
Reverse Engineering of OpenQASM3 Quantum Programs to KDM
Models

Luis Jiménez-Navajas1 a, Ricardo Pérez-Castillo1 b and Mario Piattini2 c
1aQuantum, Faculty of Social Sciences & IT, University of Castilla-La Mancha Talavera de la Reina, Spain

2aQuantum, Information Technology and Systems Institute, University of Castilla-La Mancha Talavera de la Reina, Spain

Keywords: Reverse Engineering, Quantum Computing, OpenQASM3, KDM.

Abstract: The development of quantum computing is following a substantial growth. This leads us closer to the
implementation of practical solutions based on quantum software that address problems that are not
computable by classical software in a practical timeframe. Hence, some companies will need to adapt their
development practices and, so, their information systems to take advantage of quantum computing.
Unfortunately, there is still a lack of tools, frameworks, and processes to support the evolution of current
systems towards the combination of the quantum and classical paradigms into information systems. Hence,
this paper presents a reverse engineering technique to generate abstract models based on the Knowledge
Discovery Metamodel (KDM) by analyzing quantum software written in OpenQASM3. The main implication
is that KDM models represent, in a technology-agnostic way, the different components and interrelationships
of quantum software. These models then can be used to restructure and redesign the target hybrid information
system.

1 INTRODUCTION

Quantum computing is the result of the application of
some counterintuitive principles of quantum
mechanics to computer science (e.g., superposition or
entanglement) in order to represent information as
quantum states (Gyongyosi & Imre, 2019). It allows
the performance of certain algorithms which are
unattainable for today’s supercomputers. The
expectation for quantum computing is so high with
plenty of expected applications, like in chemistry
(McArdle, Endo, Aspuru-Guzik, Benjamin, & Yuan,
2020), artificial intelligence (Dunjko & Briegel,
2018) and, even, in communications (Imre & Balazs,
2005). Large companies have invested a lot of
resources in quantum computing and their potential
applications (Julian van Velzen, 2022; Wang, 2021),
which are close to be effectively implemented.

Probably, not all the business operations will be
adapted into the quantum paradigm. This is because
the performance of the classical software for some
business operations is still (and will keep)

a https://orcid.org/0000-0001-6257-7153
b https://orcid.org/0000-0002-9271-3184
c https://orcid.org/0000-0002-7212-8279

appropriate. Thus, the new software systems will
evolve toward hybrid software systems, i.e., classical
and quantum software will operate together (Pérez-
Castillo, Serrano, & Piattini, 2021). Therefore,
companies that want to be benefited, will need to
evolve toward hybrid information systems
(Houekpetodji, Anquetil, Ducasse, Djareddir, &
Sudich, 2021). In such hybrid systems, the classical
part will control and receive all the outputs generated
by the quantum algorithms executed generally in
remote quantum computers in the cloud (Nguyen,
Usman, & Buyya, 2022).

Throughout the years, a mass of knowledge and
experience has been accumulated in the field of
software engineering and, in particular, in software
modernization (i.e., the progress of reengineering by
applying a Model-Driven Engineering approach).
Software modernization has allowed organizations to
develop and evolve high-quality software in
compliance with standards and following well-
proven practices (Durelli et al., 2014). Thus, some of
these software engineering techniques and methods

Jiménez-Navajas, L., Pérez-Castillo, R. and Piattini, M.
Reverse Engineering of OpenQASM3 Quantum Programs to KDM Models.
DOI: 10.5220/0011963000003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 513-520
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

513

are being adapted for quantum software development
(De Stefano, Pecorelli, Di Nucci, Palomba, & De
Lucia, 2022; Li, Khomh, & Openja, 2021; Piattini et
al., 2020). One of these processes is the Quantum
Software Modernization process (Pérez-Castillo,
Serrano, et al., 2021), where the process of software
modernization considers the integration of quantum
algorithms when designing the target hybrid software
systems.

