). Most web-
sites don’t need to vibrate: A cost-benefit approach to
improving browser security. In CCS ’17, pages 179–
194.

SECRYPT 2023 - 20th International Conference on Security and Cryptography

294

