
A Reflection on the Use of Systemic Thinking in Software Development

Paolo Ciancarini1 a, Mirko Farina2 b, Artem Kruglov2 c, Giancarlo Succi1 d

and Ananga Thapaliya2 e

1University of Bologna, Bologna, Italy
2Innopolis University, Universitetskaya st., 1, Innopolis, Russia

Keywords: Systemic Thinking, Software Engineering, External Factors.

Abstract: The research examines the value and potential usefulness of using systemic thinking, which looks at the inter-
connectedness of things, to comprehend the complexities of software development projects and the technical
and human factors involved. It considers two different aspects of systemic thinking - psychological and so-
ciological - and posits that these can assist in understanding how software teams function and attain their
objectives, as well as the goals of the entities for which they work. Our research aims to provide a novel
contribution to the field by investigating the use of systemic thinking in software development teams and
organizations. We evaluate the reliability and validity of the survey applied to different groups of relevant
participants, relate our findings to existing literature, and identify the most representative factors of systemic
thinking. Despite the popularity of various factors that fall under the umbrella of ’systems thinking’, there is
limited understanding of their effectiveness in improving organizational performance or productivity, particu-
larly when it comes to psychological and sociological systemic factors. The relationship between the use of
systems thinking and organizational performance is often based on anecdotal evidence, rather than the identifi-
cation and application of specific factors. Our work emphasizes the importance of understanding and applying
such factors in order to build a solid foundation for the effective use of system dynamics and systems thinking
tools, which is crucial for software development teams.

1 INTRODUCTION

Systemic thinking is a field of research that takes
a holistic approach to understanding complex struc-
tures, whether physical, virtual, or numerical (Sheri-
dan, 2010). It aims to study systems from a ”sys-
tem of systems” perspective, meaning it looks at how
different systems interact and depend on one another
(Gallón, 2020). This interdisciplinary field draws on
various disciplines including engineering, computer
science, cognitive science, management, philosophy,
psychology, and biology (Lipson, 2007).

In this paper, we use systemic thinking as a way
to understand and improve the design and manage-
ment of complex systems and their life cycles (Ed-
son, 2008; Boardman and Sauser, 2008). We view
teams as systems made up of individuals with differ-

a https://orcid.org/0000-0002-7958-9924
b https://orcid.org/0000-0001-8342-6549
c https://orcid.org/0000-0003-2038-1392
d https://orcid.org/0000-0001-8847-0186
e https://orcid.org/0000-0002-4526-1090

ent skills working together towards a common goal
or plan (Katzenbach and Smith, 2008) and apply this
understanding to software development teams specifi-
cally. We believe that using this approach can provide
valuable insights into how to improve teamwork in
software engineering.

While individual contributions are important in
software development, it is also important to recog-
nize that teams play a crucial role in the IT industry.
Teams can be a key factor in a company’s success and
are often necessary to meet the demands of a com-
petitive industry. In order to understand how software
teams function and the dynamics within them, it is im-
portant to use systemic thinking as a tool for insight
and understanding (Gogichaty et al., 2023; Zahra and
Bogner, 2000). This is why we have chosen to use
systemic thinking as a framework in this paper to ex-
plore the relationships and dynamics within software
development teams.

The study aims to test the hypothesis by address-
ing the following sub-questions:

1. What elements of systemic thinking can be found
in the actions and interactions of individuals,

Ciancarini, P., Farina, M., Kruglov, A., Succi, G. and Thapaliya, A.
A Reflection on the Use of Systemic Thinking in Software Development.
DOI: 10.5220/0011963300003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 521-529
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

521

teams, and organizations involved in software en-
gineering?

2. Are those in the software engineering field aware
of these elements?

Section 2 argues that a wide range of factors,
broadly classified as psychological and sociological,
play a crucial role in software development and goes
on to examine these factors in depth. In an effort
to confirm the hypothesis that systemic thinking can
aid in understanding how software teams work and
achieve their goals, Section 3 explains the research
methodology and experimental design used in the
study. Section 4 presents a critical analysis of the
qualitative data collected and Section 5 summarizes
the findings and their significance to the software en-
gineering field. Finally, Section 6 summarizes the
study’s key takeaways and suggests potential areas for
future research.

2 SYSTEMIC THINKING
FACTORS IN SOFTWARE
DEVELOPMENT

The success or failure of software teams is not solely
dependent on the technology being used, the skills of
team members, or the internal dynamics of a specific
project. External factors, such as organizational, psy-
chological, and sociological, can have a significant
impact on the performance of software teams. These
external factors are often instrumental or constitu-
tive in the functioning of software companies, and in
the practice of software engineering and development
overall. Therefore, it is important to consider and un-
derstand these external factors when analyzing soft-
ware teams.

