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Abstract: Federated learning, a different direction of distributed optimization, is very much important when there are re-
strictions of data sharing due to privacy and communication overhead. In federated learning, instead of sharing
raw data, information from different sources are gathered in terms of model parameters or gradients of local
loss functions and these information is fused in such way that we can find the optima of average of all the local
loss functions (global objective). Exiting analyses on federated learning show that federated optimization gets
slow convergence when data distribution across all the clients or sources are not homogeneous. Heterogeneous
data distribution in federated learning causes objective inconsistency which means global model converges to
a another stationary point which is not same as the optima of the global objective which results in poor per-
formance of the global model. In this paper, we propose a federated Learning(FL) algorithm in heterogeneous
data distribution. To handle data heterogeneity during collaborative training, we generate data in local clients
with the help of a globally trained Gaussian Mixture Models(GMM). We update each local model with the
help of both original and generated local data and then perform the similar operations of the most popular
algorithm called FedAvg. We compare our proposed method with exiting FedAvg and FedProx algorithms
with CIFAR10 and FashionMNIST Non-IID data. Our experimental results show that our proposed method
performs better than the exiting FedAvg and FedProx algorithm in terms of training loss, test loss and test
accuracy in heterogeneous system.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) is
the part of distributed training where instead of tak-
ing raw data from different sources or clients, lo-
cally trained models or local gradients are commu-
nicated to the server to build a globally representative
model. Server finds the global model by aggregat-
ing all the local information (either model parame-
ters or gradients) in such way that the global objec-
tive function (average of all local loss functions) is
optimized. The main challenge associated with fed-
erated optimization is the data across the clients. The
most popular federated learning algorithm named Fe-
dAvg (McMahan et al., 2017) uses weighted aver-
age of all the local information which performs well
when data across all the clients are homogeneous or
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slightly heterogeneous. Exiting analyses on federated
learning (Li et al., 2020b; Zhu et al., 2021; Karim-
ireddy et al., 2020; Wang et al., 2020) shows that
FedAvg suffers from very slow convergence when
data are highly heterogeneous. Heterogeneous data
distribution across all the clients causes client drift
(Global model gets biased towards some part of the
client’s models) which results in objective inconsis-
tency (Wang et al., 2020; Karimireddy et al., 2020;
Tan et al., 2021). Due to heterogeneous data distribu-
tion, the global model gets converged to a point which
is away from the optima of the global loss function.
According to the survey of (Tan et al., 2021), there are
two types of approaches to handle data heterogene-
ity in FL system. One is model based and another
is data based. Model based approaches are based on
regularization of loss function (Li et al., 2020a; Wang
et al., 2020; Karimireddy et al., 2020; Li et al., 2021;
Deng et al., 2020), meta learning (Fallah et al., 2020)
and transfer learning (Li and Wang, 2019). Model
based approaches are easy to implement but these are
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not suitable for significantly high degree of heteroge-
neous data distribution (Tan et al., 2021) which mo-
tivates us to use data based approach. The exiting
data based approaches (Jeong et al., 2018; Duan et al.,
2021; Wu et al., 2022) are either computationally ex-
pensive (as they are using generative complex models
like Generative Adversarial Network or deep learn-
ing based auto-encoder) or associated with local data
down sampling (which results in significant informa-
tion loss) or less privacy concerned (Due to sending
some raw data from clients to server).

To overcome the above mentioned issues in feder-
ated learning, we propose a new data based approach.
In our proposed method, we find the global data dis-
tribution by using aggregated locally trained Gaussian
Mixture Models (GMMs) (Reynolds, 2009) which is
comparatively less complex and easy to train. To han-
dle data heterogeneity across all the clients, we gen-
erate data in all the local clients with the help of these
global GMMs.

The rest of the paper is organized as follows. We
first formulate the problem of heterogeneous feder-
ated optimization, then we show the exiting works
on heterogeneous FL. Next we discuss about our pro-
posed method. Next sections cover the experimental
setup, results discussion and conclusions of our whole
work.

