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Abstract: As the adoption of Function-as-a-Service-oriented solutions grows, interest in tools that enable the execution
of benchmarks on these environments increases. The Orama framework stands out in this context by offering
a highly configurable and scalable solution to aid in provisioning, running benchmarks and comparative and
statistical analysis of results. In this work, a distributed architecture for the Orama framework is presented,
through which it is possible to run benchmarks with high levels of concurrency, as well as with bursts of
geographically dispersed requests, just as in real environments. The results of the experiment showed that the
proposed architecture was able to divide the loads between the distributed workers and able to consolidate
properly in the return of the results. In addition, it was possible to observe specific characteristics of the
providers involved in the experiment, such as the excellent performance of Alibaba Function, whose average
execution time was the lowest of the tests and free of failures. Google Cloud Function and AWS Lambda
recorded intermediate results for average execution time and recorded failures. Finally, Azure Function had
the worst results in average execution time and cold start.

1 INTRODUCTION

Worldwide end-user spending on public cloud ser-
vices is forecast to grow 20.7% to total $591.8 bil-
lion in 2023, up from $490.3 billion in 2022 (Gartner,
2022). All this perspective of growth shows the so-
lidity of this area of computing. Although the main
cloud models, such as Infrastructure-as-a-Service
(IaaS) (MELL and Grance, 2011) and Platform-as-a-
Service (PaaS) still lead the focus of investment, other
models that integrate the archetype of Everything-as-
a-Service (XaaS) (DUAN et al., 2015) also indicate
growth. In this context, serverless-based cloud com-
puting models such as Function-as-a-Service (FaaS)
(Schleier-Smith et al., 2021) have been predicted as
the main programming paradigms of the next genera-
tion of the cloud.

In this scenario, there has been a growing in-
terest in evaluations and benchmark tools that ana-
lyze the deliveries of providers, such as Sebs (Copik
et al., 2021), PanOpticon (Somu et al., 2020), FaaS-
Dom (Maissen et al., 2020), BeFaaS (Grambow et al.,
2021) and Orama framework (Carvalho and Araujo,
2022). However, given the wide range of possibili-
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ties for adoptable strategies by providers, as well as
the different regions in which these services can be
implemented, this type of study needs to be increas-
ingly dynamic and adjustable to real-world situations.
Therefore, this work presents a distributed architec-
ture for the Orama framework (Carvalho and Araujo,
2022) in which it is possible to run benchmarks in
FaaS environments, exploring a wider range of sce-
narios than was possible in the standalone version.
Through the master/workers architecture, it is possi-
ble to divide workloads between several instances, in-
cluding geographically dispersed ones, allowing both
the expansion of assessable levels of concurrency, as
well as expanding the capacity to represent a reality
of distributed demand.

In experiments, it was verified that the distributed
architecture allows high levels of requests in compar-
ison to the standalone version. In addition, it was
found that the performance calculated between the
scenario whose workers were in the same region and
the scenario in which the workers were geograph-
ically spread maintained equivalent results, demon-
strating that the separation of workers, in the pro-
posed architecture, does not affect the analysis of the
results. In addition, it was possible to observe be-
haviors intrinsic to the services, such as the superior
performance demonstrated by Alibaba Cloud Func-
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tions. AWS Lambda and Google Cloud Function both
had intermediate results. Azure services, on the other
hand, obtained the worst results, presenting high av-
erage execution times and cold start.

This article is divided into six parts, the first be-
ing this introduction. Section 2 presents the theoreti-
cal foundation that supports the work. Section 3 de-
scribes the distributed implementation of the Orama
framework. Section 4 presents the related works. Sec-
tion 5 shows the results obtained and finally, Section
6 presents the conclusions and future work.

2 BACKGROUND

Thenceforward NIST (MELL and Grance, 2011) de-
fined the traditional cloud models in 2011 as IaaS,
PaaS and SaaS, the main public cloud providers began
to name their services with another set of acronyms,
which culminated in the emergence of the term
“XaaS” to define Everything-as-a-Service (DUAN
et al., 2015). In 2014 AWS launched Lambda, which
then inaugurated the Function-as-a-Service (FaaS)
model (Motta. et al., 2022). In the FaaS paradigm,
the customer delivers a piece of code of interest to
the provider, generally written in some language sup-
ported by the provider. In addition, the client must
configure a trigger to activate the function and this
trigger can happen from other services that make up
the provider’s platform or through a REST API.