This paper takes place in the context of the
Quantum Software Modernization process and, more
specifically, in the reverse engineering phase. This
phase is crucial since it is used to produce abstract
representations of classical and quantum software.
We are able to generate KDM (Knowledge Discovery
Metamodel) models (Pérez-Castillo, De Guzman,
Piattini, & Interfaces, 2011). As a part of the ADM
initiative, the OMG released KDM within a broad set
of proposed standards (Ulrich, 2010). KDM
addresses the main challenges that appear in the
modernization of legacy information systems (Pérez-
Castillo, De Guzman, et al., 2011) and can contribute
to the modernization of hybrid software systems. The
usage of KDM allows to represent in a technology-
agnostic way all the different components and
interrelationships of quantum software.

This reverse engineering technique was firstly
piloted for Q# programs (Jiménez-Navajas, Pérez-
Castillo, & Piattini, 2020). The support for additional
languages is mandatory, and in case of OpenQASM3
[13] (QASM hereinafter) is also crucial since it can
be considered as de facto standard as it has been used
as a base for developing many software frameworks
and development environments (Garhwal, Ghorani,
& Ahmad, 2021). Thus, this paper proposes a reverse
engineering technique to analyze quantum programs
developed in QASM and represent that information in
KDM models. If we want to facilitate the evolution
from/toward hybrid software systems, companies or
organizations should not face restrictions on which
quantum programs they can incorporate into their
hybrid software systems. Having achieved agnostic
representations of quantum software, it can be
integrated along with classical software, which is a
step forward in the modelling and designing of hybrid
software systems.

The remain of this paper is structured as follows:
Section 2 relates the actual state of Quantum Software
Modernization and how the representation of
quantum programs in KDM has been accomplished.
Then, Section 3 explains how OpenQASM3
programs have been analyzed and modelled in KDM.
Section 4 shows a preliminary evaluation of the

reverse engineering. Finally, Section 5 presents the
conclusions and future work of this research.

2 BACKGROUND This section is divided in two subsections. Section 2.1 describes the actual state of the Quantum Software Modernization and Section 2.2 shows the extension of KDM for quantum software.
2.1 Quantum Software Modernization

In today’s world companies invest considerable
amounts of effort in keeping their information
systems competitive. This often implies performing
maintenance activities in their systems while the
preservation of its business knowledge is required
(Paradauskas, Laurikaitis, & control, 2006).
However, in some cases, this maintenance becomes
difficult since the technology on which it was built
has become obsolete. To address these problems
during evolution of information systems, the
Software Modernization process was proposed
(Pérez-Castillo, de Guzmán, & Piattini, 2011). This
process was developed by following the traditional
reengineering approach alongside the Model Driven
Engineering (MDE) principles. This revisited
approach solves some of the shortcomings of
traditional reengineering (the lack of formalization
and standardization (Kazman, Woods, & Carrière,
1998)).

With the advent of quantum computing, many
information systems could become obsolete, and
companies will have to modernize them. This does
not mean discarding the whole system, but first
assessing which components of the system
could/should be supported by quantum software and
be modernized accordingly. Figure 1 presents the
Quantum Software Modernization process as
proposed in (Jiménez-Navajas et al., 2020), which
advocates the use of standards widely accepted in the
industry such as KDM and UML.

Quantum Software Modernization consists of
three phases: reverse engineering, restructuring and
forward engineering. In the reverse engineering phase
(left-hand side of Figure 1) the different components
of the current classical information system and
quantum programs are represented in KDM models in
a technology-agnostic way. This phase is the scope of
this paper. In the restructuring phase (top center of
Figure 1) the previously generated KDM models are
transformed into high-level abstraction models and
the target hybrid information system is designed.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

514

Figure 1: Quantum Software Modernization approach.

Finally, in the forward engineering phase (right-hand
side of Figure 1), tools are used to automatically
generate the code of the hybrid information system
designed in the previous phase.

2.2 Quantum KDM Extension

To accomplish the task of modernizing legacy
systems, the OMG proposed the KDM specification
(ISO/IEC, 2009). This standard allows the complete
representation of legacy information systems at a high
level of abstraction while preserving all business
knowledge.

Moving to the context of quantum computing, to
represent in KDM models the different components
that are used in quantum software, the metamodel
must be extended. The extension of the metamodel
has been carried out using the mechanism provided
by the standard itself, i.e., by creating an "extension
family". This extension family contains the different
components that can appear in a quantum program
(see Figure 2).