2 PROBLEM FORMULATION

In federated learning, all the participating clients par-
allelly train local models by optimizing their own loss
function and the server aggregates all the local models
to find the optima of the global loss function. Global
loss function is found by taking weighted average of
all the local loss functions. Let total m number of
clients are jointly involved in federated optimization.
Each client contains Ni number of samples. Then the
global objective function is defined as

F(w) =
m

∑
i=1

piFi(w) (1)

Where, Fi and Ni are the loss function and num-
ber of samples of ith client respectively, pi = Ni

∑Ni
,

Fi(w)= 1
N j

∑ς∈D j Fj(w;ς), Where ς are the samples of

ith clients which is taken from the distribution Di.
Our goal is to find the optima of the global loss func-
tion F(w) ∀w ∈ Rd

Algorithm 1: Proposed Federated Algorithm.

0: Input: T , w0, η=η0, ψ

1: {(µi,Σi)}m
i=1 ← Global-GMM(m) {find data dis-

tribution across all the clients}

2: Server sends Global-GMM to all the participating
clients

3: All the clients generate data with the help of this
Global GMM to overcome data heterogeneity

4: for t = 1 to T do
5: Server sends wt to all clients
6: Clients update wt with locally available data

and SGD optimizer and find wi
t

7: Server receives all the locally updated models
and aggregate these and find wt+1

8: Update learning rate η=(1−ψ)η
9: end for

3 RELATED WORKS

Many works has been done to mitigate the problem
of data heterogeneity in FL system. The most related
works of this paper can be viewed in two directions
((Tan et al., 2021)). One is model based approaches
and another one is data based approaches. Model
based approaches include regularization of loss func-
tion, meta learning and transfer learning. Some ex-
amples of model based approches are FedProx (Li
et al., 2020a), FedNova (Wang et al., 2020), SCAF-
FOLD (Karimireddy et al., 2020), pFedMe (Dinh
et al., 2020), MOON (Li et al., 2021), APFL (Deng
et al., 2020) etc. To handle problem of client drift
due to Non-IID data, FedProx add proximal term
µ
2 ||w−wi||2 with the local loss functions. FedNova
uses normalized averaging (Wang et al., 2020) to han-
dle objective inconsistency. SCAFFOLD uses vari-
ance reduction to correct the client drift in local mod-
els. pFedMe uses Moreau envelopes as the local reg-
ularized objective. MOON uses model label con-
stractive learning to handle Non-IID data. APFL in-
troduces mixing concept of local and global models
with an adaptive weight to handles client drift. (Fal-
lah et al., 2020) use meta learning (MAML) to eas-
ily adapt the local information with one or few steps
of gradient descent. Even all the model based ap-
proaches perform better than FedAvg, these methods
suffer from tight convergence when there is high de-
gree of heterogeneity (Tan et al., 2021) which mo-
tivates us to jump into data based approach. The
exiting data based approaches (Jeong et al., 2018;
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Duan et al., 2021; Wu et al., 2022) are either com-
putationally expensive (due to use of complex models
like Generative Adversarial Network (GAN) or deep
learning based auto-encoder) or associated with lo-
cal data down sampling (which results in significant
information loss) or less privacy concerned (Due to
sending some raw data from clients to server).

4 PROPOSED METHOD

Algorithm- 1 shows one global iteration of our pro-
posed method. In our proposed method we first col-
lect locally trained GMMs and aggregate these in
server to find the global data distribution. Then the
aggregated GMMs is sent to all the available clients
and then clients generate data with the help of these
globally trained GMMs which results in transforma-
tion of data distribution across all the clients from het-
erogeneous to nearly homogeneous. After data gen-
eration, server sends global model wt (w0 is randomly
initialized) to all the clients and clients update this
global model with the help of locally available data
(original data and generated data). Clients use SGD
optimizer (with learning rate scheduler, momentum
and weight decay) (Ruder, 2016) to optimize the lo-
cal loss functions with only one local epoch per client
per global iteration. Then server collects all the lo-
cally updated models and aggregate these to find the
global model wt+1. To get faster convergence, we use
learning rate decay (Li et al., 2020b) ψ ∈ [0, 1).

