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Abstract: The development of quantum computing is following a substantial growth. This leads us closer to the 
implementation of practical solutions based on quantum software that address problems that are not 
computable by classical software in a practical timeframe. Hence, some companies will need to adapt their 
development practices and, so, their information systems to take advantage of quantum computing. 
Unfortunately, there is still a lack of tools, frameworks, and processes to support the evolution of current 
systems towards the combination of the quantum and classical paradigms into information systems. Hence, 
this paper presents a reverse engineering technique to generate abstract models based on the Knowledge 
Discovery Metamodel (KDM) by analyzing quantum software written in OpenQASM3. The main implication 
is that KDM models represent, in a technology-agnostic way, the different components and interrelationships 
of quantum software. These models then can be used to restructure and redesign the target hybrid information 
system. 

1 INTRODUCTION 

Quantum computing is the result of the application of 
some counterintuitive principles of quantum 
mechanics to computer science (e.g., superposition or 
entanglement) in order to represent information as 
quantum states (Gyongyosi & Imre, 2019). It allows 
the performance of certain algorithms which are 
unattainable for today’s supercomputers. The 
expectation for quantum computing is so high with 
plenty of expected applications, like in chemistry 
(McArdle, Endo, Aspuru-Guzik, Benjamin, & Yuan, 
2020), artificial intelligence (Dunjko & Briegel, 
2018) and, even, in communications (Imre & Balazs, 
2005). Large companies have invested a lot of 
resources in quantum computing and their potential 
applications (Julian van Velzen, 2022; Wang, 2021), 
which are close to be effectively implemented.  

Probably, not all the business operations will be 
adapted into the quantum paradigm. This is because 
the performance of the classical software for some 
business operations is still (and will keep) 
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appropriate. Thus, the new software systems will 
evolve toward hybrid software systems, i.e., classical 
and quantum software will operate together (Pérez-
Castillo, Serrano, & Piattini, 2021). Therefore, 
companies that want to be benefited, will need to 
evolve toward hybrid information systems 
(Houekpetodji, Anquetil, Ducasse, Djareddir, & 
Sudich, 2021). In such hybrid systems, the classical 
part will control and receive all the outputs generated 
by the quantum algorithms executed generally in 
remote quantum computers in the cloud (Nguyen, 
Usman, & Buyya, 2022).   

Throughout the years, a mass of knowledge and 
experience has been accumulated in the field of 
software engineering and, in particular, in software 
modernization (i.e., the progress of reengineering by 
applying a Model-Driven Engineering approach). 
Software modernization has allowed organizations to 
develop and evolve high-quality software in 
compliance with standards and following well-
proven practices (Durelli et al., 2014). Thus, some of 
these software engineering techniques and methods 
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are being adapted for quantum software development 
(De Stefano, Pecorelli, Di Nucci, Palomba, & De 
Lucia, 2022; Li, Khomh, & Openja, 2021; Piattini et 
al., 2020). One of these processes is the Quantum 
Software Modernization process (Pérez-Castillo, 
Serrano, et al., 2021), where the process of software 
modernization considers the integration of quantum 
algorithms when designing the target hybrid software 
systems.  

This paper takes place in the context of the 
Quantum Software Modernization process and, more 
specifically, in the reverse engineering phase. This 
phase is crucial since it is used to produce abstract 
representations of classical and quantum software. 
We are able to generate KDM (Knowledge Discovery 
Metamodel) models (Pérez-Castillo, De Guzman, 
Piattini, & Interfaces, 2011). As a part of the ADM 
initiative, the OMG released KDM within a broad set 
of proposed standards (Ulrich, 2010). KDM 
addresses the main challenges that appear in the 
modernization of legacy information systems (Pérez-
Castillo, De Guzman, et al., 2011) and can contribute 
to the modernization of hybrid software systems. The 
usage of KDM allows to represent in a technology-
agnostic way all the different components and 
interrelationships of quantum software.  

This reverse engineering technique was firstly 
piloted for Q# programs (Jiménez-Navajas, Pérez-
Castillo, & Piattini, 2020). The support for additional 
languages is mandatory, and in case of OpenQASM3 
[13] (QASM hereinafter) is also crucial since it can 
be considered as de facto standard as it has been used 
as a base for developing many software frameworks 
and development environments (Garhwal, Ghorani, 
& Ahmad, 2021). Thus, this paper proposes a reverse 
engineering technique to analyze quantum programs 
developed in QASM and represent that information in 
KDM models. If we want to facilitate the evolution 
from/toward hybrid software systems, companies or 
organizations should not face restrictions on which 
quantum programs they can incorporate into their 
hybrid software systems. Having achieved agnostic 
representations of quantum software, it can be 
integrated along with classical software, which is a 
step forward in the modelling and designing of hybrid 
software systems. 

