
A New Approach for Software Quality Assessment Based on Automated
Code Anomalies Detection

Andrea Biaggi, Umberto Azadi and Francesca Arcelli Fontana
Università degli Studi di Milano-Bicocca, Milano, Italy

Keywords: Empirical Study, Software Quality Assessment, Software Evolution, Code Anomalies Detection, Artificial
Immune Systems.

Abstract: Methods and tools to support quality assessment and code anomaly detection are crucial to enable software
evolution and maintenance. In this work, we aim to detect an increase or decrease in code anomalies leveraging
on the concept of microstructures, which are relationships between entities in the code. We introduce a tools
pipeline, called Cadartis, which uses an innovative immune-inspired approach for code anomaly detection,
tailored to the organization’s needs. This approach has been evaluated on 3882 versions of fifteen open-source
projects belonging to three different organizations and the results confirm that the approach can be applied to
recognize a decrease or increase of code anomalies (anomalous status). The tools pipeline has been designed
to automatically learn patterns of microstructures from previous versions of existing systems belonging to
the same organization, to build a personalized quality profiler based on its codebase. This work represents a
first step towards new perspectives in the field of software quality assessment and it could be integrated into
continuous integration pipelines to profile software quality during the development process.

1 INTRODUCTION

Code anomalies is a term that refers to several cat-
egories of code sub-optimalities that include code
smells, bugs, antipatterns and several other software
issues (Fowler, 2018). A system containing such
anomalies should be maintained to avoid progressive
software degradation. Therefore, methods and tools
to support quality assessment and code anomaly de-
tection are crucial during both software development
and software evolution and maintenance. In fact, dur-
ing the development of large software systems where
several developers are involved, it is useful to have
tools that report a kind of software quality profile so
that the team leader can monitor and correct some as-
pects (such as code anomalies) during the develop-
ment process.

This work aims to identify a decrease or increase
in software quality through an approach based on
code anomaly detection. We decided to accomplish
this objective by using a rule-based approach that ex-
ploits a particular kind of structure, called the mi-
crostructure (MS). These MSs are defined as facts or
relationships between two entities in the code (e.g.
classes, attributes, methods) (Arcelli Fontana et al.,
2013). Examples of microstructures are Data Man-

ager (Gil and Maman, 2005), which is a MS that rep-
resents a class where all methods are either getters or
setters, and Empty Method, a MS that occurs when a
method does not contain any implementation except
for returning a primitive type. The advantage of using
these metrics instead of the classical ones (LOC, CC,
...) (Fenton and Bieman, 2014) is that the microstruc-
tures incorporate information about architectural and
design decisions, and they can be directly influenced
by changes that concern these aspects. Therefore,
our goal is to extract rules, expressed in terms of mi-
crostructures, that could be able to predict an increase
or a decrease in code anomalies. These rules can be
seen as patterns of microstructures, which we will call
in this paper Microstructure Patterns (MSP). Further-
more, we require human-readable rules to allow de-
velopers to understand why our tools pipeline could
suggest an increase or decrease of code anomalies in
order to understand which problems caused a given
rule to be triggered.

The problem defined in this way can be tackled as
a problem of anomaly detection. To understand this
conceptual jump we can use an example that inten-
tionally exasperates this concept: if we analyze the
history of a system and we observe that usually 100
code anomalies are identified, and then in the next re-

546
Biaggi, A., Azadi, U. and Fontana, F.
A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection.
DOI: 10.5220/0011965200003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 546-553
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



lease of the system we identify 1000 code anomalies,
we could state that the status of the system is anoma-
lous. The objective is to identify some rules that can
describe why such anomalous status has occurred and
allow developers to take the right decisions. These
rules represent the kind of anomaly that we aim to
detect: an anomalous status represented through an
increase of code anomalies in the monitored system.
In the context of data mining, a paradigm used to de-
scribe problems of anomaly detection is through the
artificial immune systems (AIS) (Dasgupta, 2012),
which represent a class of rule-based machine learn-
ing systems, inspired by the principles and processes
of the human immune system, which is particularly
suited to obtain human-readable results.