4.1 Data Distributions

To find the overall data distributions across all the
clients, we train GMMs ((Reynolds, 2009)) with local
data and aggregate these in server. To reduce compu-
tational complexity, instead of using full covariance
matrix, we use diagonal covariance matrix with the
assumption that each class samples are coming from
5 number of Gaussian components.

5 EXPERIMENTAL SETUP

We validate our proposed method with CIFAR10 and
FashionMNIST Non-IID data. The CIFAR-10 dataset
contains of 60000 RGB images (3 x 32 x 32) with
10 number of classes (50000 training samples and
10000 test samples). Each class has 6000 number of
samples. FashionMNIST contains gray scale images
of size 28 × 28 with 10 number of classes. In our
experiment (60000 training samples and 10000 test
samples). To get Non-IID data partitions, we use the

same data partition concept of the paper (McMahan
et al., 2017). We divide whole training samples into
80 shards (size of each shard is 625 for CIFAR10 and
750 for FashionMNIST) and divide these shards into
20 clients in such way that each client gets only two
shards i.e. Each client gets samples of 4 classes only.
Instead of taking into account of all device partici-
pation, we assume that only 50% of total number of
clients of available at each global iteration. We com-
pare our proposed method with the most popular FL
algorithms named FedAvg ((McMahan et al., 2017))
and FedProx ((Li et al., 2020a)).

We evaluate the performance of FedAvg, Fed-
Prox and our proposed method with learning rate
∈ [0.1,0.01,0.001], weight decay ∈ [1e−4,1e−8] ,
fedprox proximal term µ ∈ [0.1,0.01], learning rate
decay (ψ)= 0.02, momentum = 0.9 and batch size =
128. We find the best performing model for each al-
gorithm by considering minimum train and test loss.
We use Resnet18 model and categorical cross entropy
loss function for our experiments. To find global data
distributions, we train GMMs locally with diagonal
covariance matrix and 5 number of components per
class samples. Server receives all the locally trained
GMMs and aggregates these to find global GMMs.
Each client receives these global GMMs and gener-
ates data in such a way that after generation, number
of samples for all the classes become same.

Figure 1: CIFAR10 average train loss VS Global epoch.

Figure 2: CIFAR10 average test loss VS Global epoch.

5.1 Results

Figure- 1, 2, 3, 4, 5, 6 show our experimental re-
sults. We find average train loss, average test loss and
test accuracy for FedAvg, FedProx and our proposed
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Figure 3: CIFAR10 test accuracy VS Global epoch.

Figure 4: FashionMNIST average train loss VS Global
epoch.

Figure 5: FashionMNIST average test loss VS Global
epoch.

Figure 6: FashionMNIST test accuracy VS Global epoch.

method in the same FL system. In heterogeneous
data, experimental results show that our proposed al-
gorithm performs better than FedAvg and FedProx in
terms of average train loss, average test loss and test
accuracy. For CIFAR10, to acheive 55% of test accu-
racy, FedAvg, FedProx and our proposed method take
95, 84 and 57 number of global epochs respectively.
For FashionMNIST, to acheive 75% of test accuracy,
FedAvg, FedProx and our proposed method take 25,
25 and 12 number of global epochs respectively. We
observed that for FashionMNIST Non-IID data, Fed-
prox performs similar to FedAvg.

6 CONCLUSIONS

In federated learning, data heterogeneity across all the
participating clients is one of the critical challenge.
Data heterogeneity causes client drift which results
in degradation of the performance of FL model in
terms of higher loss (both train and test) and lower
test accuracy. To mitigate this problem, we proposed
a GMM based approach where we handle data hetero-
geneity by generating new local samples from glob-
ally trained GMMs. Our experimental results show
that our proposed method handles data heterogene-
ity in FL system better than exiting FedAvg and Fed-
Prox algorithm. We show that the performance of FL
model is improved in terms of train loss, test loss and
test accuracy by our proposed method.
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