The remain of this paper is structured as follows: 
Section 2 relates the actual state of Quantum Software 
Modernization and how the representation of 
quantum programs in KDM has been accomplished. 
Then, Section 3 explains how OpenQASM3 
programs have been analyzed and modelled in KDM. 
Section 4 shows a preliminary evaluation of the 

reverse engineering. Finally, Section 5 presents the 
conclusions and future work of this research.  

2 BACKGROUND This section is divided in two subsections. Section 2.1 describes the actual state of the Quantum Software Modernization and Section 2.2 shows the extension of KDM for quantum software. 
2.1 Quantum Software Modernization 

In today’s world companies invest considerable 
amounts of effort in keeping their information 
systems competitive. This often implies performing 
maintenance activities in their systems while the 
preservation of its business knowledge is required 
(Paradauskas, Laurikaitis, & control, 2006). 
However, in some cases, this maintenance becomes 
difficult since the technology on which it was built 
has become obsolete. To address these problems 
during evolution of information systems, the 
Software Modernization process was proposed 
(Pérez-Castillo, de Guzmán, & Piattini, 2011). This 
process was developed by following the traditional 
reengineering approach alongside the Model Driven 
Engineering (MDE) principles. This revisited 
approach solves some of the shortcomings of 
traditional reengineering (the lack of formalization 
and standardization (Kazman, Woods, & Carrière, 
1998)).  

With the advent of quantum computing, many 
information systems could become obsolete, and 
companies will have to modernize them. This does 
not mean discarding the whole system, but first 
assessing which components of the system 
could/should be supported by quantum software and 
be modernized accordingly. Figure 1 presents the 
Quantum Software Modernization process as 
proposed in (Jiménez-Navajas et al., 2020), which 
advocates the use of standards widely accepted in the 
industry such as KDM and UML.  

Quantum Software Modernization consists of 
three phases: reverse engineering, restructuring and 
forward engineering. In the reverse engineering phase 
(left-hand side of Figure 1) the different components 
of the current classical information system and 
quantum programs are represented in KDM models in 
a technology-agnostic way. This phase is the scope of 
this paper. In the restructuring phase (top center of 
Figure 1) the previously generated KDM models are 
transformed into high-level abstraction models and 
the target hybrid information system is designed.  
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Figure 1: Quantum Software Modernization approach. 

Finally, in the forward engineering phase (right-hand 
side of Figure 1), tools are used to automatically 
generate the code of the hybrid information system 
designed in the previous phase. 

2.2 Quantum KDM Extension 

To accomplish the task of modernizing legacy 
systems, the OMG proposed the KDM specification 
(ISO/IEC, 2009). This standard allows the complete 
representation of legacy information systems at a high 
level of abstraction while preserving all business 
knowledge.  

Moving to the context of quantum computing, to 
represent in KDM models the different components 
that are used in quantum software, the metamodel 
must be extended. The extension of the metamodel 
has been carried out using the mechanism provided 
by the standard itself, i.e., by creating an "extension 
family". This extension family contains the different 
components that can appear in a quantum program 
(see Figure 2). 

 
<extensionFamily id="id.0" name="quantum extension"> 
 <stereotype name="quantum programming language" 
 id="id.1"/> 
 <stereotype name="quantum program" id="id.2"/> 
 <stereotype name="quantum operation" id="id.3"/> 
 <stereotype name="quantum gate" id="id.4"/> 
 <stereotype name="qubit" id="id.5"/> 
 <stereotype name="qubit measure" id="id.6"/> 
 <stereotype name="control qubit" id="id.7"/> 
 <stereotype name="qubit array"  id="id.8"/> 
</extensionFamily> 

Figure 2: KDM extension family. 

Whenever a KDM model is generated from an 
OpenQASM3 program, the extension family is 
included in the model. Afterwards, when quantum 

elements are represented, they have an attribute that 
references to a specific stereotype.  