Many researchers (Capretz, 2014; Feldt et al.,
2008) in the field of software development have ar-
gued that psychological and sociological factors have
a direct impact on the production of software pro-
grams. They have pointed out that external factors
such as inspiration (Beecham et al., 2008; Sharp et al.,
2009; Hall et al., 2009), character (Cruz et al., 2011),
and the environment (Leidner and Kayworth, 2006)
in which software is created play a fundamental role
in the process. This is an important consideration as
it highlights that when discussing the creation of soft-
ware, it’s necessary to take into account not just the
technical aspects but also the context and environment
in which it is created. This goes beyond what is often
referred to as ”soft skills,” (Ahmed et al., 2012; Mat-
turro, 2013; Matturro et al., 2015) which are often re-
duced to generic statements about someone’s person-

ality. The creation of software is a complex undertak-
ing that requires distributed intelligence across team
members (Nerur, 2014), and a deeper understanding
of psychology and sociology may provide unique in-
sights into the dynamics of these teams.

There is a risk that software engineers may not
fully understand the key factors that contribute to the
success or failure of software projects, by focusing
too much on formalized procedures and techniques
of change control and neglecting the role of indi-
viduals and their relationship with the environment
(Oreg, 2003). For example, in software development,
resistance to change, which is often influenced by
environmental factors, maybe a more important fac-
tor to consider than formalized change control pro-
cesses. However, most research in software develop-
ment has focused on formalized procedures and tech-
niques, rather than the role of individuals and their
relationship with the environment (Unterkalmsteiner
et al., 2011).

In this section, we will argue that using two
branches of systemic thinking, namely psychological
systemic thinking and systemic sociological thinking,
can help us gain important insights into the nature,
scope, and dynamics of collaborative partnerships in
software development.

Several authors (Hazzan and Hadar, 2008; Tren-
dowicz and Münch, 2009; Amrit et al., 2014) have
demonstrated that software engineering is a human-
centered activity that is greatly impacted by people’s
emotions, memories, and behaviors. Software pro-
duction is greatly influenced by cognitive factors and
external systemic processes (Feldt et al., 2010; Khan
et al., 2011; Lenberg et al., 2014). In software firms,
software design, especially when using Agile method-
ologies, must take into account not only the project’s
objectives but also the interactions among team mem-
bers in delivering the end product. Therefore, psycho-
logical and sociological factors that underlie people’s
behaviors are extremely important for software devel-
opers. Systemic thinking is a fundamental tool for
understanding these factors. In this section, we will
examine two branches of systemic thinking, psycho-
logical and sociological, that are relevant to our work.

2.1 Psychological Systemic Thinking

Psychological systemic thinking is a branch of psy-
chology that deals with practices and actions in the
environment (Schultz and Schultz, 1998). It has
several different applications in psychology (Curtis,
1984), including forensic psychology (Tornhill, 2015)
where it is used to predict the future of the code-
base, evaluate the refactoring direction, and under-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

522

stand how a team may influence a design. Other ap-
plications include studying the effect of moods on de-
velopers’ debugging performance (Khan et al., 2011)
and exploring organizational and technological issues
in software engineering as a practice (Lytras et al.,
2010).

Software developers are constantly exposed to
new technology and techniques, and their profession
requires collaboration and cooperation with a variety
of actors, stakeholders, and disciplines. Therefore, it
is important to understand software engineering from
the point of view of software teams within software
companies. To build an effective team, it is impor-
tant to consider the interests, needs, and desires of all
team members. When difficulties arise, it is important
to find ways to mediate and compromise. In this sec-
tion, we will discuss a series of psychological factors
that directly affect team performance.

Effort measurement, which includes mental and
physical effort, is an important psychological fac-
tor to consider when evaluating the productivity of
a software team and understanding intellectual per-
formance (Mulder, 1986; Farina et al., 2022). This
variable can be described as the amount of time (ex-
pressed in hours) spent by team members on com-
pleting their assigned tasks, which can be divided
into technical time (such as design, debugging, cod-
ing, and testing) and non-technical time (such as team
meetings, seminars, and consultations). Several re-
searchers (Trendowicz et al., 2008; Dlamini et al.,
2022) have shown that it is crucial to measure and
specify such efforts in order to understand how soft-
ware teams work. All types of efforts should be in-
cluded in the total amount of working hours reported
and should be correlated with product improvement,
both in terms of technical and non-technical efforts.

Team Leader: The behavior of the team leader is
another important psychological systemic factor that
can greatly impact the performance of software devel-
opment teams (Acuña et al., 2008). The team leader’s
behavior, as shown by (Srivastava et al., 2006) can
have a major influence on team members’ productiv-
ity, creating an environment that is conducive to effec-
tive communication (Sudhakar et al., 2011), learning,
and dedication. Therefore, it is crucial to consider
the team leader’s behavior when trying to understand
the performance of software teams (Srivastava et al.,
2006).

Based on the above, psychological systemic think-
ing can help us understand some of the dynamics that
affect the performance of software teams. With this
understanding, we can now examine the contributions
that sociological systemic thinking can make to soft-
ware engineering.