<extensionFamily id="id.0" name="quantum extension">
 <stereotype name="quantum programming language"
 id="id.1"/>
 <stereotype name="quantum program" id="id.2"/>
 <stereotype name="quantum operation" id="id.3"/>
 <stereotype name="quantum gate" id="id.4"/>
 <stereotype name="qubit" id="id.5"/>
 <stereotype name="qubit measure" id="id.6"/>
 <stereotype name="control qubit" id="id.7"/>
 <stereotype name="qubit array" id="id.8"/>
</extensionFamily>

Figure 2: KDM extension family.

Whenever a KDM model is generated from an
OpenQASM3 program, the extension family is
included in the model. Afterwards, when quantum

elements are represented, they have an attribute that
references to a specific stereotype.

3 OpenQASM3 TO KDM

To carry out the generation of KDM models from
QASM quantum programs, the same steps have been
followed as in (Jiménez-Navajas et al., 2020). This
procedure consists of creating two modules: one that
analyses the code and extracts the necessary
information, and another one that translates this
information into the KDM standard. This new
development has not been carried out in a standalone
tool but integrated into QRev (Pérez-Castillo,
Jiménez-Navajas, & Piattini, 2021). Section 3.1 will
discuss how quantum programs are analyzed and
Section 3.2 shows how the information extracted
from the previous step is represented through KDM
standard.

3.1 OpenQASM3 Parser

To extract information from QASM programs, a
parser has been developed. This parser has been
developed by means of ANTLRv4, a tool for
generating parsers based on formal grammar
definitions (Parr). Programs based on ANTLR
contain the formal definition of the syntax and
grammar of the language to be recognized. Using that
grammar ANTLR generates the code of the language
recognition tool, i.e., the parser. That parser is able to
recognize the target programming language and
generates an Abstract Syntactic Tree (AST) which
represents the structure of the analyzed program. The

KDM Models UML Models

Existing
Quantum
Programs

Classical
Information

System

Target Classical-
Quantum

System

New Quantum
Programs

Re
ve
rs
e
En
gi
ne

er
in
g

Forward Engineering

Restructuring

Reverse Engineering of OpenQASM3 Quantum Programs to KDM Models

515

grammar employed was not defined from scratch, as
an official QASM grammar is available in (Andrew
W. Cross, 2020).

In order to make the explanation of the proposal
presented as descriptive as possible, a running
example of the project will be carried out using the
quantum teleportation algorithm as an input program
(see Figure 3).

1 OPENQASM 3;
2 include "stdgates.inc";
3 qubit[3] q;
4 bit crz;
5 bit crx ;
6 h q[1];
7 cx q[1], q[2];
8 cx q[0], q[1];
9 h q[0];
10 crz = measure q[0];
11 crx = measure q[1];
12 if(crz==1) z q[2];
13 if(crx==1) x q[2];

Figure 3: Quantum teleportation algorithm implemented in
OpenQASM3.

Quantum teleportation (Bouwmeester et al., 1997)
is one of the most important algorithms in quantum
computing as it allows us to move the state of one
qubit to another without violating the no-cloning
theorem (Wootters & Zurek, 2009).

Figure 4 shows the outgoing AST generated for
the teleportation example showed before. Due to the
space limitation, the example only presents a partial
tree for lines 6 and 7. The nodes in the AST
correspond with the same elements used in the

grammar rules defined for ANTLR. The AST
elements and its relationships will be later considered
to generate the KDM model.

3.2 KDM Generator

As mentioned before, the QASM parser and its
corresponding KDM Generator are an extension of
QRev. For the integration of these new parts in the
tool, a complete refactoring of the code has been
performed and the parser and the generator have been
integrated following the ‘state’ design pattern. The
state pattern is intended when the desired program is
desired to “allows an object to alter its behavior when
its internal state changes. The object will appear to
change its class” (Gamma, Helm, Johnson, Johnson,
& Vlissides, 1995). This pattern was chosen because,
when receiving a quantum program as input, the file
will behave as an object whose state is defined once
its extension is known ('.qs' in the case of Q#
programs and '.qasm' if it is QASM). Depending on
this, the KDM generator considers the specific
transformations rules.

