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Abstract: The mobile games market has grown in relevancy compared to traditional gaming platforms. The standard ar-
chitecture for these games requires the processing of game logic and graphics using the device’s own hardware.
Alternatively, cloud based architectures for remote gaming on smartphones present high game input delay at
a high cost for the service provider. This poses a limitation to the variety and complexity of games that target
these platforms as well as constraining user QoE. To address that limitation, this work proposes the Gaming
On The Edge (GOTE) architecture, that aims to enable complex games to be played on smartphone devices
while leveraging edge computing infrastructure into graphics processing and content distribution systems. A
GOTE architecture’s proof of concept is developed and tested using WebRTC with an RTP streaming pipeline
that exploits NVENC for achieving low latency video encoding. Experimental results show that GOTE ar-
chitecture is a viable alternative to cloud based remote gaming on smartphones at the advantage of lowering
latency of video and game input. An open source implementation of the architecture is provided in order to
assist further research in this area.

1 INTRODUCTION

The mobile games market has grown to be the biggest
one when compared to traditional platforms like PC
and consoles. In 2021, tablet and smartphone games
added up to a revenue of 96 billion dollars, 52% of
market share, and a trend of growth for the following
years (Newzoo, 2021). The standard architecture for
these games requires the processing of game logic and
graphics using the device’s own hardware. This poses
a limitation to the variety and complexity of games
that target these platforms, since mobile devices have
less hardware capabilities when compared to special-
ized gaming PC or consoles (Messaoudi et al., 2017).

One possible solution to processing game logic
and graphics relies on cloud infrastructure instead of
the player’s mobile device. Companies like Sony,
NVIDIA and Paperspace have been providing cloud
gaming services (Lin et al., 2019). In the cloud
gaming architecture the player interactions are sent
to a cloud server and a rendered game scene is sent
back as a video stream (Messaoudi et al., 2017). Al-
though scalable, the cloud approach requires the game
code to be offloaded to one or multiple cloud servers,
making the architecture susceptible to high player in-
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put delay on poor network conditions, which leads
to low Quality of Experience (QoE). Besides, this
model imposes non-trivial infrastructure costs to the
gaming service provider since the most part of the
computational workload is performed in the comput-
ing provider (Cai et al., 2016). Recently, Google
announced shutting down its cloud gaming platform
Stadia (Google, 2022).

Edge computing (EC) is a paradigm that takes the
processing of data to the edge of the network instead
of a centralized cloud. Dedicated edge infrastructure,
such as cloudlets (Lin et al., 2019), or devices like
routers and mobile phones can exchange workloads
and achieve low-latency communication inside a local
network while still being able to send post-processed
data to the cloud if needed (Liu et al., 2019). These
edge nodes can make use of virtualization to host the
execution of code offloaded from external applica-
tions, like mobile games (Zhang et al., 2019). This
strategy enables sophisticated applications to the mo-
bile users while extending battery lifetime since most
of the computational load is being performed in the
edge of the network (Mach and Becvar, 2017). There-
fore, the problem being faced by this work is how to
provide an opportunity for games to be played on mo-
bile devices using computing resources that are more
prone to be found in infrastructure services.
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To accomplish that, this work proposes an Edge
Computing (EC) architecture to mobile gaming
named Gaming On The Edge (GOTE), leveraging the
proximity between edge nodes and mobile devices to
achieve low input delay. Similarly to the cloud gam-
ing architecture, this alternative prevents game logic
and rendering from being performed by the player’s
mobile device by offloading the related code to a
nearby edge node, enabling sophisticated games to be
played on smartphones and increasing user QoE.

In this sense, this work provides the follow-
ing contributions: 1) An edge-based remote gaming
architecture that aims to enable resource intensive
games to be played on mobile devices; 2) A video
streaming pipeline that achieves low-latency game
video feedback in the edge context, without any in-
strumentation of game code; 3) An open source proof
of concept implementation1 of the architecture’s core
in order to assist further research in this area.

This work is organized as follows. Section 2 de-
notes background concepts to the understanding of
the proposed work. Section 3 presents and discusses
previous work that took the remote gaming approach
to the edge computing context. Section 4 defines the
GOTE architecture. Furthermore, Section 5 describes
the experiments performed with the GOTE architec-
ture and its results, that are discussed on Section 6.
Section 7 concludes this paper and proposes future
work.