3 OpenQASM3 TO KDM 

To carry out the generation of KDM models from 
QASM quantum programs, the same steps have been 
followed as in (Jiménez-Navajas et al., 2020). This 
procedure consists of creating two modules: one that 
analyses the code and extracts the necessary 
information, and another one that translates this 
information into the KDM standard. This new 
development has not been carried out in a standalone 
tool but integrated into QRev (Pérez-Castillo, 
Jiménez-Navajas, & Piattini, 2021). Section 3.1 will 
discuss how quantum programs are analyzed and 
Section 3.2 shows how the information extracted 
from the previous step is represented through KDM 
standard. 

3.1 OpenQASM3 Parser 

To extract information from QASM programs, a 
parser has been developed. This parser has been 
developed by means of ANTLRv4, a tool for 
generating parsers based on formal grammar 
definitions (Parr). Programs based on ANTLR 
contain the formal definition of the syntax and 
grammar of the language to be recognized. Using that 
grammar ANTLR generates the code of the language 
recognition tool, i.e., the parser. That parser is able to 
recognize the target programming language and 
generates an Abstract Syntactic Tree (AST) which 
represents the structure of the analyzed program. The 
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grammar employed was not defined from scratch, as 
an official QASM grammar is available in (Andrew 
W. Cross, 2020).  

In order to make the explanation of the proposal 
presented as descriptive as possible, a running 
example of the project will be carried out using the 
quantum teleportation algorithm as an input program 
(see Figure 3).  

 
1 OPENQASM 3; 
2 include "stdgates.inc"; 
3 qubit[3] q; 
4 bit crz; 
5 bit crx ; 
6 h q[1]; 
7 cx q[1], q[2]; 
8 cx q[0], q[1]; 
9 h q[0]; 
10 crz = measure q[0]; 
11 crx = measure q[1]; 
12 if(crz==1) z q[2]; 
13 if(crx==1) x q[2]; 

 

Figure 3: Quantum teleportation algorithm implemented in 
OpenQASM3. 

Quantum teleportation (Bouwmeester et al., 1997) 
is one of the most important algorithms in quantum 
computing as it allows us to move the state of one 
qubit to another without violating the no-cloning 
theorem (Wootters & Zurek, 2009). 

Figure 4 shows the outgoing AST generated for 
the teleportation example showed before. Due to the 
space limitation, the example only presents a partial 
tree for lines 6 and 7. The nodes in the AST 
correspond with the same elements used in the 

grammar rules defined for ANTLR. The AST 
elements and its relationships will be later considered 
to generate the KDM model. 

3.2 KDM Generator 

As mentioned before, the QASM parser and its 
corresponding KDM Generator are an extension of 
QRev. For the integration of these new parts in the 
tool, a complete refactoring of the code has been 
performed and the parser and the generator have been 
integrated following the ‘state’ design pattern. The 
state pattern is intended when the desired program is 
desired to “allows an object to alter its behavior when 
its internal state changes. The object will appear to 
change its class” (Gamma, Helm, Johnson, Johnson, 
& Vlissides, 1995). This pattern was chosen because, 
when receiving a quantum program as input, the file 
will behave as an object whose state is defined once 
its extension is known ('.qs' in the case of Q# 
programs and '.qasm' if it is QASM). Depending on 
this, the KDM generator considers the specific 
transformations rules. 

Once the AST has been generated, the module 
oriented to the generation of the KDM models goes 
through the tree and reads the nodes and some 
relationships in the tree. Only the relevant 
information from the nodes is extracted to make the 
KDM models as accurate as possible. Table 1 shows 
the name of the nodes of the AST of quantum 
elements and their representation in KDM. Each of 
the representations in KDM is in accordance with the 
definition of the quantum elements themselves.  

 
Figure 4: Fragment of the AST generated from the teleportation algorithm. 
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Table 1: Quantum elements and its AST and KDM 
representation. 

Quantum 
element 

AST 
modelling 

KDM 
modelling Stereotype 

Quantum 
program 

program Compilation 
Unit 

• quantum 
program 
 

Qubit Quantum 
statement 

StorableUnit • qubit 
• control 
qubit 
• qubit array 
 

Quantum 
gate 

Quantum 
instruction 

Action 
Element 

• quantum 
gate 
• qubit 
measure 

In Figure 5 we can observe the actual KDM 
representation of a Hadamard gate with its 
corresponding "ActionElement" type and its 
stereotype pointing to <<quantum gate>> (as 
defined in the extension family). This KDM elements 
has six children, which respectively represent: 

• The gate snippet (line 4). 
• On which qubit is being applied (line 5-6). 
• Being a qubit register, it specifies which 

qubit register is being applied (line 7-8). 
• The readout of the qubit register (line 9-10). 
• The writing of the qubit register (line 11-12). 
• The flow of the information to the next 

quantum gate (line 12-13). 
 