To perform the detection of such anomalies, this
work introduces a tools pipeline called Cadartis,
(Code Anomalies Detection using ARTificial Immune
Systems). The pipeline analyzes the evolution in
terms of versions of Java software systems to infer
rules that measure the quality of the system, which are
then used to assess newer versions. The main benefit
of this approach is that the rules are automatically in-
ferred through machine learning algorithms based on
existing systems’ history belonging to the same orga-
nization, thus defining a kind of personalized quality
profiler tailored for the organization’s needs. Further-
more, such a quality profiler can be used both on ex-
isting projects, during the maintenance phase, and on
new projects during development.

The paper is organized through the following sec-
tions: in Section 2 we introduce some related works
on code anomalies detection and works on the ex-
ploitation of AIS, in Section 3 we describe the dif-
ferent components of the Cadartis pipeline, and two
main Research Questions, in Section 4 we describe
the results obtained in the evaluation of Cadartis on 15
projects of different organizations (Apache, Eclipse
and Google). Finally, we report the threats to validity
of our work and the possible future developments.

2 RELATED WORK

In the past few years, artificial immune systems have
been applied in different areas of software engineer-
ing, from software cost estimation (SCE) (Lee and
Kwon, 2009), software testing, to software mainte-
nance and evolution (Parrend et al., 2018). For in-
stance, the work of Gharehchopogh et al. (Gharehcho-
pogh et al., 2014) proposes a hybrid model for SCE
based on the combination of AIS and genetic algo-
rithms. Regarding software testing, there are sev-
eral works involving AIS. For example, the work of

Liaskos and Roper (Liaskos and Roper, 2008) in the
context of search-based test case generation. As for
software maintenance and evolution, the work of Has-
saine et al. (Hassaine et al., 2010) proposes an AIS-
based model for software design smell detection to
compare it with state-of-art approaches such as the
DECOR tool (Moha et al., 2009). According to our
knowledge, we have not found approaches for code
anomaly detection based on artificial immune sys-
tems, as the one described in this paper, used to build
a personalized software quality profile. While accord-
ing to code anomalies detection, the most commonly
detected anomalies are code smells, software bugs
and other issues/code violations such as those com-
puted for example by the tool SonarQube1. Many
approaches have been proposed for code smells de-
tection implemented in a variety of tools which ex-
ploit different techniques, such as: static code analy-
sis, refactoring identification e.g., JDeodorant (Tsan-
talis and Chatzigeorgiou, 2011) or metrics compu-
tation, used by many tools e.g., inFusion, inCode,
PMD, Checkstyle, and JCodeOdor. These approaches
rely on a single metric or a combination of metrics
that correspond to code properties relevant to a given
smell. Other tools exploit techniques based on a dedi-
cated domain-specific language (DSL), that use high-
level abstractions to uncover design anomalies, e.g.,
DECOR (Moha et al., 2009); machine learning clas-
sifiers (Arcelli Fontana et al., 2016; Azadi et al., 2018;
Maiga et al., 2012); techniques based on Bayesian be-
lief networks (Khomh et al., 2009), on the analysis
of software repositories (Palomba et al., 2013; Rapu
et al., 2004) and on design change propagation prob-
ability (Rao and Reddy, 2007).

The variety of approaches leads to considerable
differences in the anomalies detected (Mantyla, 2005;
Arcelli Fontana et al., 2012), which make it difficult to
analyze anomalies and compare the results. Through
our AIS-based approach, we aim to provide a new
perspective in this area.

3 CADARTIS

Cadartis (Code Anomalies Detection using ARTificial
Immune Systems) is a tools pipeline designed for or-
ganizations interested in building an artificial immune
system (AIS) based on their codebase. As illustrated
in Figure 1, the pipeline consists of two main compo-
nents: the first one, called AIS Automated Learner,
is responsible for analyzing the dataset through a
machine learning process and reporting a rule-based

1https://www.sonarqube.org/

A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection

547



Dataset
AIS 

Automated
Learner

Model
Artificial
Immune 
System

Evaluation

New 
Version

Figure 1: Cadartis pipeline.

human-readable model from which it is possible to
infer the microstructure patterns (MSP), that are the
rules used to identify a possible system degradation
of the system (an increase of anomalies). The sec-
ond one, Artificial Immune System, is the component
that is responsible for analyzing the versions to be as-
sessed to report an evaluation according to the MSP
reported in the model, as explained in Section 3.4.