2 BACKGROUND

This section introduces concepts and tools used on
the system architecture and implementation. The
Web Real-Time Communication (WebRTC) standard
is used on the GOTE architecture for establishing
communication between the player client and the ren-
dering server, while the GStreamer framework is re-
sponsible for the media pipeline that enables real-
time streaming of the game scenes. Also, the built
pipeline leverages the hardware based Nvidia En-
coder (NVENC) for achieving low latency video feed-
back.

2.1 WebRTC

WebRTC is a standard that provides Application
Programming Interfaces (APIs) that enable real-
time Peer-to-Peer (P2P) communication to HTML5
browsers, and it is commonly used for web confer-
encing. It also enables Real-time Transport Protocol

1https://github.com/gpr-indevelopment/gote-game-
server-2

(RTP) streams to be displayed on an HTML5 video
tagged page (Loreto and Romano, 2014). RTP takes
advantage of the User Datagram Protocol (UDP) in-
stead of the Transmission Control Protocol (TCP) on
the transport layer in order to achieve low latency
communication and high data throughput. For the
peers to connect, first they must go through the sig-
naling process, in which each peer shares informa-
tion about supported media types, codecs and re-
lated configuration by means of the Session Descrip-
tion Protocol (SDP). Also, reachability information of
each peer, such as public Internet Protocol (IP) ad-
dresses, are collected from a Session Traversal Utili-
ties for Network Address Translation server (STUN),
and shared through the Interactive Connectivity Es-
tablishment (ICE) technique (RFC5245)(Rosenberg,
2010). Traditionally, all communication and informa-
tion exchange in this process is mediated by a ded-
icated signaling server (Loreto and Romano, 2014).
In GOTE the streaming server also provides signal-
ing functionalities and acts as a mediator of this pro-
cess. WebRTC is advantageous for the GOTE archi-
tecture since it provides a standard for establishing a
streaming session between the rendering server and
the smartphone client. It also enables the game stream
to be easily displayed on smartphones by leveraging
the WebRTC API available in modern browsers.

Fig. 1 presents the WebRTC session sequence dia-
gram used in GOTE for the rendering server. The sig-
naling and rendering modules are components of the
GOTE rendering server application. First, both the
player client and the rendering module communicate
with the signaling module in order to retrieve a com-
mon session identifier. Then, the player client creates
an SDP offer based on the media type it is able to
play. In parallel, the rendering module creates an SDP
offer based on the media it can transmit. Next, the
ICE candidates are retrieved from the STUN servers
by both the player client and the rendering module.
These candidates carry the available methods and ad-
dresses the peers can use to communicate with each
other. Finally, the signaling module mediates the ex-
change of ICE candidates and SDP offers between the
player client and the rendering module. The rendering
module can start the video stream once this exchange
has finished.

2.2 STUN

The existence of different network topologies can in-
crease the complexity of the connection establishment
between peers in the WebRTC environment. For ex-
ample, peers can be in different private networks re-
lying on the Network Address Translation protocol
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(NAT) for being reachable over the internet through
public IP addresses. GOTE leverages the STUN pro-
tocol for enabling the connection between the render-
ing server and the player client on a wider range of
network topologies.

STUN is a protocol used in WebRTC’s (Rosen-
berg, 2010) signaling process for collecting public IP
address information from the peers (Loreto and Ro-
mano, 2014). The peers can request their public IP ad-
dresses from a centralized cloud STUN server, creat-
ing a NAT binding on each peer’s router. This binding
maps a public IP and port to an IP in the private net-
work, enabling peers to be reachable over the Internet.
STUN can also be used to maintain NAT bindings via
periodic connectivity checks (Rosenberg, 2008). Fi-
nally, the peers can exchange their public IP addresses
through ICE as part of WebRTC’s signaling process.

2.3 GStreamer

GStreamer is a framework for streaming media appli-
cations. It enables multimedia pipelines to be built
with a broad variety of input and output format and
sources. A GStreamer pipeline consists of elements
that are interconnected in order to take multimedia
data from a source to an output (GStreamer, 2021).
Video encoding must be executed by one element of
the media pipeline in accordance with the allowed
media formats informed by the destination peer at the
session agreement. In the GOTE case, since RTP
is supported by the client’s web browser, the video
stream acts as the output of the media pipeline.