2.2 Sociological Systemic Thinking

Sociological systemic thinking primarily deals with
aspects of software development in the context of
technologically and culturally scaffolded artifacts,
and with a focus on communication (Stichweh, 2011).
This theory emphasizes the importance of under-
standing the dynamics behind the production of cul-
tural artifacts, particularly within social and collabo-
rative institutions (Parsons, 1977). The origins of this
theory can be traced back to the work of philosophers
and social scientists (Offer, 2010; Alexander, 1990),
but a discussion of the roots of sociological systemic
thinking is beyond the scope of this paper. In this
section, we will focus on identifying a number of so-
ciological factors that can potentially affect software
teams and discuss some that we believe to be the most
important.

2.2.1 Team Size

The term “team size” has been used loosely in sociol-
ogy to refer to both small groups of individuals who
interact productively and larger groups of individu-
als who share a common identity (McGrath, 1984). A
more restrictive definition of a team, used in team pro-
cess studies, is a group of people formed specifically
for research, without prior relations among its mem-
bers. According to sociological systemic thinking, an
effective and productive team should have a balanced
size, not too big and not too small (Cooley, 1992).
A small group may not have the variety of skills it
needs to operate well, while large teams may lead to
decreased participation and dedication to the project.
The optimal team size also depends on factors such as
management skills, type of project, and personality of
the group (Lee et al., 2003). It is generally considered
that teams with 5 to 10 people are most effective, but
exceptions can exist.

2.2.2 Team Cohesion and Collaboration

Team cohesion refers to the quality and degree of the
relationships between members of a team. This re-
lationship creates a bond among team members and
enables them to work together effectively to achieve
team objectives. Cohesion is essential for building
productive collaborative activities (Kang et al., 2011).
The productivity of a software development team
(Bhardwaj and Rana, 2016) is greatly affected by the
level of teamwork and cooperation within the team.
Therefore, it is important for the program manager to
create an environment that promotes teamwork and
encourages cooperation (Kang et al., 2011) (Clincy,
2003).

A Reflection on the Use of Systemic Thinking in Software Development

523

2.2.3 Communication

Communication is crucial for software teams (Cian-
carini et al., 2021b; Ciancarini et al., 2021a; Kruglov,
2021), because, without effective communication,
team members will not be able to effectively utilize
the resources available to them, regardless of how
good these resources are (Ciancarini et al., 2023). The
importance of communication is often seen in face-to-
face meetings (Bonner, 1959; Hare, 1994; Freeman,
1992; Stogdill, 1959; Locke et al., 1981), as without
this type of interaction, the sharing of information will
not happen.

However, the effectiveness of communication is
not limited to human interactions. It is also greatly
influenced by external factors such as the workplace
and other variables previously discussed, such as co-
hesion and collaboration.

The use of various technological tools can also
greatly impact communicative interactions, by en-
abling more flexible cycles and designs (Finholt et al.,
1990; Davidow, 1992). For example, studies on
remote brainstorming have shown that larger web-
based brainstorming groups can generate more ideas
than smaller groups (Connolly, 1997). Similarly, re-
search suggests that computer-mediated communica-
tion can greatly reduce the strategic issues that arise
in traditional social settings (Nunamaker et al., 1991;
Bugayenko et al., 2022b; Bugayenko et al., 2022a).

After explaining how psychological and sociolog-
ical systemic thinking can be used to understand the
impact of external factors on software engineering
teams, we present our experimental protocol, which is
designed to test and support our hypothesis that sys-
temic thinking can help us understand how software
teams operate, achieve their goals, and meet the goals
of the organizations, companies, and institutions for
which they work.

3 METHODOLOGY

To expand on our research, we conducted an on-
line survey with software developers in three differ-
ent countries (Nepal, Russia, and Luxembourg). The
purpose of the survey was to gather more objective
opinions and perspectives on the topic we examined
in this paper. The countries for the online survey were
selected based on one of the authors’ personal back-
grounds, as he is from Nepal, studied in Russia, and
currently resides in Luxembourg. Next, we will pro-
vide an overview of the structure of our survey.

We employed qualitative research for our initial
study. This approach is typically used to understand

perspectives and opinions. It provides insight into
various issues and helps to generate concepts or the-
ories for future quantitative research. The qualitative
method allows for a deeper analysis of problems and
can reveal new ideas and personal views in our study.
This method employs various unstructured or semi-
structured methods for data collection such as online
surveys. It involves analyzing responses to identify is-
sues and develop solutions. Since our research com-
bines technological and behavioral elements and in-
cludes studying the responses and feedback from par-
ticipants, a qualitative approach was deemed most ap-
propriate.

3.1 The Survey

Surveys are a useful tool for collecting data on de-
mographics and short-answer responses from a large
number of people. In this study, surveys were used to
gather and refine the information that was previously
obtained through reviewing relevant literature.

The survey we created in this study aimed to pro-
vide answers to our hypothesis; that psychological
and sociological systemic thinking can assist us in un-
derstanding the workings and operations of developer
teams.