Since FaaS is designed to run state-independently,
some restrictions are imposed on customers, such as
limits on allocable vCPUs, RAM and maximum exe-
cution time. Another aspect that significantly distin-
guishes FaaS from other cloud service models is the
billing method. Instead of being charged based on the
execution time of instances, as in the IaaS model, in
FaaS the customer will only pay based on the activa-
tion of the service and its respective duration.

Major public cloud providers have FaaS offerings.
In addition to AWS Lambda, which is the forerunner
of this concept, it is possible to find solutions from
Azure, GCP, Alibaba Cloud, among others. Azure
Function (AZF) is Azure’s entry into this slice of the
cloud market. Google Cloud Function (GCF) is the
name of GCP’s FaaS. Alibaba Cloud offers Alibaba
Function Compute (AFC) as its FaaS. Other providers
such as Oracle and IBM also offer FaaS options.

Faced with so many FaaS options, it is essential
to understand how the strategies adopted by providers
deliver environments. Considering the large number
of regions in which the main providers are installed,
it is possible that implementation differences between
providers or between regions can meet different needs

or may even be impeding, unfeasible or expensive.
Since these strategies are the provider’s big trade se-
crets, the best way to elicit these strategies is by run-
ning benchmarks. As these environments are highly
dynamic and maintain constant evolution, it is impor-
tant that the solutions that promote benchmarks on
these platforms are configurable to the point of bet-
ter representing the problems found in real environ-
ments. The development of solutions aimed at the
current multicloud context should favor the incorpo-
ration of new providers and their services as they en-
ter this market. Because of this, it is essential to use a
cloud orchestration solution.

2.1 Infrastructure Tools

Terraform (HashiCorp, 2021) is a cloud orchestrator
that helps solutions integrate with different virtualiza-
tion and automation platforms, especially in cloud en-
vironments. Through Terraform it is possible to cre-
ate lightweight and portable infrastructure definition
artifacts that can be easily incorporated into other so-
lutions. Other cloud orchestration solutions, such as
Heat (Gupta et al., 2014) and CloudFormation (Wit-
tig and Wittig, 2018) propose similar approaches to
Terraform, however, as evaluated in (Carvalho and
Araujo, 2020) Terraform presents better results.

Performance testing (Erinle, 2013) is a type of
testing intended to determine the responsiveness, re-
liability, throughput, interoperability, and scalability
of a system and/or application under a given work-
load. It could also be defined as a process of deter-
mining the speed or effectiveness of a computer, net-
work, software application, or device. Testing can
be conducted on software applications, system re-
sources, targeted application components, databases,
and a whole lot more. It normally involves an auto-
mated test suite, such as JMeter (Erinle, 2013), as this
allows for easy, repeatable simulations of a variety of
normal, peak, and exceptional load conditions. Such
forms of testing help verify whether a system or ap-
plication meets the specifications claimed by its ven-
dor. Technology solutions currently need to deal with
large and fast flows of information and any instability
in the service can lead to loss of information. Because
of this, it is important to use queuing mechanisms in
order to guarantee the correct processing of requests.

Apache Kafka (Sax, 2018) is a scalable, fault-
tolerant, and highly available distributed streaming
platform that can be used to store and process data
streams. The Kafka cluster stores data streams, which
are sequences of messages/events continuously pro-
duced by applications and sequentially and incremen-
tally consumed by other applications. The Connect
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API is used to ingest data into Kafka and export data
streams to external systems such as distributed file
systems, databases, and others. For data stream pro-
cessing, the Streams API allows developers to specify
sophisticated stream processing pipelines that read in-
put streams from the Kafka cluster and write results
back to Kafka. Apache Kafka is a solution that ad-
heres to the microservices paradigm, that is, the de-
velopment model in which the solution’s complexity
blocks are segmented into smaller processes. In or-
der to manage this large amount of services, without
the need to deal with several virtual machines, it is
possible to use container-oriented environments.