2.4 Hardware Encoding

Software encoding involves video encoding using
CPU resources. It is capable to achieving high video
quality at a speed that varies on the type of architec-
ture and performance of the CPU. It has been widely
used on Internet media. However, it is not suitable

Figure 1: GOTE WebRTC session sequence diagram.

for real-time video streaming since software encoders
can take up to several hours to compress a short video
in high definition using recent codecs (Kufa and Kra-
tochvil, 2017).

In contrast, hardware encoding uses a dedicated
GPU for video encoding tasks with higher perfor-
mance. The encoding speed from hardware encoding
can be up to ten times higher when compared to con-
ventional software encoding (Kufa and Kratochvil,
2017), making it suitable for real-time video stream-
ing. NVENC is NVIDIA’s hardware accelerated en-
coder. It is independent of the graphics performance
of the GPU, and during encoding, the graphics engine
and CPU are free for other tasks (NVIDIA, 2021). In
GOTE’s architecture, NVENC accelerates encoding
for a H.264 video stream.

3 RELATED WORK

The Games@Large project (Nave et al., 2008) aimed
to research, develop and implement an architecture
for remote execution of games using code offload-
ing to local servers. This architecture’s use cases in-
clude hotels, cruise ships and Internet cafes. Instead
of streaming the game scenes as a video back to the
player’s device, this approach requires the scenes to
be rendered locally using the mobile device’s hard-
ware resources (Eisert and Fechteler, 2007). This
was achieved by capturing the commands sent by the
game logic to the related graphics API and redirect-
ing it to the player’s mobile device for rendering.
The tests showed low frame-rates for mobile devices,
ranging from 7 FPS on a business strategy game to 18
FPS on a casual game with an average of ≈ 0.34 Mb/s
sent over the local network.

The EdgeGame project (Zhang et al., 2019) pro-
posed an EC based architecture for mobile gaming
and built a prototype that offloads the processing of
game logic and rendering to edge nodes using virtu-
alization. The game scenes are then sent back as a
video stream to the mobile user using the WebRTC
standard. A congestion control algorithm is used for
dynamically adjusting the rate at which data is trans-
ferred based on network conditions (Jansen et al.,
2018). This standard fits the mobile gaming use
case since it provides adaptability on unstable net-
works and real-time communication of player input
and game video stream. In EdgeGame the player can
locate available edge nodes by sending requests to
a centralized data center, that is also responsible for
managing user accounts and providing login services.
The tested network delays experienced on the EC ap-
proach were significantly lower (16.2ms) when com-
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pared to a cloud based one (44.2ms). Also, the user’s
QoE on EdgeGame was 20% higher when compared
to a cloud based alternative.

The RenderLink project (Oros and Bâcu, 2020)
also adopts the approach of game code offloading to
the edge while sending a video stream back to the
client using WebRTC. Instead of using a dedicated
edge node for rendering, RenderLink proposes a peer-
to-peer (P2P) strategy that leverages idle user devices
for this task. In a commercial implementation, users
that expose their hardware resources and cooperate
in the network may be rewarded with virtual cur-
rency. Still, the P2P approach limits the complexity of
the games rendered based on the hardware resources
available in the network. The tests performed with
RenderLink project showed an average frame rate of
55.65 frames per second (FPS) on 720p over a wired
connection with standard deviation of 13.48. It was
noted that most implementations of WebRTC begin
streaming with low quality and gradually ramp up to a
stable condition, that accommodates bandwidth con-
straints, after around 1 minute and 20 seconds. This
characteristic of the implementations may hinder the
Quality of Service (QoS) during that time period.

3.1 Considerations About the Related
Work

EdgeGame (Zhang et al., 2019) and RenderLink
(Oros and Bâcu, 2020) took similar approaches to
service discovery, leveraging a centralized data cen-
ter for starting a game session. Even so, a mobile
client can discover a Local Area Network (LAN) ren-
dering server through Simple Service Discovery Pro-
tocol (SSDP) (Donoho et al., 2020) or Service Loca-
tion Protocol (SLP) (Day et al., 1999), which decou-
ples the client from any centralized server since they
do not need to know about each other before starting
the communication to create a game session. Also,
the usage of LAN protocols enables discovery to be
performed without Internet connection. In the case
of WebRTC, this is only possible if a local signaling
server exists.