The survey consisted of a series of questions
(combining multiple choice and numerical responses)
that were used to gauge whether the participants
agreed or disagreed with the notion that specific sys-
temic factors can significantly impact their perfor-
mance. It also aimed to identify and measure (using
a Likert scale (Allen and Seaman, 2007)) the relative
importance of these factors. The survey took no more
than 30 minutes to complete (with an average actual
time of 25 minutes).

As mentioned, the questions contained in our
questionnaire for the survey have been taken and
modified from (Lamb, 2009). They have been also
inspired, as noted above, by discussions with experts
in the field of systemic thinking.

The questionnaire for this study was designed in
a way to ensure that the responses received would
be valuable in addressing our research questions.
This was done by following established best practices
(Bentler et al., 1971; Bradburn and Sudman, 2004)
within the field and by getting feedback from experts
with relevant experience. The expert was the one with
experience in using systemic thinking in STEM edu-
cation.

The survey participants were chosen to bring a
practical perspective on performance indicators in
their work environment. They were able to complete
the survey online for about a month and gave permis-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

524

sion for the author to use and share their responses. 50
software developers from different tech companies in
Russia, Nepal, and Luxembourg participated, most of
whom provided information about their experience in
the field. 12 had over 11 years of experience, 24 had
5-9 years, and 14 had less than 5 years. Additional
information about their educational background was
also collected, with 17 being graduate students, 16
being undergraduate students, 13 being master’s stu-
dents, and 4 being Ph.D. students.

The respondents were informed of the study’s pur-
pose and asked to identify themselves so researchers
could relate their responses to information from the
company. They were assured that their company
would only receive summary results and that their pri-
vacy would be protected. Prior to the experiment,
each organization involved sent a letter to the partic-
ipating employee guaranteeing confidentiality. The
companies also provided confidential performance
ratings of the subjects, allowing for a comparison be-
tween an independent assessment of performance and
the self-reported measure from the respondents.

4 ANALYSIS OF THE
COLLECTED DATA

We used basic statistics using ordinal scales and cod-
ing procedures to analyze the responses we gathered
from the questionnaires. We note here that our re-
search is mostly observational. We also note that find-
ing subjects willing to participate in a study like this
is extremely difficult, and it is even more difficult be-
cause the emphasis of our work is on software man-
agers and engineers involved in complex and large-
scale projects.

From the survey, we analyzed the responses and
allocated extracts that characterized the main pattern
and divided it into categories and sub-categories as
shown in Table 1.

Table 1: Identified categories and sub categories (systemic
factors).

Categories Sub Categories (systemic factors)

1) Individ-
ual

1.1) Focus of attention
1.2) Interconnection
1.3) Adaptability

2) Software
Team

2.1) Communication
2.2) Project Complexity
2.3) Team Leader

3) Software
Firm

3.1) Administrative Change
3.2) Relationship with Clients
3.3) Work Environment

According to the online survey, many of the psy-
chological and sociological factors identified by re-
searchers as being characteristic of systemic thinking
in Section 2, are not taken into account by software
development firms and teams. These variables though
can have a positive effect on the success of software
development teams and can assist software compa-
nies in better understanding their software teams. It is
therefore important for businesses to make sure they
understand how these variables affect their developers
and improve their performance.

8 of the 50 people in the survey referred to tech-
nical aspects of engineering a system: e.g., manage-
ment, technical depth of teams, producing a product
or finding interfaces. The remaining people referred
to communication, team interactions, and social lead-
ership. This highlights the fact that systemic thinking
is deeply ingrained in the daily activities of software
engineers and therefore demonstrates the importance
of psychological and sociological factors in develop-
ers’ teams.

Commonly occurring phrases and ideas were
tagged, organized, and combined when appropriate,
resulting in a set of commonly cited codes. After
a set of unique codes was identified (open coding)
the codes were reorganized into categories (axial cod-
ing), grouping similar code constructs and provid-
ing greater explanatory power. Axial coding resulted
in three main categories: individual, software team,
and software firms as shown in Table 1. These cat-
egories were further developed into subcategories as
informed by the critical constructs identified in the lit-
erature review discussed above.

5 SUMMARY OF THE RESULTS

Our literature review in Section 2 revealed that vari-
ous psychological and sociological factors associated
with systemic thinking are present in the operations
of software development individuals, teams, and com-
panies. These factors, as outlined in Section 4 , lead
to a holistic approach to problem-solving and success
in their work and projects. However, most compa-
nies and team members were not aware that they were
utilizing systemic thinking in their daily projects and
even stated that it was not practiced in their company,
yet they recognized the significance of the related psy-
chological and sociological factors such as commu-
nication and collaboration, indicating at least a basic
level of understanding of its relevance.

Furthermore, the study of interview transcripts re-
vealed three distinct categories of the use of sys-
temic thinking in software development, which can

A Reflection on the Use of Systemic Thinking in Software Development

525

be roughly linked to individuals, teams, and corpo-
rations (as shown in Table 1). These categories are
not mutually exclusive, and multiple perspectives on
the same event may be included. These categories are
examined in greater detail in the subsequent sections,
which are loosely organized based on the problem de-
scription, context, and identify patterns.