Docker (Ibrahim et al., 2021) enables the con-
tainerization of a software package along with asso-
ciated configuration and setup details. Such contain-
ers can be easily and rapidly deployed while avoid-
ing compatibility issues. In fact, a recent study re-
ports that Docker can speed up the deployment of
software components by 10-15 folds. Much of to-
day’s applications are multi-component (i.e., multi-
container) applications. For instance, a simple web
application would require a web server and a database
component. Docker Compose (Ibrahim et al., 2021),
a natural progression of Docker, enables practitioners
to compose such complex applications. Applications
transcribe such compositions in a Docker Compose
file, where components are specified by describing
their Docker image and associated configuration as
well as the relations between components. The var-
ious services of a solution supported by a container
environment can generate large volumes of data that
needed processing techniques to make any sense.

2.2 Statistical Analysis Tools

Statistical analysis of benchmark results allows the
observation of several phenomena. The factorial de-
sign (Jain, 1991), for example, helps to identify the ef-
fect of mapped factors on the results. With the facto-
rial design, it is possible to identify whether the vari-
ation of any factor in a given scenario causes (or does
not) any statistically significant impact on the results.
It is also possible to identify the existence of factors
that were not initially mapped and that may have a
significant influence on the results. Another impor-
tant statistical analysis tool for understanding the re-
sults is the paired t-test. In this test, the difference
between two results is evaluated in order to determine
its statistical significance, as well as the respective de-
gree of confidence. This test allows the user to estab-
lish whether the difference between two results can
be considered relevant or insignificant, in the second
case the results can be considered statistically equal.

With the purpose of implementing a specific
benchmark solution for a FaaS environment that ad-
heres to different scenarios as close to real ones as
possible, this work uses tools such as Terraform, JMe-
ter, Apache Kafka, Docker, factorial design, and t-test
to propose a distributed architecture for Orama frame-
work, whose detailed description will be presented in
the next section.

3 DISTRIBUTED ORAMA
FRAMEWORK

The Orama framework (Carvalho and Araujo, 2022)
is a tool developed to conduct benchmarks on FaaS
environments. Although it is possible to run bench-
marks on other types of environment, its focus is di-
rected towards the evaluation of cloud environments
oriented to the FaaS paradigm. Through the Orama
framework, it is possible to provision environments
in an automated way, thanks to its integration with
Terraform, which makes the incorporation of new
providers as simple as building a Terraform infras-
tructure definition artifact. Once provisioned, the
environment can also be de-provisioned using Ter-
raform automations through the Orama framework.
In addition, the entire process of running the bench-
marks is conducted by the framework based on the
settings entered in the system. It is possible to create
several test scenarios varying the level of concurrency,
the number of repetitions of a scenario, the establish-
ment of intervals between tests and the execution of
warm-up requests, whose objective is to observe the
cold start phenomenon, which is very common, and
impactful in FaaS environments.

The Orama framework comes with some pre-
configured use cases that can be deployed to major
providers without any user intervention. These use
cases range from a simple calculator, whose objective
is only to validate the implementation and correct op-
eration of the service, as well as use cases that use
other services from providers, such as object storage
and databases. The use cases accept parameteriza-
tions that allow the provisioning of different config-
urations for the use cases, from the amount of alloca-
ble memory to the region of the provider where the
use case must be implemented.

The standalone version of the framework pre-
sented at (Carvalho and Araujo, 2022) has all of its
components implemented in a container environment,
including the “benchmarker” which is the component
responsible for triggering bursts of requests that sim-
ulate real demands on the environments. It turns out
that using this approach, the level of concurrency that
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Figure 1: Distributed Orama framework architecture.

the Orama framework can simulate on the environ-
ment is limited to the amount of resources available
on the machine where it is installed. Furthermore, test
requests compete with framework management traf-
fic, as framework components also communicate via
HTTP.

In this work, a distributed architecture for the
Orama framework is presented, as shown in Figure
1. In this architecture, it is observed that the bench-
marker component is deployed outside the main envi-
ronment and therefore its installation can occur in an-
other instance. Furthermore, the number of instances
of the benchmarker is variable and can be adjusted
to the characteristics of the test to be performed. It
is possible, for example, to concentrate the bench-
marker’s workers in the same region or to distribute
them among several regions. It is also possible to
include a number of workers, whose load distribu-
tion of requests prevents the saturation of resources
on the machine, preventing the occurrence of faults
attributed to the test execution worker.