In general, the usage of RTP showed promising
results on other projects that took the game scene
streaming approach. This protocol was used by
EdgeGame and RenderLink in conjunction with the
WebRTC APIs, while having the frame rate stabiliza-
tion time as a drawback. The frame rate and resolu-
tion results of the local rendering approach presented
by the Games@Large (Nave et al., 2008) project were
surpassed by the WebRTC video streaming initiatives
(Oros and Bâcu, 2020). Also, the local rendering of
graphics is not ideal since it increases the amount of

data being transferred to the device, and limits the
complexity of games to the player’s device hardware
capabilities.

Still, for the video streaming approach it is noted
that the QoE is directly affected by the frame rate at
the rendering source (Oros and Bâcu, 2020). So, the
rendering server and the client should have at least
equivalent hardware resources in order for the of-
floading to be worthwhile. Using a peer mobile de-
vice as a rendering server, as done by RenderLink,
limits the complexity of games that can be streamed
based on the hardware resources of the peers (Oros
and Bâcu, 2020). On the other hand, the dedicated
edge server strategy of EdgeGame is more expensive,
but enables complex games to be streamed to mobile
clients such as smartphones (Zhang et al., 2019).

This work takes the WebRTC approach for
streaming game scenes from a rendering server to the
player’s mobile client by means of the RTP usage,
as suggested by EdgeGame and RenderLink, while
constructing a media pipeline that takes advantage of
hardware encoding for improving performance and
QoE gain. Also, virtualization is used as a platform
for instantiating and managing rendering servers us-
ing a developed orchestrator. None of the related
works provided enough implementation details for re-
producibility. Table 1 presents a comparison between
the GOTE proposal and analyzed literature that took
the remote gaming approach to the edge computing
context.

4 ARCHITECTURE OVERVIEW

GOTE architecture is based on direct communication
between a rendering server and a player smartphone
client. Game input from the player is sent to the server
through WebSockets, that renders the game scene and
streams video back to the client using RTP. Such
server is deployed on a virtual node (VN) of a desk-
top PC or some other edge device with graphics pro-
cessing capabilities that is able to start the requested
game and a media pipeline for the RTP stream. This
pipeline must be efficient enough to stream at frame
rates and resolutions that maximize the player’s QoE.
The smartphone client has a mobile application with
a game module, responsible for displaying the game
stream and transmitting game controller input, and
a discovery module, that enables the discovery of a
compliant orchestrator reachable by the client. The
orchestrator component is responsible for instantiat-
ing and managing VNs while forwarding game inputs
from the game module to the corresponding rendering
server. Fig. 2 presents an overview of the architecture.
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Table 1: Comparison between GOTE and related work.

Games@Large RenderLink EdgeGame GOTE

Rendering Player device Edge server Edge server Edge server

Multiplayer X ✓ ✓ X

WebRTC X ✓ ✓ ✓

RTP ✓ ✓ ✓ ✓

Hardware encoding X Unknown Unknown ✓

Instrumentation of
game code ✓ ✓ Unknown X

Provided
implementation X X X ✓

In this solution each VN is responsible for the game
session of one player client, and the RTP stream is dis-
played on the game module in a web browser, since it
is compliant with the WebRTC standard.

As described in Section 2.1, the usage of WebRTC
requires a signaling server that acts as a mediator for
establishing the connection between the peers. Al-
though the GOTE rendering server acts as a media-
tor during the signaling process, a cloud STUN server

STUN server

Mobile app

Discovery
Module

Game
Module

(Web browser)

Player smartphone

Game input
(WebSocket)

RTP stream

Hyper-V

VN1 VN2 VN3 VN4

Orchestrator

Figure 2: Overview of the GOTE architecture.

is still necessary for acquiring reachability informa-
tion from the peers. This architecture relies on cloud
STUN servers that are accessible by both the client
and the rendering server. The communication with
cloud servers only happen during signaling and is not
impactful to the gameplay QoE.

The VNs are provisioned by the orchestrator com-
ponent when a gaming session request is received
from the player client, as shown on Fig. 3. VNs are re-
sponsible for running the game processes and stream-
ing video data to the clients while sharing hardware
resources from the host. GPU resources are shared
via GPU passthrough, available from Windows Server
2016 onwards (Microsoft, 2022).