1  <codeElement id="id.20" xmi:type="action: 
2  ActionElement" kind="operator" name="Hadamard" 
3  stereotype="id.4"> 
4    <source language="OpenQASM3" snippet="h q[1]"/> 
5    <actionRelation id="id.21"xmi:type="action: 
6   Addresses" from="id.20" to="id.17"/> 
7   <codeElement id="id.22" name="1"xmi:type="code: 
8   Value" stereotype="id.5"/> 
9   <actionRelation id="id.23" xmi:type="action: 
10  Reads" from="id.20" to="id.16"/> 
11   <actionRelation id="id.24"xmi:type="action: 
12  Writes" from="id.20" to="id.17"/> 
13   <actionRelation id="id.25"xmi:type="action: 
14   Flow" from="id.20" to="id.26"/> 
15 </codeElement> 

Figure 5: KDM resulting from the analysis of a Hadamard 
gate. 

Following the running example started in the 
previous section, in Figure 6 can be seen the teleport 
algorithm KDM’s representation through the Eclipse 
model view.  At the top of the model is located the 
extension family explained previously (cf. Section 
2.2). Then, we have the declaration of the quantum 
program through the type "CompilationUnit" and 
through the attribute with the name of the program 

(teleport.qasm). Subsequently, we can see the 
declaration of a qubit and other variables where the 
results of the quantum operations will be stored. 
These variables are represented in KDM by means of 
the type “StorableUnit”, but the qubit has an attribute 
“stereotype” which points to the id of the element 
“qubit” in the extension family. 

 
Figure 6: Resulting KDM of the teleport algorithm. 

4 PRELIMINARY EVALUATION 

This section will consist of a preliminary evaluation 
of this tool extension. A total of 13 QASM programs 
extracted from the Qiskit example repository on 
Github (Qiskit, 2022) have been used to carry out this 
evaluation. Currently, there is not a large number of 
independent projects publishing quantum algorithms 
or programs. As a result, most of the resources or 
samples are usually found in the repositories of the 
programming languages (i.e., most of the examples 
developed in OpenQASM3 are found in their own 
repository), which in turn means that these same 
programs are the most visualized or used. Although 
there are 23 examples in the repository, in the end we 
filtered in 13 of them. Some programs were discarded 
since these contained sets of language declarations 
(like quantum gates’ definitions) or these presented 
oracle’s implementations (which are out of the scope 
of this project). 

The results obtained from the evaluation can be 
observed in Table 2, where the name of the analyzed 
file and the variables used for its evaluation can be 
found, such as the element size, which consists of the 
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sum of qubits and quantum gates (i.e., StorableUnits 
and ActionElements in the KDM model), and the 
number of relationships (i.e., Reads, Addresses and 
Flow in KDM). In addition, it includes the time (in 
milliseconds) spent on generating the KDM. The 
execution environment consisted of a laptop with an 
i7 10510U with 2.30 GHz, 16 GB of RAM.   

For this preliminary evaluation the precision, 
recall and f-measure of the KDM models generated 
have been calculated. To assess these values, we have 
employed the data that can be seen in the columns 
which concerns to the size of the elements, 
relationships, and missing elements. Missing 
elements are mainly composed of three structures: 
functions (and therefore all quantum gates that are 
implemented within a function), oracles, and 
measurement gates. Those missing elements are not 
represented in KDM, causing the comparison to be 
inaccurate.  

Each missing quantum gate (either because it is 
defined in an oracle or implemented within a 
function) has been multiplied by 4 since at least its 
KDM representation would have a child “Addresses” 
and another “Writes”, but we considered convenient 
to compensate for the possible “Flow” and the 
“Value” that other quantum gates may have. Oracles 
that work as identity gates have not been considered 
as missing elements although are not represented. 

About irrelevant elements (i.e., false positives) the 
reverse engineering technique does not retrieve 
anything undesired in the KDM model. Thus, the 
precision of the tool is always 100%.  