Communication between the remote benchmark-
ers (workers) and the main Orama framework en-
vironment (master) composed of frontend, backend,
database, and orchestrator is done through Kafka, as
can be seen in Figure 1. There are three types of “top-
ics” that are managed by Kafka. The “Health check”
topic allows remote workers to inform the master that
they are able to receive triggers to run benchmarks.
Once health is up to date, this worker will be consid-
ered in the distribution of loads of a respective bench-
mark and then a topic with the “uuid” of the respective
worker will be included in Kafka by the backend of

Figure 2: Kafka workflow in Orama framework.

the Orama framework, to be consumed by the respec-
tive worker and executed, as can be seen in Figure
2. After running the benchmark, the remote worker
records the partial result and inserts it into a third
Apache Kafka topic, for consumption by the master’s
backend. It is worth noting that the Orama framework
implements a balance between the number of requests
requested for each worker to execute on the target en-
vironment.

Figure 2 shows a scenario with three workers and
a request to run a benchmark with 2048 concurrent
requests. It is possible to notice that all workers are
asked for 682 requests, which adds up to 2046 re-
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quests. This leaves 2 requests that are assigned to
one of the workers, in the case shown in Figure 2 the
“Remote Benchmarker Worker 01”. As soon as the
backend perceives the receipt of all partial results, it
promotes the consolidation of the results. If these re-
sults do not appear within a configured timeout, then
the respective partial result is assigned a failure result.

Once the results are consolidated, it is possible to
create factorial designs combining two benchmarks
and two levels of concurrence. If the benchmarks in-
volve two different providers, it will be possible to ob-
serve the influence of the providers on the results, as
well as the difference from the concurrence. Using the
factorial design as established by the Orama frame-
work, it is possible to identify whether the strate-
gies adopted by the providers impact the results and
whether the level of concurrence is the factor whose
influence prevails. It is still possible to identify the ex-
istence of some other factors apart from the provider
and the level of concurrence influencing the results,
in this case the portion of the influence related to the
statistical error will be significantly high.

The distributed architecture of the Orama frame-
work presented in this work opens up a wide range
of possibilities for running benchmarks on FaaS en-
vironments. At this moment of leveraging this ap-
proach, it is essential to have a tool available that
allows the evaluation of environments delivered by
providers, including high levels of concurrence and
distributed customers, whose characteristics are more
similar to critical situations in the real world experi-
enced by solutions supported by FaaS environments.

In the next section, the results of an experiment us-
ing the aforementioned architecture will be presented.
The capabilities of the Orama framework using a dis-
tributed approach and the insights obtained from the
results of the experiment will be illustrated.

4 RELATED WORKS

This article presents a distributed architecture for ex-
ecuting benchmarks in FaaS environments over the
Orama framework. The related work is discussed
from the perspective of benchmarking FaaS platforms
in general as well as work on serverless benchmark
frameworks. A comparison between related works is
presented in Table 1.

In the paper (Back and Andrikopoulos, 2018) the
authors used a microbenchmark in order to investigate
two aspects of the FaaS: the differences in observable
behavior with respect to the computer/memory rela-
tion of each FaaS implementation by the providers,
and the complex pricing models currently in use.

They used AWS, IBM, GCP, Azure, and OpenWhisk
in their evaluation. However, the authors did not
present an evaluation of the performance of their mi-
crobenchmark in different regions of the providers,
nor with different levels of concurrence, as presented
in this work.

The quality impacts of operational tasks in FaaS
platforms as a foundation for a new generation of
emerging serverless big data processing frameworks
and platforms are evaluated in (Kuhlenkamp et al.,
2019). The authors presented SIEM, a new evaluation
method to understand and mitigate the quality impacts
of operational tasks. They instantiated SIEM to eval-
uate deployment package and function configuration
changes for four major FaaS providers (AWS, IBM,
GCP, and Azure), but only in European regions for the
same level of concurrence. In this work, on the other
hand, several levels of concurrence are evaluated us-
ing two different worker approach (concentrated and
distributed).