Thus, when a client requests a gaming session
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Figure 3: Flowchart of the VN and rendering server provi-
sioning process.
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Figure 4: VN architecture.

to the orchestrator, it verifies if there are enough re-
sources to instantiate a new VN to serve that player.
In case it is possible, a rendering server application is
deployed on the VN. Such application is responsible
for starting the game and video streaming processes.
The media pipeline is implemented using GStreamer
while leveraging NVENC hardware encoding from
NVIDIA GPUs. Fig. 4 presents the proposed VN ar-
chitecture.

Fig. 5 presents the GStreamer pipeline assembled
for the system. The dxgiscreencapsrc element is re-
sponsible for capturing RGBA (red, green, blue and
alpha) data of the game screen at a rate of 60 FPS. The
following element, nvh264enc, uses the NVENC en-
coder API to encode the video stream with the H.264
compression. Then, the rtph264pay packages the
H.264 encoded video stream into the payload of the
RTP packets. Finally, GStreamer makes the stream
available for WebRTC connections on webrtcbin.

dxgiscreencapsrc nvh264enc rtph264pay webrtcbin
(RTP stream)

Figure 5: GStreamer pipeline.

WebSockets are used for sending game input com-
mands to the VNs and for all communication related
to signaling due to its bidirectional capabilities.

A practical example of the GOTE architecture can
be divided into two phases. First, at the game and
stream provisioning phase, the player (user) initiates
its interaction with the architecture by means of a
mobile application. This application is responsible
for discovering and communicating with a local or-
chestrator in order to establish a game session. The
orchestrator discovery is performed by the discovery
module of the mobile application by means of a cen-
tralized cloud server, or a service discovery protocol

such as SSDP or SLP, for example. Then, the player
can request a game to the orchestrator based on a cat-
alog of games installed on the VN and available for
remote play. After receiving the game request, the or-
chestrator will perform the VN provisioning to a VN
host, as presented on Fig. 3. The orchestrator returns
an error if there are not enough hardware resources
for the requested game. If the provision is success-
ful, the game module of the mobile application opens
the web browser in order to begin the WebRTC ses-
sion establishment, as described on Fig. 1, making the
game video stream available and allowing the user to
start playing. This establishes the beginning of the
remote gameplay phase. At this point, every player
controller input, along with a session identifier, will
be sent to the orchestrator for forwarding to the corre-
sponding VN responsible for hosting the current game
session. Fig. 6 presents the interactions between the
components on an example with successful VN pro-
visioning.

5 EXPERIMENTS AND RESULTS

Experiments were conducted to evaluate the GOTE
architecture on scenarios of increasing complexity.
The ”Local” scenario consists on running the player
client and rendering server locally on the same physi-
cal hardware in order to establish an architecture base
line performance. The ”Wireless LAN” one consists
on running the player client on a smartphone and the
rendering server on a desktop PC that share the same
5 GHz wireless LAN, emulating a high performance
edge computing environment. The last experiment,
labeled ”4G”, consists on running the architecture
while streaming game scenes from a desktop PC ren-
dering server to a smartphone player client over 4G,
emulating a more realistic edge computing scenario.

The performance metrics chosen to evaluate the
GOTE architecture comprising video streaming are
jitter, packet loss, bitrate, frames dropped and sent per
second to the player’s client device. Also, the game
input delay (GID) was measured as the time differ-
ence between player interaction and command arrival
on the rendering server on every second. Jitter, packet
loss and frames dropped are metrics directly related to
the stability of connection and data transmission be-
tween the rendering server and the player client. In
addition, the amount of video data being transmitted
over the network, and its variation over time, is rep-
resented by the bitrate data while GID data was used
to assess how different network scenarios impacted
game real-time response.

A Windows 10 PC with an i5-9400F 2.90GHz
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processor, 16GB RAM and NVIDIA GeForce RTX
2060 video card hosted the rendering server on all ex-
periments, along with a Redmi M2101K7AI smart-
phone with 6GB RAM as the player client. The cho-
sen web browser was Google Chrome 96.0.4664.45
running on Android 11. A public cloud STUN server
was used during signaling to establish the connec-
tion between the peers. The NVENC accelerated
H.264 encoder component of the GStreamer pipeline
was set to a constant bitrate of 500 kBps with the
low latency preset, as recommended by NVIDIA for
game-streaming use cases (NVIDIA, 2022). The
screen capturing component used a source resolu-
tion of 1280x720 pixels (720p) at 60 frames per sec-
ond. Graphics test 1 and 2 from 3DMark’s Time
Spy benchmark were transmitted from the rendering
server on all experiments. The benchmarks lasted for
150 seconds in total, with a loading screen at the start
and in between tests.