Below, we discuss all the identified patterns from
the survey:

Focus of Attention: Focus of attention is about the
factors that a team leader takes into account when
making decisions. When providing feedback or mak-
ing crucial choices, some individuals concentrate on
certain aspects of the problem, while others evaluate
the available information holistically. Systemic think-
ing necessitates a readiness to comprehend the entire
task under examination as having various and unique
qualities and characteristics (so it requires both a re-
ductionist and a holistic perspective).

Interconnection: To make sound decisions, man-
agers must comprehend how the parts within the
projects they manage are interrelated. It’s also im-
portant for members of the project to understand how
the decisions made by marketing managers, operation
and account departments, or executives interrelate and
how these choices affect the company’s overall re-
sults. This is reflected in the interview transcripts by
various statements that evaluate how the respondents
perceived the relationship between the whole and the
parts. Furthermore, when working on a project or
sprint, most of the team members involved reported
that they enjoyed seeing how their specific tasks fit
into the larger project.

Adaptability: Systemic thinking emphasizes that
team members should be creative and responsive
to changing conditions when addressing challenges.
This requires both the ability and the willingness to
be adaptable. Skilled leaders tend to frame the situa-
tions they encounter in a way that allows for a nimble
and flexible response. It’s common for experienced
decision-makers (leaders) to have a variety of suit-
able feedback (insights) for a specific issue. These
insights are built up over time and can be accessed
as needed. This enhances their personal adaptability
and their ability to swiftly solve problems. In tack-
ling a difficulty, the leader reflects on various past ex-
periences and works to find an innovative solution.
This aspect is reflected in the interview transcripts
by various statements that evaluate the level of rigid-
ity or flexibility with which participants completed
projects/sprints.

Communication: Many software companies im-
plemented distributed teams of software engineers in
their daily operations. Some tech firms began imple-

menting distributed teams after our research. By ana-
lyzing the responses from the participants in our sur-
vey, we can conclude that communication was cited
by more than two-thirds of the subjects as an area that
could be improved by taking into account psycholog-
ical and sociological systemic factors.

Project Intricacy: Project complexity is deter-
mined by the difficulty in understanding how a par-
ticular project is being executed and can take many
forms. Examples of complexity include coherent
complexity, the complexity of the business domain,
and computational and systemic complexity. Com-
plexity and productivity have an inverse relationship.
Many responses indicated that organizations had to
narrow their focus on certain occasions when dealing
with complex issues. Examples of project complex-
ity include cost and time evaluation of construction
activities. To effectively deal with complexity, it is
important to understand the intricacy of the problem
and develop solutions for software engineering issues
that take into account the individual (e.g.“character”),
the team (e.g.“standards”), and the software company
(e.g.“community”).

Team leader: The behavior of the team leader is
crucial for productivity. Team leaders can improve
team performance by, for example, promoting a mind-
set that promotes focused communication, commit-
ment, and motivation. Therefore, it is essential to
consider team leadership when attempting to under-
stand the performance of software teams. Addition-
ally, the relationship between teamwork and the nec-
essary skills for task recognition, planning, and train-
ing should be evaluated as consistently as possible.

Administrative Change: Many responses men-
tioned organizational change as an area where liv-
ing systems should be taken into account. It was in-
teresting to see how the changes were implemented
and why they were made. The participants in the
study suggested that administrative changes in soft-
ware firms are more frequent than in other types of
companies and that “staff should figure out how to
adapt to changes since they happened constantly.” Al-
though the participants couldn’t explain the reason for
the high rate of change, they stated that “it is in the na-
ture of software engineering” and that software devel-
opment cycles, such as the agile method of work, “are
a way of coping with changes.” However, the under-
standing that ”changes can happen at any moment”
can put pressure on employees, which can be over-
whelming. Many respondents also said that initia-
tives undergoing administrative change rarely “reach
all the way” and get lost along the way for unex-
plained reasons. Another participant agreed with this
statement and said that “teams and individuals are

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

526

powerful elements that are normally unaffected by
administrative changes.” The participants had some
ideas about what kind of awareness they would need
to help deal with ambiguous administrative change is-
sues. However, the common idea was that the prob-
lems could not be solved simply by focusing on prac-
tical issues. They required a multidisciplinary ap-
proach, the type of approach proposed by systemic
thinking.

Relationship with clients: The participants agreed
that the supplier-customer relationship has a signif-
icant impact on the likelihood of a successful out-
come. Some believed that the relationship could posi-
tively influence team motivation. One issue identified
with client relations was that software releases (updat-
ing software versions) often resulted in organizational
changes for the customer. According to the partici-
pants, these changes can threaten the relationship be-
tween clients and employees. As a result, the workers
may develop a hostile attitude towards the supplier as
a psychological defense mechanism. If not handled
properly, this can negatively impact collaboration be-
tween the parties involved.