Once the AST has been generated, the module
oriented to the generation of the KDM models goes
through the tree and reads the nodes and some
relationships in the tree. Only the relevant
information from the nodes is extracted to make the
KDM models as accurate as possible. Table 1 shows
the name of the nodes of the AST of quantum
elements and their representation in KDM. Each of
the representations in KDM is in accordance with the
definition of the quantum elements themselves.

Figure 4: Fragment of the AST generated from the teleportation algorithm.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

516

Table 1: Quantum elements and its AST and KDM
representation.

Quantum
element

AST
modelling

KDM
modelling Stereotype

Quantum
program

program Compilation
Unit

• quantum
program

Qubit Quantum
statement

StorableUnit • qubit
• control
qubit
• qubit array

Quantum
gate

Quantum
instruction

Action
Element

• quantum
gate
• qubit
measure

In Figure 5 we can observe the actual KDM
representation of a Hadamard gate with its
corresponding "ActionElement" type and its
stereotype pointing to <<quantum gate>> (as
defined in the extension family). This KDM elements
has six children, which respectively represent:

• The gate snippet (line 4).
• On which qubit is being applied (line 5-6).
• Being a qubit register, it specifies which

qubit register is being applied (line 7-8).
• The readout of the qubit register (line 9-10).
• The writing of the qubit register (line 11-12).
• The flow of the information to the next

quantum gate (line 12-13).

1 <codeElement id="id.20" xmi:type="action:
2 ActionElement" kind="operator" name="Hadamard"
3 stereotype="id.4">
4 <source language="OpenQASM3" snippet="h q[1]"/>
5 <actionRelation id="id.21"xmi:type="action:
6 Addresses" from="id.20" to="id.17"/>
7 <codeElement id="id.22" name="1"xmi:type="code:
8 Value" stereotype="id.5"/>
9 <actionRelation id="id.23" xmi:type="action:
10 Reads" from="id.20" to="id.16"/>
11 <actionRelation id="id.24"xmi:type="action:
12 Writes" from="id.20" to="id.17"/>
13 <actionRelation id="id.25"xmi:type="action:
14 Flow" from="id.20" to="id.26"/>
15 </codeElement>

Figure 5: KDM resulting from the analysis of a Hadamard
gate.

Following the running example started in the
previous section, in Figure 6 can be seen the teleport
algorithm KDM’s representation through the Eclipse
model view. At the top of the model is located the
extension family explained previously (cf. Section
2.2). Then, we have the declaration of the quantum
program through the type "CompilationUnit" and
through the attribute with the name of the program

(teleport.qasm). Subsequently, we can see the
declaration of a qubit and other variables where the
results of the quantum operations will be stored.
These variables are represented in KDM by means of
the type “StorableUnit”, but the qubit has an attribute
“stereotype” which points to the id of the element
“qubit” in the extension family.

Figure 6: Resulting KDM of the teleport algorithm.

4 PRELIMINARY EVALUATION

This section will consist of a preliminary evaluation
of this tool extension. A total of 13 QASM programs
extracted from the Qiskit example repository on
Github (Qiskit, 2022) have been used to carry out this
evaluation. Currently, there is not a large number of
independent projects publishing quantum algorithms
or programs. As a result, most of the resources or
samples are usually found in the repositories of the
programming languages (i.e., most of the examples
developed in OpenQASM3 are found in their own
repository), which in turn means that these same
programs are the most visualized or used. Although
there are 23 examples in the repository, in the end we
filtered in 13 of them. Some programs were discarded
since these contained sets of language declarations
(like quantum gates’ definitions) or these presented
oracle’s implementations (which are out of the scope
of this project).

The results obtained from the evaluation can be
observed in Table 2, where the name of the analyzed
file and the variables used for its evaluation can be
found, such as the element size, which consists of the

Reverse Engineering of OpenQASM3 Quantum Programs to KDM Models

517

sum of qubits and quantum gates (i.e., StorableUnits
and ActionElements in the KDM model), and the
number of relationships (i.e., Reads, Addresses and
Flow in KDM). In addition, it includes the time (in
milliseconds) spent on generating the KDM. The
execution environment consisted of a laptop with an
i7 10510U with 2.30 GHz, 16 GB of RAM.