Even though real remote gaming scenarios in-
volve video streaming and game command communi-
cation simultaneously, it is unlikely that the traffic in-
volved in sending lightweight user input commands to
the server would deeply influence the stream results.
Therefore, GID data was collected on independent ex-
periments for all three network scenarios. These ex-
periments ran over a 90 seconds time window, which
is sufficient for capturing the impact of the different
network scenarios in game input feedback and remote
gaming experience. Fig. 7 and Table 2 present the re-
sults from all experiments.

These metrics were collected for one rendering

server streaming to one player client and hence the or-
chestration component was not used during the exper-
imentation. Also, the time for the connection estab-
lishment related to VN provision and signaling were
not taken into account during the experiments.

6 DISCUSSION

Frame rate is an important feature of video motion
particularly important for the player experience. Al-
though 60 FPS is desired, it is known that some
variation between 30 and 60 FPS not impact gam-
ing QoE significantly (Zadtootaghaj et al., 2018).
All experiments showed stable frame rates around 60
FPS. However, the Local and Wireless LAN scenar-
ios showed the highest deviation from the average
FPS mark of 5.68 and 7.61 frames per second, respec-
tively. A significant part of these deviations was due
to frame rate drops at the start of the streaming and
close to the 90 seconds mark, at the transitions be-
tween the loading screens and the beginning of the
benchmarks. There are also peaks in jitter for all ex-
periments at the same time windows.

The abrupt transition from the loading screens
to the benchmarks may have created a delay in the
compression step of the pipeline due to motion com-
pensation, which is a technique that predicts future
frames based on camera motion and objects in neigh-
bor frames of the video (Chen et al., 2001). Since
H.264 uses motion compensation (ITU, 2021), it im-
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(a) Frame rate (b) Jitter

(c) Bitrate (d) GID

Figure 7: Experimental results.

pacted frame rate both at the beginning and at the 90
seconds mark. On a real gaming scenario, this delay
in compression is more likely to occur in cinematic
oriented games, where camera cuts are frequent, and
less likely to occur in strategy games, for example,
where motion compensation can take advantage from
fewer image changes from one frame to the next. The
motion compensation impact can be seen on bitrate
data between the 60 and 90 seconds marks, during the
transmission of a loading screen, in which the only
motion region in video is the loading bar and the bi-
trate falls close to zero.

The 4G experiment had 4 packets lost during the
experiment. This is critical for the RTP stream since
UDP has no recovery mechanism for handling lost
packets. Also, this metric has significant impact on
the perceptual quality of the video stream (Pande
et al., 2013). Still, the 4 packets lost on the 140 sec-
onds mark had no impact on the stability of the video,
as seen in the frame rate and bitrate data.

The Local experiment had 6 frames dropped dur-
ing the 150 seconds time window. Running the
rendering server and the browser client locally may
have impacted performance due to the competition for
hardware resources, consequently favouring packet
drops. Still, no scenario was significantly impacted
by frame drops along the experiments.

Jitter values under 100ms do not damage player

Table 2: Average and standard deviation results for the per-
formance metrics.

Average

(standard deviation)

Unit Local
Wireless

LAN 4G

Frame
FPS

56.17 54.47 54.43

rate (5.68) (7.61) (3.17)

Jitter ms
12.45 13.33 10.04

(6.41) (2.52) (2.53)

Bitrate kbps
318.54 344.56 343.29

(138.64) (146.57) (148.27)

GID ms
0.80 6.85 14.78

(2.23) (7.63) (8.50)

QoE even for multiplayer action shooting games
(Amin et al., 2013). This metric remained under 100
ms on all experiments, even at the transitions to and
from the loading screen, meaning that the buffer used
by WebRTC was efficient at sequencing packets for
the video stream, and no component in the media
pipeline created significant delays in frame delivery.
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The average bitrate for all experiments remained
between 310 and 350 kBps, meaning that on the aver-
age case all scenarios supported a similar rate of video
data streaming to the player client. This rate is lower
than the 500 kBps specified on the video encoder of
the GStreamer pipeline because of bandwidth condi-
tions and motion compensation. Also, the LAN and
4G experiments had higher bitrate variations when
compared to Local because of the remote nature of
the stream. Is is noticeable that the bitrate variabil-
ity increased as the complexity of the experiments in-
creased, from Local to 4G.