Work Environment: The physical work environ-
ment can have a positive effect on the performance
and efficiency of a software team. For example:

1. A work environment that promotes collaboration
can boost productivity.

2. Resources such as computer networks and soft-
ware tools are essential for the workplace.

3. These resources can facilitate more effective col-
laboration, team service, and individual cohesion,
all of which have a significant positive impact on
performance.

4. Software industrial facilities are conditions that
encourage the standardization of methods and
software measurement concepts.

This can also significantly influence teams’ efficiency
as well as productivity.

6 CONCLUSION

This study has revealed the importance of systemic
thinking in software development. The psychologi-
cal and sociological factors associated with systemic
thinking, such as communication and collaboration,
were found to be present in the operations of soft-
ware development individuals, teams, and compa-
nies. The study also identified three distinct cate-
gories of the use of systemic thinking in software de-
velopment, which can be linked to individuals, teams,

and corporations. Additionally, it was found that
team leader behavior plays a crucial role in produc-
tivity and that organizational change can be a chal-
lenging environment. Participants also agreed that the
supplier-customer relationship has a significant im-
pact on the outcome and the physical work environ-
ment can have a positive effect on the performance
and efficiency of a software team. These findings
highlight the need for a multidisciplinary approach,
as proposed by systemic thinking, to effectively deal
with the complexities and challenges in software de-
velopment.

While this study provides valuable insights into
the role of systemic thinking in software develop-
ment, it has several limitations. One limitation is that
the study is based on a small sample of participants
and may not be generalizable to the larger popula-
tion of software development companies. Addition-
ally, the study focused only on the perception of the
participants, further research with objective measures
could provide a more comprehensive understanding
of the topic. Another limitation is that the study
only focused on one perspective of systemic thinking
which is the psychological and sociological factors,
further research could explore other aspects of sys-
temic thinking such as technical and organizational
factors.

Future research could also explore the effects of
systemic thinking on the performance and efficiency
of software development teams in a more controlled
setting. Additionally, it would be interesting to in-
vestigate how different software development meth-
ods, such as Agile and Waterfall, affect the use of
systemic thinking. Moreover, future research could
also investigate the impact of different team structures
and remote working on the use of systemic thinking
in software development. These studies could provide
a more in-depth understanding of the role of systemic
thinking in software development and help organiza-
tions to improve their performance and efficiency.

ACKNOWLEDGEMENTS

This research is supported by the Russian Science
Foundation, Grant No. 22-21-00494.

REFERENCES

Acuña, S. T., Gómez, M., and Juristo, N. (2008). To-
wards understanding the relationship between team
climate and software quality—a quasi-experimental

A Reflection on the Use of Systemic Thinking in Software Development

527

study. Empirical software engineering, 13(4):401–
434.

Ahmed, F., Capretz, L. F., and Campbell, P. (2012). Eval-
uating the demand for soft skills in software develop-
ment. IT Professional, 14(1):44–49.

Alexander, J. C. (1990). Durkheimian sociology: cultural
studies. Cambridge University Press.

Allen, I. E. and Seaman, C. A. (2007). Likert scales and
data analyses. Quality progress, 40(7):64–65.

Amrit, C. A., Daneva, M., and Damian, D. (2014). Hu-
man factors in software development: On its un-
derlying theories and the value of learning from re-
lated disciplines. a guest editorial introduction to the
special issue. Information and software technology,
56(12):1537–1542.

Beecham, S., Baddoo, N., Hall, T., Robinson, H., and
Sharp, H. (2008). Motivation in software engineer-
ing: A systematic literature review. Information and
software technology, 50(9-10):860–878.

Bentler, P. M., Jackson, D. N., and Messick, S. (1971). Iden-
tification of content and style: A two-dimensional in-
terpretation of acquiescence. Psychological Bulletin,
76(3):186.

Bhardwaj, M. and Rana, A. (2016). Key software metrics
and its impact on each other for software development
projects. ACM SIGSOFT Software Engineering Notes,
41(1):1–4.

Boardman, J. and Sauser, B. (2008). Systems thinking: Cop-
ing with 21st century problems. CRC Press.

Bonner, H. (1959). Group dynamics; principles and appli-
cations. New York: Ronald Press Company.

Bradburn, N. M. and Sudman, S. (2004). The current sta-
tus of questionnaire research. Measurement errors in
surveys, pages 27–40.

Bugayenko, Y., Bakare, A., Cheverda, A., Farina, M.,
Kruglov, A., Plaksin, Y., Succi, G., and Pedrycz,
W. (2022a). Automatically prioritizing and assigning
tasks from code repositories in puzzle driven develop-
ment. In Proceedings of the 19th International Con-
ference on Mining Software Repositories. ACM.

Bugayenko, Y., Daniakin, K., Farina, M., Jolha, F., Kruglov,
A., Succi, G., and Pedrycz, W. (2022b). Extracting
corrective actions from code repositories. In Proceed-
ings of the 19th International Conference on Mining
Software Repositories. ACM.