For this preliminary evaluation the precision,
recall and f-measure of the KDM models generated
have been calculated. To assess these values, we have
employed the data that can be seen in the columns
which concerns to the size of the elements,
relationships, and missing elements. Missing
elements are mainly composed of three structures:
functions (and therefore all quantum gates that are
implemented within a function), oracles, and
measurement gates. Those missing elements are not
represented in KDM, causing the comparison to be
inaccurate.

Each missing quantum gate (either because it is
defined in an oracle or implemented within a
function) has been multiplied by 4 since at least its
KDM representation would have a child “Addresses”
and another “Writes”, but we considered convenient
to compensate for the possible “Flow” and the
“Value” that other quantum gates may have. Oracles
that work as identity gates have not been considered
as missing elements although are not represented.

About irrelevant elements (i.e., false positives) the
reverse engineering technique does not retrieve
anything undesired in the KDM model. Thus, the
precision of the tool is always 100%.

Observing results in Table, there are specific
programs such as 'msd' or 'rus' where the recall drops
to almost 30%. As explained above, quantum gates
within functions and oracles are not modelled in
KDM yet, which causes the average recall obtained in
programs such as those mentioned to drop.
Nevertheless, the effectiveness of the tool could be
considered acceptable since the study reported an
average of 72.2% recall. Moving to the f-measure
value, obtaining such a high percentage is not
surprising as this measure has a direct relationship
with the values obtained from recall and precision.
However, this measure indicates that the generated
models present a correct accuracy (81.2%).

In summary, reverse engineering of quantum
programs allows to represent them in abstract models
with an average recall of 72.2%, which proves that
quantum programs could be integrated into the high-
level design of hybrid information systems. The
modelling of these new systems has yet to be
formalized, but the state of the art (Azeem Akbar,
Rafi, & Khan, 2022; Pérez-Delgado & Perez-
Gonzalez, 2020; Weder, Barzen, Leymann, Salm, &
Vietz, 2020).

Table 2: Results obtained from the preliminary evaluation.

File name #Storable
Units

#Action
Elements #Reads #Addresses #Flow #Missing

Elements
Precision
(%)

Recall
(%)

F-Measure
(%)

KDM
Generation
time (ms)

adder 5 6 7 6 5 23 100 55.8 71.6 94
alignment 1 2 3 2 1 8 100 52.9 69.2 12
gateteleport 3 3 4 3 2 1 100 93.8 96.8 60
inverseqft1 2 17 17 17 16 4 100 94.5 97.2 77

inverseqft2 5 12 12 12 11 4 100 92.9 96.3 13
ipe 2 4 0 4 3 12 100 52.0 68.4 14
msd 4 6 8 6 5 75 100 27.9 43.6 88
qec 4 6 6 6 5 17 100 61.4 76.1 8
qft 2 13 19 13 12 0 100 100.0 100.0 15
qpt 2 2 0 2 1 1 100 87.5 93.3 8
rb 2 8 10 8 7 1 100 97.2 98.6 4

rus 4 4 0 4 3 31 100 32.6 49.2 13
teleport 4 8 10 8 7 4 100 90.2 94.9 13

Min 1.0 2.0 0.0 2.0 1.0 0 100 27.9 43.6 4
Max 5.0 17.0 19.0 17.0 16.0 75 100 100.0 100.0 94
Avg 3.1 7.0 7.4 7.0 6.0 13.9 100 72.2 81.2 30

Std. Dev. 1.3 4.6 6.2 4.6 4.6 20.7 0 25.9 19.5 30

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

518

As can be seen in the KDM generation time
column, the time does not exceed 100 milliseconds in
any of the cases, obtaining an average of 30
milliseconds and a standard deviation of 30. The
results obtained show that the number of elements
does not necessarily imply an increase in time. For
example, the teleport algorithm ('teleport'), is one of
the algorithms that generates more elements and
relations, took 13 milliseconds, while the magic state
distillation algorithm ('msd') took 88 milliseconds
presenting a smaller number of elements.

5 CONCLUSIONS

This paper presents a reverse engineering technique
that allows the representation of QASM programs in
the KDM standard. The representation of the
programs is performed by means of high-abstraction
level models in a technology-agnostic way. The
KDM models generated from the QASM programs
available in the official Qiskit repository have been
used to conduct a preliminary evaluation that shows
suitability of this extension and contributes to its
applicability in industry.