Specifically, a microstructure pattern represents a
recurring scheme of microstructures expressed by a
set of conditions that are associated with an increase
or a decrease of the anomalies.

More formally, a MSP is expressed as: MSi ≤
ki & MS j > k j −→ variation, where MSi and MS j
are instances of microstructures, i.e. one of the fea-
tures of the dataset described in Section 3.2, ki and
k j are the numbers of instances of the corresponding
microstructure and variation is the target variable and
it can assume two possible values: “Increase”, if the
number of code anomalies has increased compared to
the previous version, “Decrease” otherwise (see Sec-
tion 3.3.1).

Thanks to these patterns it is possible 1) to assess
whether there is a relationship between the variation
of the code anomalies and the microstructures and
2) to understand which microstructures contribute the
most in the variation of code anomalies. The compo-
nents are released as standalone Java applications 2 ,
so that they can be used separately, for example in a
continuous integration pipeline.

3.1 Problem Statement

This work aims to answer the following research
questions (RQs):

RQ1: Can the microstructures patterns (MSP) de-
scribe and help to predict an anomalous state of the
system?

RQ2: Which microstructures in the MSP are the
most effective to describe the overall code quality?

The answers to these research questions are use-
ful to understand if the approach proposed in this
study can be applied to the problem issued (RQ1),
thus opening new perspectives in the field of software
quality assessment. Moreover, answering RQ2 allows

2Replication package available here

us to understand whether specific microstructures are
more useful than others to recognize code anomalies.

3.2 Collected Data

In this work, we analyze the evolution, in terms
of versions, of entire software systems of specific
organizations to collect the microstructures and the
number of code anomalies. The dataset is made
of 47 features variables and one target variable3.
The features are the microstructures, which are di-
vided into three categories: Elemental Design Pat-
terns (EDP) (Arcelli Fontana et al., 2013), Micro Pat-
tern (MP) (Gil and Maman, 2005) and Design Pattern
Clues (DPC) (Arcelli Fontana et al., 2013). The target
variable in this step is the number of code anomalies
as reported by the PMD tool, which will be then dis-
cretized to represent the variation from one version to
the next one (see Section 3.3.1). The following sec-
tions explain how all the data are collected.

3.2.1 Microstructure Extraction

Since we were not able to find any tool for the mi-
crostructure extraction suitable for our purposes, a
new one has been developed. It is distributed as a
standalone Java application and takes as input the di-
rectory of the Git repository to be analyzed using
static analysis. Since the microstructures are meant
to be mechanically recognizable (Gil and Maman,
2005), this approach has already been used and tested
in several other applications (Zanoni et al., 2015) (Ar-
celli Fontana et al., 2005) in the context of specific
tools or Eclipse plug-ins. The definitions of the con-
sidered 47 MS can be found in the replication pack-
age.

3.2.2 Code Anomalies Extraction

In this work, the number of code anomalies has been
considered as a target and they are extracted using a
tool called PMD4. This tool is able to recognize sev-
eral anomalies belonging to different categories ac-
cording to the PMD Java rule reference5. We consid-
ered the following categories: Design, Security, Per-
formance, Multithreading, Error Prone. We selected
PMD as a tool for software quality assessment be-
cause it is widely employed (Allier et al., 2012) and it
can be easily used standalone from a command line,
hence particularly suitable for our purposes. As a pre-
liminary analysis, we computed squared Pearson cor-
relation (R2) between the variable and the target and

3Dataset available inside replication package
4https://pmd.github.io/
5https://pmd.github.io/latest/pmd rules java.html

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

548



Parameter
Optimization

Training

Paired
corrected t-test

Feature 
Selection

Best 
classifier

Preprocessing

Dataset (a)

(b)

(c)

Performance 
Evaluation

AIS Automated Learner

Figure 2: Pipeline of the AIS Automated Learner.

measured how well a variable predicts the value of
the target. The R2 value ranges from 0 to 1, where
0 means that a variable is independent from the tar-
get, while 1 means that a variable accurately predicts
the value of the target. The results showed near-zero
values for each variable, so we can conclude that the
features are almost independent by the target.