Capretz, L. F. (2014). Bringing the human factor to software
engineering. IEEE software, 31(2):104–104.

Ciancarini, P., Farina, M., Masyagin, S., Succi, G., Yermo-
laieva, S., and Zagvozkina, N. (2021a). Non verbal
communication in software engineering–an empirical
study. IEEE Access, 9:71942–71953.

Ciancarini, P., Farina, M., Masyagin, S., Succi, G., Yermo-
laieva, S., and Zagvozkina, N. (2021b). Root causes
of interaction issues in agile software development
teams: Status and perspectives. In Future of Infor-
mation and Communication Conference, pages 1017–
1036. Springer.

Ciancarini, P., Farina, M., Okonicha, O., Smirnova, M., and
Succi, G. (2023). Software as storytelling: A sys-
tematic literature review. Computer Science Review,
47:100517.

Clincy, V. A. (2003). Software development productivity
and cycle time reduction. Journal of Computing Sci-
ences in Colleges, 19(2):278.

Connolly, T. (1997). Electronic brainstorming: Science
meets technology in the group meeting room. teok-
sessa culture of the internet. ed. by sara kiesler.

Cooley, C. H. (1992). Human nature and the social order.
Transaction Publishers.

Cruz, S. S., da Silva, F. Q., Monteiro, C. V., Santos, P.,
Rossilei, I., and dos Santos, M. (2011). Personality
in software engineering: Preliminary findings from a
systematic literature review. In 15th annual confer-
ence on Evaluation & assessment in software engi-
neering (EASE 2011), pages 1–10. IET.

Curtis, B. (1984). Fifteen years of psychology in software
engineering: Individual differences and cognitive sci-
ence. In Proceedings of the 7th international confer-
ence on Software engineering, pages 97–106.

Davidow, W. H. (1992). The virtual corporation: Structur-
ing and revitalizing the corporation for the 21st cen-
tury.

Dlamini, G., Ergasheva, S., Kholmatova, Z., Kruglov, A.,
Sadovykh, A., Succi, G., Timchenko, A., Vasquez, X.,
and Zouev, E. (2022). Metrics for software process
quality assessment in the late phases of SDLC. In Lec-
ture Notes in Networks and Systems, pages 639–655.
Springer International Publishing.

Edson, R. (2008). Systems thinking. applied. a primer. ar-
lington, va: Analytic services.

Farina, M., Gorb, A., Kruglov, A., and Succi, G. (2022).
Technologies for GQM-based metrics recommender
systems: A systematic literature review. IEEE Access,
10:23098–23111.

Feldt, R., Angelis, L., Torkar, R., and Samuelsson, M.
(2010). Links between the personalities, views and
attitudes of software engineers. Information and Soft-
ware Technology, 52(6):611–624.

Feldt, R., Torkar, R., Angelis, L., and Samuelsson, M.
(2008). Towards individualized software engineer-
ing: empirical studies should collect psychometrics.
In Proceedings of the 2008 international workshop on
Cooperative and human aspects of software engineer-
ing, pages 49–52.

Finholt, T., Sproull, L., and Kiesler, S. (1990). Communica-
tion and performance in ad hoc task groups, intellec-
tual teamwork: social and technological foundations
of cooperative work, l.

Freeman, L. C. (1992). The sociological concept of”
group”: An empirical test of two models. American
journal of sociology, 98(1):152–166.

Gallón, L. (2020). Systemic thinking. Quality Education,
pages 830–840.

Gogichaty, M., Ivanov, V., Kruglov, A., Pedrycz, W., Sama-
tova, A., Succi, G., and Valeev, R. (2023). A systemic
approach to evaluating the organizational agility in
large-scale companies. IEEE Access, 11:3307–3323.

Hall, T., Baddoo, N., Beecham, S., Robinson, H., and
Sharp, H. (2009). A systematic review of theory use
in studies investigating the motivations of software en-
gineers. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(3):1–29.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

528

Hare, A. P. (1994). Types of roles in small groups: A bit
of history and a current perspective. Small Group Re-
search, 25(3):433–448.

Hazzan, O. and Hadar, I. (2008). Why and how can human-
related measures support software development pro-
cesses? Journal of Systems and Software, 81(7):1248–
1252.

Kang, D., Jung, J., and Bae, D.-H. (2011). Constraint-based
human resource allocation in software projects. Soft-
ware: Practice and Experience, 41(5):551–577.

Katzenbach, J. R. and Smith, D. K. (2008). The discipline
of teams. Harvard Business Press.

Khan, I. A., Brinkman, W.-P., and Hierons, R. M. (2011).
Do moods affect programmers’ debug performance?
Cognition, Technology & Work, 13(4):245–258.

Kruglov, A. (2021). Impact of the communication issues:
A case study of IT start-up. In Communications in
Computer and Information Science, pages 113–132.
Springer International Publishing.