PanOpticon (Somu et al., 2020) provides a com-
prehensive set of features to deploy end-user business
logic across platforms at different resource configu-
rations for fast evaluation of their performance. The
authors conducted a set of experiments testing sep-
arate features in isolation. An experiment compris-
ing a chat server application was conducted to test
the effectiveness of the tool in complex logic scenar-
ios in AWS and GCP. Furthermore, in this work, the
range of tests that the Orama framework can evalu-
ate was extended beyond the execution of benchmarks
on AWS and GCP, to include the execution of bench-
marks on Azure and Alibaba, which are two other im-
portant players in this market.

FaaS-dom (Maissen et al., 2020) is a modular set
of benchmarks for measuring serverless computing
that covers the major FaaS providers and contains
FaaS workloads (AWS, Azure, Google, and IBM). A
strong element of FaaS-dom’s functions is that they
were created in a variety of languages and for a va-
riety of providers. However, the operations that the
FaaS-dom functions carry out can be viewed as basic,
and they lack Orama’s approach to integration with
other cloud services.

BeFaaS (Grambow et al., 2021) offers a bench-
mark methodology for FaaS settings that is applica-
tion centric and focuses on evaluating FaaS apps us-
ing real-world and prevalent use cases. It offers en-
hanced result analysis and federated benchmark test-
ing, where the benchmark application is split across
several providers. It does not, however, provide a su-
perior approach to statistical analysis, such as the fac-
torial design or t-test that are covered by this study.

In paper (Barcelona-Pons and Garcı́a-López,
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Table 1: Related works.

Paper Providers Configu-
rable

Factorial
Design T-test Distri-

buted
(Back and

Andrikopoulos,
2018)

AWS, IBM, GCP, Azure, and
OpenWhisk No No No No

(Kuhlenkamp et al.,
2019) AWS, IBM, GCP, and Azure No No No No

(Somu et al., 2020) AWS and GCP No No No No
(Grambow et al.,

2021)
AWS , GCP, Azure, TinyFaaS,

OpenFaaS, and OpenWhisk Yes No No No

(Barcelona-Pons and
Garcı́a-López, 2021) AWS, IBM, GCP, and Azure No No No No

(Copik et al., 2021) AWS, Azure, and GCP No No No No
(Wen et al., 2020) AWS, Azure, GCP, and Alibaba No No No No

(Carvalho and
Araujo, 2022) AWS and GCP Yes Yes Yes No

This paper AWS, Azure, GCP, and Alibaba Yes Yes Yes Yes

2021) the authors analyzed the architectures of four
major FaaS platforms: AWS Lambda, AZF, GCP,
and IBM Cloud Functions. The research focused on
the capabilities and limitations the services offer for
highly parallel computations. The design of the plat-
forms revealed two important traits influencing their
performance: virtualization technology and schedul-
ing approach. This work, on the other hand, focuses
on investigating the differences in performance of the
main providers with different levels of concurrence.

In the Serverless Benchmark Suite (Sebs) (Copik
et al., 2021), typical workloads are chosen, the im-
plementation is tracked, and the infrastructure is as-
sessed. The benchmark’s applicability to several com-
mercial vendors, including AWS, Azure, and Google
Cloud, is guaranteed by the abstract concept of a FaaS
implementation. Based on the executed test cases,
this work assesses variables including time, CPU,
memory, I/O, code size, and cost. However, unlike
the Orama framework used in this work, their solu-
tion can’t work in distributed mode.

In (Wen et al., 2020), the authors run a test flow
employing micro benchmarks (CPU, memory, I/O,
and network) and macro benchmarks to evaluate FaaS
services from AWS, Azure, GCP, and Alibaba in de-
tail (multimedia, map-reduce and machine learning).
The tests made use of specific Java, Node.js, and
Python methods that investigated the benchmarking
attributes to gauge resource usage efficiency and ini-
tialization delay. However, they do not present eval-
uations in different levels of concurrence and also do
not perform a statistical analysis using factorial de-
sign and t-test as is done in this work.

Although the aforementioned work presents an
ad-hoc evaluation of the providers, the scalability and

manageability of this evaluation is limited to the pa-
rameters that were used in the work. On the other
hand, this article uses a fully manageable solution pre-
pared for the incorporation of new providers and use
cases.