3.3 AIS Automated Learner

This section describes the component responsible for
analyzing the dataset to infer the microstructure pat-
terns that define the rule set of the artificial immune
system. Thanks to this component it is possible to
personalize the analysis to report feedback based on
the systems’ history for each organization. To do this,
the collected data are the input of the machine learn-
ing process illustrated in Figure 2 and explained in
the following sections. In particular, Section 3.3.1
explains which preprocessing operations are made on
the dataset before the machine learning analysis and
the feature selection criteria to reduce the dimension-
ality of the dataset (Figure 2 (a) and (b)); Section 3.3.2
explains which algorithms are used in this study, how
the parameter optimization is performed and how the
trained models are compared to find the best one (Fig-
ure 2 (b) and (c)).

3.3.1 Preprocessing and Feature Selection

The dataset target variable is discretized to be suit-
able for a classification task. The discretization con-
sists in computing the difference between the number
of anomalies per class in the current version and the
number of anomalies per class in the previous ver-
sion so that the target becomes Increase if the dif-
ference is positive, or Decrease otherwise. More-
over, the features related to the microstructures have a
very high variance, which can cause a decrease in the
performance of the classification task. To overcome
this problem, the dataset has been normalized ac-
cording to the min-max feature scaling method (Han
et al., 2011) that consists of scaling all the values in a
fixed range [a,b]. After that, we reduced the dimen-
sionality of the dataset to remove redundant features
and to consequently improve the performance dur-

ing the classification task and avoid the phenomenon
known as curse of dimensionality (Bellman and Drey-
fus, 2015). The first step was performing a correla-
tion analysis to understand the degree of correlation
among features to have an insight into which thresh-
old could be suitable for a correlation-based feature
selection. In this work, the feature selection is made
by using a correlation interval instead of a single value
to perform the classification, and the optimal thresh-
old in this interval is chosen through an iterative pro-
cess (Figure 2 (b)).

3.3.2 Algorithms Selection and Comparison

The choice of the algorithm has been guided by the
need of having a human-readable model. Thanks to
this kind of models it is possible to infer human-
readable rules, the microstructures patterns, that as-
sociate a combination of microstructures with an out-
come. As a consequence, three well known al-
gorithms have been chosen: J48 (Quinlan, 2014),
RandomForest (Breiman, 2001) and JRip (Cohen,
1995). All of them have been used with and without
the boosting techniques AdaBoostM1 (Freund et al.,
1996), therefore in total six models have been trained
and tested. Furthermore, we used pruning techniques
to reduce the depth of rules/trees, in order to make
them easier to be manually inspected. For each al-
gorithm, a step of parameter optimization has been
performed. The goal of this phase is to find the best
combination of parameters to achieve the most per-
forming classifier for each algorithm at every step of
classification to be computed in the correlation inter-
val. For each possible configuration the classifier is
trained in a 10-fold cross-validation and the best pa-
rameters are chosen according to the minimum error
rate. To evaluate the overall best classifier, the six
classifiers took part in a paired corrected t-test that
produces a ranking of algorithms. To achieve this,
the dataset has been divided into two partitions: the
training partition consists of four out of five projects
belonging to the organization, while the test partition
is the fifth. This separation has been chosen because
it simulates the introduction of a new project in the
organization’s codebase. The test compares the clas-
sifiers to one another and computes whether the dif-
ference in performances among algorithms is statisti-
cally significant, producing a ranking ordered by the
number of victories, that is the number of times that a
classifier outperformed another. The paired corrected
t-test with ranking was performed by using the im-
plementation provided by Weka Experimenter (Hall
et al., 2009).

A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection

549



3.4 Artificial Immune System

The artificial immune system (AIS) is the component
responsible for assessing new versions of systems. As
shown in Figure 1, this component takes as input the
model reported by the learner that has been trained on
the existing codebase of a specific organization and
contains the microstructure patterns.

Model

New Version

Artificial Immune System

Build set of 
Predictors

Micro-Structure
Patterns (MSPs)

Extract Features Instance

Find a MSP that
matches the 

instance

MSP 
matched

Figure 3: AIS Component Workflow.

