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Abstract: Hospital readmissions have emerged as a key healthcare quality indicator since the passing of the Affordable 
Care Act in 2010. It is easier to predict the readmission risk of patients without complications, but 
comorbidities, such as diabetes and cardiovascular diseases, make it difficult to accurately assess the 
readmission risk. 30-days hospital readmissions (30DRA) risk models typically rely on demographic, socio-
economic, and medical variables from structured data, such as diagnosis, vitals, lab reports, and comorbidities, 
etc. Comorbidity indices help in assessing overall disease burden by accounting for the disease codes in 
electronic health records (EHRs). With the advent of natural language processing (NLP), there is a potential 
to extract additional health related variables including the possibility of gleaning additional disease codes for 
comorbidities in unstructured portion of the EHRs, such as clinical notes, medical history, and discharge 
summaries. Whereas NLP has been applied heavily in healthcare information systems, to the best of our 
knowledge, there is no research that identifies comorbidities from unstructured clinical texts. This paper 
employs a Bidirectional Encoder Representation from Transfer (BERT) deep learning technique to predict 
additional comorbid conditions in the unstructured portions of EHRs and evaluates the effectiveness in 
comorbidity scoring. Comorbidity scores based on the NLP-predicted comorbidity codes (predicted) were 
compared against the scores calculated from codes identified by the health providers (diagnosed), and also 
against a combination of the two (diagnosed and predicted). We find NLP is effective in improving the 
accuracy of comorbidity calculations, that in turn could improve predictive power of AI models for hospital 
readmissions and mortality predictions. It is among the first papers employing NLP to predict ICD-10 codes 
from unstructured EHRs for comorbidity index calculations.   

1 INTRODUCTION 

A good assessment of comorbidities aids healthcare 
providers in performing better diagnosis and effective 
treatments. Timely comorbidity assessment during 
medical encounters also improves management of 
risks and healthcare quality indicators, such as health 
outcomes, mortality rates and hospital readmissions 
rates (Goltz et.al, 2019; Hameed, 2020; Menendez et 
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al., 2014; Sharma et al, 2021). Comorbidity 
assessment methods and their correct application, 
therefore, have become critical in medical practice.  

Two most popular measures to assess 
comorbidities i.e. Charlson Comorbidity Index (CCI) 
and Elixhauser Comorbidity Index (EHI) assess the 
overall disease burden of primary diagnosed 
conditions in a patient by accounting for any other 
diseases among the most prevalent diseases and 
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conditions (Charlson et al, 1987, Elixhauser et.al, 
1998). The occurence of multiple comorbid 
conditions results in a higher CCI or EHI score 
indicating higher overall diasese burden. Quite 
intutively, the co-occurrence or severity of ceratin 
diseases would imapct the health more negatively. 
Some researchers have demonstrated that modified 
summary CCI or EHI scores (a single number) based 
on aggregated or weighted burden of comorbidities in  
a patient are more valuable metrics of comorbidities 
(Van Walraven et al, 2009, Thompson et al, 2015). 
Higher the modified comorbidity score, higher the 
risks to the patient’s health and vice versa. Even 
though both frequency counting and weight adjusting 
indices are effective  when physicians make the 
health decisions, it is not clear if they would be  as 
effective when it comes to AI-based clincal decision 
support systems (CDSS). Moreover, it is not clear if 
they would perform optimally in the wake of newer 
data-driven healthcare delivery models such as 
patient-centered healthcare models that require a lot 
of individual patient details and customization, such 
as value-based care and personalized medicine.    

Electronic Health Records (EHRs) are the most 
common data source containing the diagnosis of 
primary diseases as well as comorbid conditions. 
EHRs typically record ICD-9 or ICD-10 medical 
codes as part of a classification structure titled 
‘International Classification of Diseases’ (ICD). ICD-
9 codes are most prevalant as many healthcare IT 
systems have trasnitioned or are in the process to 
move to ICD-10 codes. ICD-11 codes have already 
been annouced but they are not adopted yet. The most 
common use of these codes is in medical billing 
processes but with the advent of AI they have found 
heavy use in CDSS.    

Typically, physicians specify ICD-9 or ICD-10  
codes of the primary disease in their clinical notes 
along with other conditions which become part a 
pateint’s medical history, often times part of EHRs. 
Medical coders convert these verbal or textual notes 
into ICD codes and verify them for claims and billing 
purposes. So, in addition to sturctured data, EHRs 
also contain lot of textual data, such as clinical notes, 
discharge summaries and specialist reports. They 
often contain additional information on a patient’s 
comorbid conditions. It happens quite often a patient's 
medical history and past health records are not 
immediately visible to the physician during a medical 
encounter. Also, the comorbidities inlcuded as text 
but not as ICD codes maybe hard to identify upfront. 
Lastly, older EHRs have ICD-9 codes that have not 
been updated to the ICD-10 codes yet.   