We can conclude that the major achievement of
this proposal is to demonstrate that, despite the large
number of quantum programming frameworks and
languages, it is possible to agnostically model the
information of quantum algorithms to be used in the
software modernization of hybrid information
systems. Because our task is to bring software
modernization closer to the quantum paradigm, we
represent the information extracted from the
algorithms according to the KDM standard. KDM
was not specifically developed for modelling
quantum software, but its extension mechanism
allows us to do so.

This proposal is framed in long-term research
whose main objective is to adapt the process of
software modernization for the combination of both
classical and quantum software towards hybrid
information systems.

Our future work has two separate but related
paths. The first is the improvement of this technique,
as possible improvements have been identified,
including the implementation of the representation of
oracles and other control structures in QASM. The
second path concerns the implementation of the other
phases of quantum software modernization, such as
restructuring and forward engineering.

ACKNOWLEDGEMENTS

This work is part of the projects SMOQUIN
(PID2019-104791RBI00) and QU-ASAP (PDC2022-
133051-I00) funded by the Spanish Ministry of
Science and Innovation (MICINN) and QHealth
project (EXP 00135977/MIG-20201059), 2020 CDTI
Missions Program (Center for the Development of
Industrial Technology of the Ministry of Science and
Innovation of Spain). We would like to thank all the
aQuantum members, and particularly Guido
Peterssen and, Pepe Hevia, for their help and support.
Competitive Research Programme (CRP Award No.
NRF-CRP 10-2012-03).

REFERENCES

Andrew W. Cross, L. S. B., John A. Smolin, Jay M.
Gambetta. (2020). OpenQASM3 ANTLRv4's
Grammar specification. Retrieved from https://qiskit.
github.io/openqasm/grammar/index.html

Azeem Akbar, M., Rafi, S., & Khan, A. A. J. a. e.-p. (2022).
Classical to Quantum Software Migration Journey
Begins: A Conceptual Readiness Model. arXiv:
2209.05105.

Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M.,
Weinfurter, H., & Zeilinger, A. (1997). Experimental
quantum teleportation. Nature, 390(6660), 575-579.
doi:10.1038/37539

De Stefano, M., Pecorelli, F., Di Nucci, D., Palomba, F., &
De Lucia, A. (2022). Software engineering for quantum
programming: How far are we? Journal of Systems and
Software, 190, 111326. doi:https://doi.org/10.1016/j.
jss.2022.111326

Dunjko, V., & Briegel, H. J. J. R. o. P. i. P. (2018). Machine
learning & artificial intelligence in the quantum
domain: a review of recent progress. 81(7), 074001.

Durelli, R. S., Santibáñez, D. S. M., Marinho, B., Honda,
R., Delamaro, M. E., Anquetil, N., & Camargo, V. V.
d. (2014, 13-15 Aug. 2014). A mapping study on
architecture-driven modernization. Paper presented at
the Proceedings of the 2014 IEEE 15th International
Conference on Information Reuse and Integration
(IEEE IRI 2014).

Gamma, E., Helm, R., Johnson, R., Johnson, R. E., &
Vlissides, J. (1995). Design patterns: elements of
reusable object-oriented software: Pearson
Deutschland GmbH.

Garhwal, S., Ghorani, M., & Ahmad, A. J. A. o. C. M. i. E.
(2021). Quantum programming language: A systematic
review of research topic and top cited languages. 28(2),
289-310.

Gyongyosi, L., & Imre, S. (2019). A Survey on quantum
computing technology. Computer Science Review, 31,
51-71. doi:https://doi.org/10.1016/j.cosrev.2018.11.002

Reverse Engineering of OpenQASM3 Quantum Programs to KDM Models

519

Houekpetodji, M. H., Anquetil, N., Ducasse, S., Djareddir,
F., & Sudich, J. (2021). Report From The Trenches A
Case Study In Modernizing Software Development
Practices. Paper presented at the 2021 IEEE
International Conference on Software Maintenance and
Evolution (ICSME).

Imre, S., & Balazs, F. (2005). Quantum Computing and
Communications: an engineering approach: John
Wiley & Sons.