As illustrated in Figure 3, whenever a new version
of a system of an organization is ready, that can be
either a new version of an existing system used for
the analysis or a version of a new system that the or-
ganization wants to profile during the development,
the system analyzes the new version and extracts the
features, as explained in Section 3.2, thus building an
instance of the dataset. The artificial immune system
finds the MSP that matches the input instance and re-
ports an evaluation that consists of the outcome for
that instance together with the MSPs that have been
matched.

4 RESULTS

Cadartis has been tested by analysing 15 projects,
taken from 3 different organizations: Apache, Eclipse
and Google. All the projects can be found on GitHub6

and they are described in the replication package. In
this section, we provide an overview of the perfor-
mance of the best classifier for the three different
organizations (Section 4.1), to evaluate and discuss
strong and weak points that emerged during the learn-
ing of the patterns. Moreover, we illustrate the mi-
crostructure patterns (MSP) reported for each orga-
nization (Section 4.2). The replication package con-
taining the tools developed and the data collected is
available7.

4.1 Performance Evaluation

We analyze the performance of the three models, il-
lustrating the best-performing algorithm as a result

6https://github.com
7Data available inside replication package

Table 1: Resulting performance metrics of the best classifier
for each organization.

Metric Decrease Increase Best

A
pa

ch
e Precision 84.26 % 55.36 %

J48Recall 78.45 % 64.58 %
F-measure 81.25 % 59.62 %
Accuracy 74.39 % 74.39 %

E
cl

ip
se

Precision 85.00 % 32.26 %

JRipRecall 66.93 % 57.14 %
F-measure 74.89 % 41.24 %
Accuracy 64.81 % 64.81 %

G
oo

gl
e Precision 89.23 % 22.00 %

J48Recall 74.84 % 44.00 %
F-measure 81.40 % 29.33 %
Accuracy 70.56 % 70.56 %

of the paired corrected t-test with ranking discussed
in Section 3.3.2 and the performance achieved by the
classifiers using the most common performance met-
rics: Precision, Recall, F-measure and Accuracy. Ta-
ble 1 reports the resulting performance metrics of the
best classifier for each organization. From the metrics
reported in Table 1 regarding all the organizations,
it is possible to conclude that the classifiers perform
better when predicting instances that belong to the
“Decrease” class, while the performances decrease,
with different degrees, when it comes to predicting
instances of “Increase” class, but the overall perfor-
mance for each organization remains satisfactory.

4.2 Results on MSPs

The outcome of this experimentation is a catalog of 73
MSPs, which is available inside replication package8.
Each MSPs has been manually validated to assess
whether the microstructures involved in a pattern can
affect positively or negatively the software quality ac-
cording to known object-oriented programming prin-
ciples (Savitch, 2000) object-oriented design princi-
ples (Martin, 2002), software quality attributes or bad
practices (Brown et al., 1998).

These principles have been used to understand
whether the presence of a microstructure can lead to
a better or worse software quality and according to
which principles. This process allowed us to find sev-
eral interesting facts (F) on the MS related to the prin-
ciple enforced or violated. By analyzing the definition
of each microstructure9, we observed that some MSs
can be seen as indicators of good or bad programming
practices.

8Microstructure Patterns detected available here
9Microstructure catalog available here

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

550



An example of MSP and the related facts found
through the analysis follows, where Record, Re-
vert Method and Data Manger are the names of
three MS: Record ≥ 49 & RevertMethod ≥ 12 &
DataManager ≥ 76−→ Increase.

F1: Record instances represent classes that de-
clare only public fields without methods. Instances
of this MS represent a bad practice. Hence, many
Record instances could cause an increase in anoma-
lies.

F2: Revert Method instances involve bypassing
the current class’ implementation of a method, instead
using the superclass’ implementation, thus violating
the encapsulation principle.

F3: Data Manager is a MS that represents classes
composed only by private fields, getters and setters.
This is considered bad practice because it corresponds
to the Data Class code smell, hence many instances
of this MS could lead to an increase in anomalies.
These MS provide hints of bad quality, hence a pos-
sible increase of code anomalies. We did the same
analysis on all the other MSs involved in all the 73
MSPs. It is important to note that not all the MSPs
can be explained with the aforementioned criteria, in
fact around 40% of them cannot be explained with any
of the principles taken into consideration. The reason
is that some of the definitions of the MS are neutral,
meaning that it is not possible to assess whether many
or few instances of them could cause an increase or a
decrease in the anomalies.