5 RESULTS

The Orama framework makes it possible to run
benchmarks on a FaaS environment in different sce-
narios, especially with the introduction of the dis-
tributed architecture presented in this work. In order
to explore some possibilities of running benchmarks,
an experiment was designed to allow the behavior of
the architecture to be observed, as well as obtaining
some insights into FaaS environments. Details of how
the experiment was conducted will be presented in
Section 5.1, while an analysis of the results is pro-
vided in Section 5.2.

5.1 Methodology

Considering that the main objective of this experiment
is to analyze the behavior of the distributed architec-
ture of the Orama framework, a use case was selected
which had the role objective of guaranteeing the cor-
rect execution of FaaS in the providers, without inte-
gration with other services, such as Database or Ob-
ject Storage, which could introduce specific features
of these services and divert the focus from the archi-
tecture itself. Therefore, the use case that deploys a
simple math calculator in each of the four main FaaS
providers supported by the Orama framework was se-
lected. The providers are AWS, Azure, Google and
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Table 2: Average execution times (in milliseconds).
(C) → concentrated workers — (D) → distributed workers.

Concurrence level
Scenario

AWS Lambda GCF AZF AFC
(C) (D) (C) (D) (C) (D) (C) (D)

1 581 793 592 684 643 954 102 281
2 595 749 605 757 612 910 93 360
4 663 776 699 769 715 1004 91 302
8 592 859 595 832 622 1149 133 511

16 637 897 638 817 695 1145 100 358
32 709 983 707 918 890 1414 100 367
64 911 1158 924 1097 1303 1732 109 378
128 1328 1569 1367 1548 2264 2390 128 393
256 2274 2417 2386 2466 4130 3749 233 565
512 4068 4418 4447 4489 7506 6648 168 426

1024 6852 7334 5181 5787 11514 11884 116 367
2048 6139 6072 3596 3270 18378 17234 67 338

Figure 3: Concentrated workers scenario.

Alibaba.
The distributed architecture of the Orama frame-

work allows workers in different regions to be de-
ployed. Therefore, in this experiment two scenarios
were elaborated. In the first scenario, shown in Figure
3, the workers were all deployed in the same region
where the target FaaS environments were also provi-
sioned (concentrated workers scenarios). In the sec-
ond scenario, workers were distributed in geographi-
cally distant regions, as shown in Figure 4. With these
two scenarios, it was expected to demonstrate the in-
fluence of latency on FaaS, however, their behavior

Figure 4: Distributed workers scenario.

should be equivalent and demonstrate the same strat-
egy applied by providers.

Both scenarios were subjected to concurrent loads
of requests from just one simultaneous request to up
to 2048 requests with exponential growth. Thus, the
FaaS of each provider were submitted individually to
loads of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
and 2048. It is noteworthy that the tests performed
with the Orama standalone architecture framework
were limited to up to 512 simultaneous requests, not-
ing the limitations of opening a connection with FaaS
services imposed by the instance in which the Orama
framework was installed. As 2048 was the maximum
level of this experiment, a quantity of 4 benchmarker
workers was defined so that each one was responsi-
ble for carrying out a maximum of 512 concurrent
requests. Furthermore, each battery of tests with dif-
ferent levels of concurrency was repeated 10 times in
order to establish a statistical data mass for further
analysis.

In the first scenario (concentrated workers), the
Orama framework was deployed on an instance of
GCP’s Compute Engine in the US-East region with
16GB of RAM and 4 vCPUS, and each of the four
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workers was also deployed in the same GCP region,
the servers had 4GB of RAM and 2 vCPUS each. For
the second scenario, the master installation of Orama
framework was kept on the same instance in the US-
East GCP region as used in the first scenario. How-
ever, the workers were spread out in other GCP re-
gions such as: asia-northeast1 (Tokyo, Japan), US
-West (The Dalles, Oregon, United States), europe-
west2 (London, England), and southamerica-east1
(Osasco, Brazil). All instances of GCP used in this
experiment ran Debian 11 as the operating system.
The FaaS that were the target of this experiment in
both scenarios were configured to be deployed in the
respective East American regions at each of the re-
spective providers, namely AWS Lambda, AZF, GCF
and AFC.