Observing results in Table, there are specific 
programs such as 'msd' or 'rus' where the recall drops 
to almost 30%. As explained above, quantum gates 
within functions and oracles are not modelled in 
KDM yet, which causes the average recall obtained in 
programs such as those mentioned to drop. 
Nevertheless, the effectiveness of the tool could be 
considered acceptable since the study reported an 
average of 72.2% recall. Moving to the f-measure 
value, obtaining such a high percentage is not 
surprising as this measure has a direct relationship 
with the values obtained from recall and precision. 
However, this measure indicates that the generated 
models present a correct accuracy (81.2%). 

In summary, reverse engineering of quantum 
programs allows to represent them in abstract models 
with an average recall of 72.2%, which proves that 
quantum programs could be integrated into the high-
level design of hybrid information systems. The 
modelling of these new systems has yet to be 
formalized, but the state of the art (Azeem Akbar, 
Rafi, & Khan, 2022; Pérez-Delgado & Perez-
Gonzalez, 2020; Weder, Barzen, Leymann, Salm, & 
Vietz, 2020). 

Table 2: Results obtained from the preliminary evaluation. 

File name #Storable 
Units 

#Action 
Elements #Reads #Addresses #Flow #Missing 

Elements 
Precision 
(%) 

Recall  
(%) 

F-Measure 
(%) 

KDM 
Generation 
time (ms) 

adder 5 6 7 6 5 23 100 55.8 71.6 94 
alignment 1 2 3 2 1 8 100 52.9 69.2 12 
gateteleport 3 3 4 3 2 1 100 93.8 96.8 60 
inverseqft1 2 17 17 17 16 4 100 94.5 97.2 77 

inverseqft2 5 12 12 12 11 4 100 92.9 96.3 13 
ipe 2 4 0 4 3 12 100 52.0 68.4 14 
msd 4 6 8 6 5 75 100 27.9 43.6 88 
qec 4 6 6 6 5 17 100 61.4 76.1 8 
qft 2 13 19 13 12 0 100 100.0 100.0 15 
qpt 2 2 0 2 1 1 100 87.5 93.3 8 
rb 2 8 10 8 7 1 100 97.2 98.6 4 

rus 4 4 0 4 3 31 100 32.6 49.2 13 
teleport 4 8 10 8 7 4 100 90.2 94.9 13 

Min 1.0 2.0 0.0 2.0 1.0 0 100 27.9 43.6 4 
Max 5.0 17.0 19.0 17.0 16.0 75 100 100.0 100.0 94 
Avg 3.1 7.0 7.4 7.0 6.0 13.9 100 72.2 81.2 30 

Std. Dev. 1.3 4.6 6.2 4.6 4.6 20.7 0 25.9 19.5 30 
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As can be seen in the KDM generation time 
column, the time does not exceed 100 milliseconds in 
any of the cases, obtaining an average of 30 
milliseconds and a standard deviation of 30. The 
results obtained show that the number of elements 
does not necessarily imply an increase in time. For 
example, the teleport algorithm ('teleport'), is one of 
the algorithms that generates more elements and 
relations, took 13 milliseconds, while the magic state 
distillation algorithm ('msd') took 88 milliseconds 
presenting a smaller number of elements.  

5 CONCLUSIONS 

This paper presents a reverse engineering technique 
that allows the representation of QASM programs in 
the KDM standard. The representation of the 
programs is performed by means of high-abstraction 
level models in a technology-agnostic way. The 
KDM models generated from the QASM programs 
available in the official Qiskit repository have been 
used to conduct a preliminary evaluation that shows 
suitability of this extension and contributes to its 
applicability in industry. 

We can conclude that the major achievement of 
this proposal is to demonstrate that, despite the large 
number of quantum programming frameworks and 
languages, it is possible to agnostically model the 
information of quantum algorithms to be used in the 
software modernization of hybrid information 
systems. Because our task is to bring software 
modernization closer to the quantum paradigm, we 
represent the information extracted from the 
algorithms according to the KDM standard. KDM 
was not specifically developed for modelling 
quantum software, but its extension mechanism 
allows us to do so.  

This proposal is framed in long-term research 
whose main objective is to adapt the process of 
software modernization for the combination of both 
classical and quantum software towards hybrid 
information systems.  

Our future work has two separate but related 
paths. The first is the improvement of this technique, 
as possible improvements have been identified, 
including the implementation of the representation of 
oracles and other control structures in QASM. The 
second path concerns the implementation of the other 
phases of quantum software modernization, such as 
restructuring and forward engineering.  
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