4.3 Answers to the RQs

Concerning RQ1, we can observe that several MSPs
reflect well-known software quality attributes, object-
oriented principles or bad practices that have been
taken into consideration during the manual evaluation
of the MSPs. This result highlights that the obtained
rules are already useful and relevant and we can argue
that the MSP can already help to predict an anomalous
state since they are already able to detect when the
principles and practice mentioned above are violated.
However, we are also quite confident that several ad-
ditional insights might be extracted by those who de-
veloped and maintained the system since they were
familiar with the code and the development process.
Furthermore, we can argue that these insights might
be the most valuable since our purpose was to create
a customise quality profiler. We are also aware that
the performance of the classifier are quite low how-
ever we still think that should be considered as a good
baseline for the problem issued in this research be-
cause 1) the classification task tackled in this work
was particularly hard since it involved learning pat-

Table 2: Qualitative analysis of the results.

Result Related microstructures

Increase Data Manager, Record, Trait,
Empty Concrete Product Getter,
Controlled Instantiation, Revert
Method

Decrease Concrete Product Returned, Ex-
tend Method, Factory Parameter,
Conglomeration, Controlled Ex-
ception, Sink

Increase if Redirect, Delegate, Delegated
Conglomeration, Abstract Class,
Retrieve

lack or exceed

terns on a set of projects and validating the results on a
different set of projects and 2) we decided to use only
algorithms that output human-readable model, which
often performs worse compared to other algorithms
commonly used, such as Support Vector Machines
and Neural Network. Concerning RQ2, there is no
category of microstructures (EDP, MP, DPC) more
effective than another to describe the code quality.
All the patterns are composed of microstructures be-
longing to different categories. It’s worth mentioning
that specific categories of patterns are more present
in some organizations than others. This information
supports the decision to focus our work on the cus-
tomization of the AIS accomplished through the AIS
Automated Learner, described in Section 3.3. Finally,
we provide some examples of data that we were able
to extract from the manual evaluation of the MSPs
that support the answer to the RQs above, which are
reported in Table 2. An example concerns the MS
Data Manager, Record, Trait and others indicated in
the first row of Table 2, that is MS whose presence
is always associated with a degradation of the system
quality because they all represent violations of differ-
ent object-oriented programming principles.

4.4 Threats to Validity

As for threats to internal validity, the usage of only
the number of one kind of anomaly as a target may
have affected the results, since the usage of other mea-
sures may produce different results. However, PMD
is one of the commonly used commercial tools for
code anomaly detection, so the choice of this tool
remains relevant. When it comes to external valid-
ity, the number of projects considered for each orga-
nization is limited and doesn’t consider every appli-
cation domain. For this reason, the results may be
affected by a lack of generalization within an orga-
nization, because it is possible that some MSPs can

A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection

551



be inferred only in relation to a specific application
domain. In any case, all the projects belong to rel-
evant and significant organizations (Google, Eclipse,
Apache). Finally, we were not able to involve the de-
velopers of the three organizations taken into account
during the evaluation of the MSP, this is a limitation
since one of the aims of this work was to provide a
customized software quality assessment, that repre-
sents a more useful way than a generalized rule set,
but this aspect will be faced in a future extension of
this work. To mitigate this threat, well-known soft-
ware quality principles and best practices have been
taken into consideration during the evaluation of the
MSPs. This decision has led us to discover some pat-
terns that often reflect the well-known software qual-
ity issues that have been derived from those princi-
ples and practices. This result highlights that the ob-
tained rules are already useful and relevant and it is
very likely that a practitioner familiar with how the
code has been developed in each organization might
be able to notice several additional insights by analyz-
ing the MSPs. Moreover, all the data of this study can
be found in the replication package10.