At the end of the execution of the repetitions of
both test scenarios, factorial designs and t-tests were
created in order to analyze the effects of the difference
between the providers and the difference between the
lowest level of concurrency (only one request) and
the highest level, with 2048 concurrent requests. The
analysis of the obtained results is presented in the next
section.

5.2 Outputs Analysis

Table 2 presents the consolidated result of all eight
test scenarios conducted in the experiment. It is pos-
sible to observe that the provider whose scenarios had
the lowest average execution times was AFC, high-
lighted in bold. Next in very close range are the av-
erage execution times for AWS Lambda and GCP. Fi-
nally, the average execution times for AZF were the
highest in this experiment. In addition, in Table 2, it
is also possible to observe that the scenarios with dis-
tributed workers have generally higher averages than
the averages found in the scenario with workers con-
centrated in the same region, this is the expected re-
sult, since the greater geographic distance between
workers and target FaaS should raise averages by in-
troducing higher latency to traverse the network.

Figure 5a presents a comparative result between
the scenarios involving AWS Lambda. It may be seen
that the average execution time of both scenarios in
AWS Lambda follow the growth of the concurrency
level the previous level to the maximum (2048 con-
current requests) when there is a small drop in the av-
erage. This decrease in the average execution time af-
ter 1024 indicates that, when faced with a growing de-
mand, the provider reinforced the service infrastruc-
ture in order to maintain its quality in terms of execu-
tion time. Despite this effort by the provider, failures
occurred from 256 concurrent requests, as shown in

Figure 5b, which shows the percentage failure rates
that occurred at each concurrency level. To corrobo-
rate the indication that the provider promoted an es-
calation before 2048 requests, as well as the average
time, the failure rate also showed a reduction.

Figures 5c and 5d show the average execution
times of the scenarios involving the GCF and their
respective failure rates at each concurrency level, re-
spectively. It is possible to observe that the graph of
the average execution time of the GCF is similar to
the same graph for AWS Lambda, in which the aver-
age time accompanies the growth of the concurrency
level until the intervention of the provider causes a
decrease in the average time. However, GCF’s av-
erage time threshold is lower than AWS Lambda’s.
While in AWS Lambda the peak point is 7.3 seconds
(at 1024 in the distributed scenario), in CGF the peak
is recorded at 5.7 seconds (at 1024 in the distributed
scenario). This proximity between AWS Lambda and
GCF average times demonstrates a strategic equiva-
lence between providers. Despite this, with regard
to the failure rate, the occurrence of failures in GCF
started only after 1024 requests, while AWS Lambda
already had failures at 256. However, the level of fail-
ures recorded by GCF was higher compared to AWS
Lambda, because while in AWS Lambda the fail-
ures peaked at 8% of requests, in GCF these failures
reached around 20%. Another difference in the AWS
Lambda and GCF results is the continuous growth
of failures demonstrated in the GCF distributed sce-
nario, which indicates that the provider’s monitoring
layer had greater difficulty in dealing with requests
from different regions than those whose origin was
the same.

Unlike AWS Lambda and GCF, which showed
a point of reduction in the average execution time,
AZF, as shown in Figure 5e, maintained a continu-
ous growth in the average execution time, registering
the highest average times in the experiment. This in-
dicates that in the AZF environment there was no re-
inforcement of the infrastructure as demand grew, al-
though this is a FaaS premise. Despite the high aver-
age time, AZF recorded a low failure rate, with fail-
ures occurring in only 3% of the 2048 concurrent re-
quests in the distributed scenario, as can be seen in
Figure 5f.

Figure 5g shows the average AFC execution
times. It is possible to observe three points where the
provider seems to have reinforced the infrastructure,
such as from 2 to 4 requests, from 8 to 16, and from
256 to 512. This meant that the provider maintained
the lowest average times of the experiment and did
not present an increasing curve of the average time, as
occurred with the other providers. In addition, there
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(a) AWS Lambda execution times. (b) AWS Lambda failure rates.

(c) GCF execution times. (d) GCF failure rates.

(e) AZF execution times. (f) AZF failure rates.

(g) AFC execution times.
Figure 5: Comparative results.

was no occurrence of failure during the ten repetitions
of the test batteries. The AFC result also shows the
expected result of the experiment, in which it is pos-
sible to observe the same behavior both in the sce-

nario with workers concentrated in the same region,
and with distributed workers, differing only in the av-
erage level.