GID on experiments stayed below 20 ms and in-
creased with the complexity of the scenario. This
result favor QoE when compared to 60 ms, con-
sidered small even for action online games (Quax
et al., 2004). Also, GID metrics were collected ev-
ery second for a simple game input, which means that,
these results may vary for complex games that require
higher player interaction rate.

The GOTE architecture enables game streaming
on an edge rendering server without the need for any
instrumentation of game code, as done by literature
work (Oros and Bâcu, 2020). This means that the ren-
dering server is able to stream any game that runs on
a Windows PC edge node regardless of the technol-
ogy it uses. Then, the scale of a commercial applica-
tion based on GOTE can be increased with a system
that rewards virtual currency in exchange for donated
hardware resources, enabling flexible ways of mone-
tizing the usage of a service that leverages this archi-
tecture for providing remote gaming to customers.

RenderLink reported an average of 60 FPS on a
resolution of 1600x900 (Oros and Bâcu, 2020). In
addition, Games@Large showed a peak of 26 FPS
and problems running games on edge devices with
no hardware acceleration features (Nave et al., 2008).
The proposed approach was able to achieve higher
FPS at 1280x720 (720p) when compared with Ren-
derLink and Games@Large. Also, the 4G tested GID
was lower when compared to EdgeGame’s reported
network delay of 16.2 ms (Zhang et al., 2019).

7 FINAL CONSIDERATIONS

This work proposed the GOTE architecture, that en-
ables complex games to be played on smartphone
devices, leveraging edge infrastructure with graph-
ics processing capabilities. Also, the architecture’s
core was implemented using WebRTC, GStreamer
and NVENC. All experiments were able to sustain
desirable frame rates, quality and stable streaming
across the tested time frame.

The implementation of the architecture relied on
WebRTC for displaying an RTP stream on a player
smartphone browser client. Commercial applica-
tions of this architecture should consider implement-
ing a WebRTC compliant API on other platforms, or
use another abstraction to deliver low latency video
streaming to mobile clients. Services like this make
use of a mobile app with service discovery capabili-
ties, via SSDP or others, to communicate with a local
compliant orchestrator without the need for Internet
connection. This approach can be useful for closed
events, cruise ships, trains and other transportation
means without stable Internet connection, for exam-
ple.

The implementation applied the H.264 codec to
the video being streamed via RTP to the player client.
Besides this codec, VP8 is also supported by We-
bRTC compliant browsers (Mozilla, 2021). Further
iterations of this architecture should consider the us-
age of VP8 and a comparison with H.264 and other
media pipeline optimizations. Also, all experiments
relied on hardware-accelerated video encoding using
NVENC. Future work should evaluate other encoding
techniques and hardware for this task.

This work implemented and experimented with
single player experiences for remote gaming. The
value proposition of a remote gaming service in-
creases if it supports multiplayer gaming. Therefore,
future work should repeat the proposed experiments
in a multiplayer scenario, and investigate its impact
in video streaming metrics and the resource consump-
tion on the rendering server. Further work should
also consider network stress scenarios for the video
streaming and the signaling process, since all experi-
ments ran under stable network conditions. Also, GID
metrics were collected periodically. Therefore, stress
scenarios should also test GID for games with high
player interaction rate.

GOTE architecture’s mobility can be enhanced by
improving the orchestrating algorithm so that it dis-
covers eligible edge hardware locally, and calculates
the most efficient VN provisioning (code offload-
ing) strategy according to the game being requested,
the number of players on a gaming session, the dis-
tance from the player client device, network condi-
tions and other parameters. Such strategy may even
conclude that running the requested game locally on
the player’s smartphone device is the most efficient
decision, in case of insufficient edge resources avail-
able. Also regarding mobility, there are challenges
in seamless game session handover from one VN to
another without instrumentation of game code while
maintaining QoE.

Edge remote gaming represents a potential succes-
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sor of the traditional cloud based streaming model.
Therefore, future work should evaluate the advan-
tages and disadvantages, both for the player and
the service provider, between the GOTE architecture
and cloud gaming architectures such as PlayStation
Now®and GeForce Now®.
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