ISO/IEC. (2009). Knowledge Discovery Meta-model
(KDM). Retrieved from https://www.iso.org/standard/
32625.html

Jiménez-Navajas, L., Pérez-Castillo, R., & Piattini, M.
(2020). Reverse Engineering of Quantum Programs
Toward KDM Models. In International Conference on
the Quality of Information and Communications
Technology (pp. 249-262): Springer.

Julian van Velzen, P. B., Sally Epstein, Michiel Boreel,
Sam Genway, Preeti Yadav, Edmond Owen, Gireesh
Kumar Neelakantaiah, Nadine van Son, Kary
Bheemaiah, Prof Moez Draief, Jerome Buvat , Amol
Khadikar, Gaurav Aggarwal. (2022). Quantum
technologies: How to prepare your organization for a
quantum advantage now. Retrieved from Capgemini
Research Institute's Webpage: https://www.capgemini.
com/wp-content/uploads/2022/03/Final-Web-Version-
Quantum-Technologies.pdf

Kazman, R., Woods, S. G., & Carrière, S. J. (1998).
Requirements for integrating software architecture and
reengineering models: CORUM II. Paper presented at
the Proceedings fifth working conference on reverse
engineering (Cat. No. 98TB100261).

Li, H., Khomh, F., & Openja, M. (2021). Understanding
Quantum Software Engineering Challenges An
Empirical Study on Stack Exchange Forums and
GitHub Issues. Paper presented at the 2021 IEEE
International Conference on Software Maintenance and
Evolution (ICSME).

McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C.,
& Yuan, X. (2020). Quantum computational chemistry.
Reviews of Modern Physics, 92(1), 015003.
doi:10.1103/RevModPhys.92.015003

Nguyen, H. T., Usman, M., & Buyya, R. J. a. p. a. (2022).
QFaaS: A Serverless Function-as-a-Service Framework
for Quantum Computing.

Paradauskas, B., Laurikaitis, A. J. I. t., & control. (2006).
Business knowledge extraction from legacy
information systems. 35(3).

Parr, T. ANTLR's web page. Retrieved from
https://www.antlr.org/

Pérez-Castillo, R., De Guzman, I. G.-R., Piattini, M. J. C.
S., & Interfaces. (2011). Knowledge Discovery
Metamodel-ISO/IEC 19506: A standard to modernize
legacy systems. 33(6), 519-532.

Pérez-Castillo, R., de Guzmán, I. G. R., & Piattini, M.
(2011). Architecture-driven modernization. In Modern
Software Engineering Concepts and Practices:
Advanced Approaches (pp. 75-103): IGI Global.

Pérez-Castillo, R., Jiménez-Navajas, L., & Piattini, M.
(2021). QRev: migrating quantum code towards hybrid
information systems. 1-30.

Pérez-Castillo, R., Serrano, M. A., & Piattini, M. (2021).
Software modernization to embrace quantum
technology. Advances in Engineering Software, 151,
102933. doi:https://doi.org/10.1016/j.advengsoft.2020.
102933

Pérez-Delgado, C. A., & Perez-Gonzalez, H. G. (2020).
Towards a quantum software modeling language. Paper
presented at the Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering
Workshops.

Piattini, M., Peterssen, G., Pérez-Castillo, R., Hevia, J. L.,
Serrano, M. A., Hernández, G., . . . Murina, E. (2020).
The Talavera Manifesto for Quantum Software
Engineering and Programming. Paper presented at the
QANSWER.

Qiskit. (2022). OpenQASM3 Examples. Retrieved from
https://github.com/Qiskit/openqasm/tree/main/examples

Ulrich, W. (2010). Modernization Standards Roadmap. In
Information Systems Transformation (pp. 45-64):
Elsevier.

Wang, R. (2021, NOV 30, 2021). Trends: Quantum
Computing Market Cap Tops $174 Billion. Retrieved
from https://www.constellationr.com/blog-news/trends
-quantum-computing-market-cap-tops-174-billion

Weder, B., Barzen, J., Leymann, F., Salm, M., & Vietz, D.
(2020). The quantum software lifecycle. Paper
presented at the Proceedings of the 1st ACM SIGSOFT
International Workshop on Architectures and
Paradigms for Engineering Quantum Software.

Wootters, W. K., & Zurek, W. H. J. P. T. (2009). The no-
cloning theorem. 62(2), 76-77.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

520