Another interesting aspect to be analyzed in this
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Figure 6: Warm-up times. (C) → concentrated workers —
(D) → distributed workers.

experiment is the cold start phenomenon, that is, the
time it takes the provider to put its FaaS into operation
for the first time or after a certain period of inactivity.
Figure 6 provides the warm-up times for all eight sce-
narios. This is the first request made before the start
of the battery of tests. The arcing times showed a
big difference between AZF and the other providers.
While AWS Lambda, GCF and AFC recorded warm-
up times around 1s, AZF took 89 seconds in the dis-
tributed scenario and 103 seconds in the concentrated
scenario. This difference shows that the AZF deploy-
ment strategy is considerably different from the oth-
ers and this can significantly impact the performance
of applications supported by this service, since after
some downtime, AZF FaaS will have a much higher
response time than usual and this will certainly nega-
tively impact the user experience.

In order to understand the impact of the provider
and concurrence factors on the results, six factorial
designs were elaborated comparing the four providers
with each other and the minimum and maximum con-
currence levels (1 and 2048), as shown in Figure 7.
In Figures 7a, 7b and 7d, it is possible to observe the
predominance of the concurrence factor, to the detri-
ment of the provider factor, which indicates that in

(a) AWS Lambda/GCF. (b) AWS Lambda/AZF. (c) AWS Lambda/AFC.

(d) GCF/AZF. (e) GCF/AFC. (f) AZF/AFC.

Figure 7: Factorial design results.

these benchmark results, the providers’ strategies in-
fluenced the result less than the differences between
the concurrences. In Figures 7c, 7e and 7f, there is a
predominance of the provider factor and this corrob-
orates the results shown previously for average exe-
cution time and failure rate, since AFC participates in
both factorial designs.

The result of the t-tests for the six comparisons
between the providers is shown in Table 3. It is pos-
sible to notice that all the differences between the
average results were considered statistically relevant
with a 99.95% confidence level. From which it may
be stated that these differences are not irrelevant and
may be considered as defining the result of the bench-
marks.

Table 3: T-test results.

Scenario Difference
(ms)

Standard
deviation

Confidence
level (%)

AWS x
GCF 1,317.03 281.82 99.95

AWS x
AZF 7,792.25 928.90 99.95

AWS x
AFC 5,454.88 259.53 99.95

GCF x
AZF 9,109.28 898.69 99.95

GCF x
AFC 4,137.84 110.14 99.95

AZF x
AFC 13,247.13 891.95 99.95

The results of this work can serve as input in
decision-making processes according to the charac-
teristics and requirements of the real use case. For ex-
ample, if the use case requires high reliability of the
FaaS service, AFC would be the best option among
the evaluated providers, since it did not present fail-
ures. On the other hand, if the use case is very sen-
sitive to cold start, then the Azure provider should be
avoided, as it presented high values in this regard.

6 CONCLUSION

In this work, the distributed architecture of the Orama
framework was presented, with which it is possible to
perform benchmarks with high levels of concurrency
on a FaaS environment, as well as configure the load
to be triggered from different locations on the globe,
considerably expanding the range of possibilities for
benchmarks against state-of-the-art tools.

The Orama framework allows the visualization of
different scenarios for the same use case, especially
for concurrency levels above 512 concurrent requests,
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which is the amount observed as the safest maximum
for management by an intermediate configuration in-
stance. In addition, it was evidenced that the Orama
framework in its distributed architecture is capable of
visualizing the same behavior as the FaaS provider
when subjected to a concentrated and distributed ap-
proach of bursts of requests, as well as eventual dif-
ferences.

In the experiments, it was also evident that the
AFC FaaS delivers greater consistency in terms of av-
erage execution time and occurrence of failures, fol-
lowed by AWS Lambda and CGF, which registered
close results, and finally the AZF results with high
average execution times and cold start.

In future work, other providers will be integrated
into the Orama framework, such as IBM and Ora-
cle, in order to expand the coverage of the analy-
ses presented in this work. Furthermore, even higher
levels of concurrency can be evaluated by design-
ing experiments that include a larger number of dis-
tributed workers. Furthermore, evolutions in the
Orama framework will allow the analysis of bench-
mark results using percentiles.
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