Lamb, C. M. (2009). Collaborative Systems Thinking: An
exploration of the mechanisms enabling team systems
thinking. PhD thesis, Massachusetts Institute of Tech-
nology, Department of Aeronautics and

Lee, S.-U., Park, J.-Y., and Park, J.-H. (2003). An ideal
team size in development and maintenance project.
The KIPS Transactions: PartD, 10(1):77–84.

Leidner, D. E. and Kayworth, T. (2006). A review of cul-
ture in information systems research: Toward a theory
of information technology culture conflict. MIS quar-
terly, 30(2):357–399.

Lenberg, P., Feldt, R., and Wallgren, L.-G. (2014). Towards
a behavioral software engineering. In Proceedings of
the 7th international workshop on cooperative and hu-
man aspects of software engineering, pages 48–55.

Lipson, H. (2007). Principles of modularity, regularity, and
hierarchy for scalable systems. Journal of Biological
Physics and Chemistry, 7(4):125.

Locke, E. A., Shaw, K. N., Saari, L. M., and Latham, G. P.
(1981). Goal setting and task performance: 1969–
1980. Psychological bulletin, 90(1):125.

Lytras, M. D., Ordonez de Pablos, P., Ziderman, A., Roul-
stone, A., Maurer, H., and Imber, J. B. (2010). Orga-
nizational, business, and technological aspects of the
knowledge society. Organizational, 112.

Matturro, G. (2013). Soft skills in software engineer-
ing: A study of its demand by software companies in
Uruguay. In 2013 IEEE/ACM 6th International Work-
shop on Cooperative and Human Aspects of Software
Engineering —CHASE), pages 133–136.

Matturro, G., Raschetti, F., and Fontán, C. (2015). Soft
Skills in Software Development Teams: A Survey of
the Points of View of Team Leaders and Team Mem-
bers. In 2015 IEEE/ACM 8th International Workshop
on Cooperative and Human Aspects of Software Engi-
neering — CHASE, pages 101–104.

McGrath, J. E. (1984). Groups: Interaction and perfor-
mance, volume 14. Prentice-Hall Englewood Cliffs,
NJ.

Mulder, G. (1986). The concept and measurement of mental
effort. In Energetics and human information process-
ing, pages 175–198. Springer.

Nerur, S. (2014). Distributed cognition in software design:
An experimental investigation of the role of design
patterns and collaboration. MIS Quarterly, 38(1):249–
274.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D.,
and George, J. F. (1991). Electronic meeting systems.
Communications of the ACM, 34(7):40–61.

Offer, J. (2010). Herbert Spencer and social theory.
Springer.

Oreg, S. (2003). Resistance to change: Developing an in-
dividual differences measure. Journal of applied psy-
chology, 88(4):680.

Parsons, T. (1977). Social systems and the evolution of ac-
tion theory. Free Press.

Schultz, D. and Schultz, S. (1998). An introduction to in-
dustrial and organizational psychology.

Sharp, H., Baddoo, N., Beecham, S., Hall, T., and Robin-
son, H. (2009). Models of motivation in software
engineering. Information and software technology,
51(1):219–233.

Sheridan, T. B. (2010). The system perspective on hu-
man factors in aviation. In Human factors in aviation,
pages 23–63. Elsevier.

Srivastava, A., Bartol, K. M., and Locke, E. A. (2006). Em-
powering leadership in management teams: Effects
on knowledge sharing, efficacy, and performance.
Academy of management journal, 49(6):1239–1251.

Stichweh, R. (2011). Systems theory. International Ency-
clopedia of Political Science. New York: Sage.

Stogdill, R. M. (1959). Individual behavior and group
achievement: A theory; the experimental evidence.

Sudhakar, G. P., Farooq, A., and Patnaik, S. (2011). Soft
factors affecting the performance of software devel-
opment teams. Team Performance Management: An
International Journal.

Tornhill, A. (2015). Your code as a crime scene: use foren-
sic techniques to arrest defects, bottlenecks, and bad
design in your programs. Pragmatic Bookshelf.

Trendowicz, A. and Münch, J. (2009). Factors influenc-
ing software development productivity—state-of-the-
art and industrial experiences. Advances in computers,
77:185–241.

Trendowicz, A., Münch, J., and Jeffery, R. (2008). State
of the practice in software effort estimation: a sur-
vey and literature review. In IFIP Central and East
European Conference on Software Engineering Tech-
niques, pages 232–245. Springer.

Unterkalmsteiner, M., Gorschek, T., Islam, A. M., Cheng,
C. K., Permadi, R. B., and Feldt, R. (2011). Evalu-
ation and measurement of software process improve-
ment—a systematic literature review. IEEE Transac-
tions on Software Engineering, 38(2):398–424.

Zahra, S. A. and Bogner, W. C. (2000). Technology strategy
and software new ventures’ performance: Exploring
the moderating effect of the competitive environment.
Journal of business venturing, 15(2):135–173.

A Reflection on the Use of Systemic Thinking in Software Development

529