5 CONCLUSIONS

In this work, we introduced a tools pipeline, called
Cadartis, for the detection of an anomalous status
of software systems (an increase of code anomalies)
based on an artificial immune system approach. It
is designed to automatically learn patterns from pre-
vious versions of existing systems belonging to the
same organization, to build a personalized quality
profiler based on its codebase. The patterns, that are
automatically inferred from the data, are composed
of MSs. The results have been evaluated on 3882 ver-
sions of fifteen projects belonging to three different
organizations, thus building three different artificial
immune systems, one for each organization, to assess
1) whether this approach can be applied for software
quality assessment and 2) to understand which rela-
tionships exist between MS and the variation of the
code anomalies. The identified MS patterns can be
useful to developers, team leaders and quality analysts
involved in the software development or maintenance
process in order to understand which MSs affect the
quality and consequently plan a strategy of corrective
maintenance.

Our results confirm that this approach can be ap-
plied in this field and since there is no other study to
compare the results with, the performance obtained

10Replication package available here

represents a good baseline for other studies that aim
to apply the same approach, although they have been
affected by the constraint of choosing only intelligi-
ble learning algorithms. The results showed that there
is no category more useful than another, however, a
given category is more or less representative based on
the organization taken into account.

Considering the results, future developments will
focus on two main aspects. The first one is improving
the performance of the models, either by using other
classes of algorithms or by experimenting with other
approaches (active and semi-supervised learning).

The second regards the reduction of the number
of rules that cannot be associated with the outcome.
To do this, it is necessary to introduce more informa-
tion in the dataset, such as the category of the anoma-
lies explained in Section 3.2.2. Another alternative
could be to change the target using other tools to ex-
tract code anomalies, using quality indices or techni-
cal debt indices (Roveda et al., 2018), for example al-
lowing organizations that already use a quality index
to use it as a target for learning the patterns.

As for the pipeline components’ development, the
introduction of new algorithms requires the develop-
ment of modules that can parse the output of the new
models to build the set of patterns of the AIS. More-
over, since Cadartis can be used during the develop-
ment of a pipeline of continuous integration, another
direction can be the development of plugins, for the
platforms that support it, to ease the distribution of
the Artificial Immune System component.

REFERENCES

Allier, S., Anquetil, N., Hora, A., and Ducasse, S. (2012).
A framework to compare alert ranking algorithms. In
2012 19th Working Conference on Reverse Engineer-
ing, pages 277–285.

Arcelli Fontana, F., Braione, P., and Zanoni, M. (2012).
Automatic detection of bad smells in code: An ex-
perimental assessment. Journal of Object Technology,
11(2):5–1.

Arcelli Fontana, F., Maggioni, S., and Raibulet, C.
(2013). Design patterns: a survey on their micro-
structures. Journal of Software: Evolution and Pro-
cess, 25(1):27–52.

Arcelli Fontana, F., Mäntylä, M. V., Zanoni, M., and
Marino, A. (2016). Comparing and experimenting
machine learning techniques for code smell detection.
Empirical Software Engineering, 21(3):1143–1191.

Arcelli Fontana, F., Masiero, S., and Raibulet, C. (2005).
Elemental design patterns recognition in java. In 13th
IEEE International Workshop on Software Technology
and Engineering Practice (STEP’05), pages 196–205.
IEEE.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

552



Azadi, U., Arcelli Fontana, F., and Zanoni, M. (2018).
Poster: Machine learning based code smell detection
through wekanose. In 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), pages 288–289.
IEEE.

Bellman, R. E. and Dreyfus, S. E. (2015). Applied dy-
namic programming, volume 2050. Princeton univer-
sity press.

Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.

Brown, W. H., Malveau, R. C., McCormick, H. W., and
Mowbray, T. J. (1998). AntiPatterns: refactoring soft-
ware, architectures, and projects in crisis. John Wiley
& Sons, Inc.

Cohen, W. W. (1995). Fast effective rule induction. In Ma-
chine learning proceedings 1995, pages 115–123. El-
sevier.

Dasgupta, D. (2012). Artificial immune systems and their
applications. Springer Science & Business Media.

Fenton, N. and Bieman, J. (2014). Software metrics: a rig-
orous and practical approach. CRC press.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Freund, Y., Schapire, R. E., et al. (1996). Experiments with
a new boosting algorithm. In International Confer-
ence on Machine Learning, volume 96, pages 148–
156. Citeseer.

Gharehchopogh, F. S., Maleki, I., Ghoyunchizad, N., and
Mostafaee, E. (2014). A novel hybrid artificial im-
mune system with genetic algorithm for software cost
estimation. Magnt Research Report, 2(6):506–517.

Gil, J. Y. and Maman, I. (2005). Micro patterns in java code.
ACM SIGPLAN Notices, 40(10):97–116.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explorations,
11(1):10–18.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: con-
cepts and techniques. Elsevier.

Hassaine, S., Khomh, F., Guéhéneuc, Y.-G., and Hamel, S.
(2010). Ids: An immune-inspired approach for the
detection of software design smells. In 2010 Sev-
enth International Conference on the Quality of Infor-
mation and Communications Technology, pages 343–
348. IEEE.

Khomh, F., Vaucher, S., Guéhéneuc, Y.-G., and Sahraoui,
H. (2009). A bayesian approach for the detection
of code and design smells. In 2009 Ninth Interna-
tional Conference on Quality Software, pages 305–
314. IEEE.

Lee, J.-k. and Kwon, K.-T. (2009). Software cost estimation
using svr based on immune algorithm. In 2009 10th
ACIS International Conference on Software Engineer-
ing, Artificial Intelligences, Networking and Paral-
lel/Distributed Computing, pages 462–466. IEEE.

Liaskos, K. and Roper, M. (2008). Hybridizing evolu-
tionary testing with artificial immune systems and lo-
cal search. In 2008 IEEE International Conference

on Software Testing Verification and Validation Work-
shop, pages 211–220. IEEE.

Maiga, A., Ali, N., Bhattacharya, N., Sabane, A., Gue-
heneuc, Y.-G., and Aimeur, E. (2012). Smurf: A svm-
based incremental anti-pattern detection approach. In
2012 19th Working Conference on Reverse Engineer-
ing, pages 466–475. IEEE.

Mantyla, M. V. (2005). An experiment on subjective evolv-
ability evaluation of object-oriented software: ex-
plaining factors and interrater agreement. In 2005 In-
ternational Symposium on Empirical Software Engi-
neering, 2005., pages 10–pp. IEEE.

Martin, R. C. (2002). Agile software development: princi-
ples, patterns, and practices. Prentice Hall.

Moha, N., Gueheneuc, Y.-G., Duchien, L., and Le Meur,
A.-F. (2009). Decor: A method for the specification
and detection of code and design smells. IEEE Trans-
actions on Software Engineering, 36(1):20–36.

Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lu-
cia, A., and Poshyvanyk, D. (2013). Detecting bad
smells in source code using change history informa-
tion. In Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 268–278. IEEE Press.

Parrend, P., Guigou, F., Navarro, J., Deruyver, A., and Col-
let, P. (2018). For a refoundation of artificial im-
mune system research: Ais is a design pattern. In
2018 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 1122–1129. IEEE.

Quinlan, J. R. (2014). C4.5: programs for machine learn-
ing. Elsevier.

Rao, A. A. and Reddy, K. N. (2007). Detecting bad smells
in object oriented design using design change propa-
gation probability matrix.

Rapu, D., Ducasse, S., Gı̂rba, T., and Marinescu, R. (2004).
Using history information to improve design flaws de-
tection. In Eighth European Conference on Software
Maintenance and Reengineering, 2004. CSMR 2004.
Proceedings., pages 223–232. IEEE.

Roveda, R., Arcelli Fontana, F., Pigazzini, I., and Zanoni,
M. (2018). Towards an architectural debt index. In
2018 44th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pages
408–416. IEEE.

Savitch, W. J. (2000). Java: an introduction to computer
science and programming. Prentice Hall PTR.

Tsantalis, N. and Chatzigeorgiou, A. (2011). Identification
of extract method refactoring opportunities for the de-
composition of methods. Journal of Systems and Soft-
ware, 84(10):1757–1782.

Zanoni, M., Arcelli Fontana, F., and Stella, F. (2015). On
applying machine learning techniques for design pat-
tern detection. Journal of Systems and Software,
103:102–117.

A New Approach for Software Quality Assessment Based on Automated Code Anomalies Detection

553