Since, the available Elixhauser comoridity 
algorithms (EHI) are based on ICD codes only, they 
are are being limited by losing valuabe uncoded 
information. With the advent of AI and NLP 
techniques in computer-assisted coding (CAC) area, 
it is high time that the uncoded information in 
unstructured portions of EHRs could also be 
leveraged with an aim to improve the accuracy of 
comorbidity algorithms. That, in turn, should 
improve the predictive performance of CDSS 
designed for health outcomes, mortality and hospital 
readmissions rate, etc.  

Our research aims to develop and test an NLP 
based deep learning approach to glean (predict) ICD-
10 medical codes in the unstructured portions of 
EHRs, generate Elixhauser Index comorbidity scores 
(EHI)  by including the newly predicted codes in 
them, and test these richer comorbidity scores in 30-
days hospital readmissions (30DRA) prediction 
models. To that end, we employed a Bidirectional 
Encoder Representation from Transfer (BERT) 
model for gleaning ICD-10 codes from the textual 
part of the EHRs.  

Once the codes were extracted, several tests were 
performed on the EHI comorbidity soring and 
30DRA classification. At first, chi-square test of 
independence was used to assess the dependence of 
30DRA on each one of the thirty diseases/conditions 
in the EHI comorbidity scores with the newly 
predicted codes. Next, we also performed principal 
component analysis to assess the effect of each 
comorbid condition in classifying the 30DRA and the 
top components that explain most of the variance. 
Multi-logistic regression-based feature scoring was 
conducted to further clarify the influence (weight) of 
each comorbid condition in 30DRA classification. 
Finally, student T-tests were done to compare the 
classification performance of existing codes, the 
newly predicted codes and a combination of the two.  

In general, we have found NLP approaches to be 
effective in extracting comorbidity codes from 
unsturctured portions of EHRs. They  improve CDSS 
predictive models that consider combobidties index 
scores as feature/s. Detailed findings are included in 
the results and analysis. This paper is a first in the 
CDSS area employing NLP technique to predict 
additional comorbid conditions. It is also among the 
first in the healthcare area to predict ICD-10 
comorbidity codes using NLP. Rest of the paper is 
organized as follows. Section 2 covers current 
litearure on relevant topics. Section 3 describes the 
data and the methods. Section 4 presents the results 
and analysis while section 5 concludes with pointers 
to limitations and future research.  
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2 LITERATURE REVIEW  

2.1 Comorbidity Indices and Their 
Application in Clinical Decision 
Support Systems 

The most commonly referred definition of 
comorbidities identify them as, “Any distinct 
additional entity that has existed or may occur during 
the clinical course of a patient who has the index 
disease under study” (Feinstein, 1970). So, 
comorbidities are additional diseases or conditions a 
patient is suffering from in addition to the disease or 
condition they are being treated for. Another 
approach is considering “the co-occurrence of 
multiple chronic or acute diseases and medical 
conditions within one person” disregarding direct 
relationships between a primary disease and 
comorbid diseases (Bayliss et al, 2008). Whether 
primary or comorbid, the diseases and conditions are 
identified by International Classification of Diseases 
(ICD) Codes, commonly used for medical billing. 
The current version of ICD-codes is ICD-10 with 
ICD-11 codes already announced, but most health IT 
systems are still using ICD-9 codes or they are 
transitioning from ICD-9 to ICD-10 codes.  

Comorbidity indexes typically use ICD codes in 
EHRs to measure the frequency, co-occurrence and 
severity of the diseases in a patient. The most 
prevalent comorbidity scoring methods in clinical 
practice include the Charlson Comorbidity Index 
(CCI) and the Elixhauser Comorbidity Index (EHI). 
CCI’s mortality risk was based on review of patient 
medical records for the 17 diseases and conditions 
that caused mortality (Charlson et al, 1987). EHI 
takes ICD codes into accounts for mortality risk in 30 
different diseases organized in multiple diagnosis 
related groups (DRGs) recognized by the Centres for 
Medicare and Medicare Services (CMS). Agency for 
Healthcare Research and Quality (AHRQ) provides a 
software algorithm on its website to calculate the 
Elixhauser comorbidity score (AHRQ, n.d.)  

Both these indices have been quite effective in 
their prognostic value in clinical settings. Therefore, 
they have been widely adopted in medical practice. 
The performance of both CCI and EHI comorbidity 
indices has been somewhat similar for ICD-9, ICD-9 
CM and ICD-10 codes but Elixhauser has proven to 
be better in terms of overall prognostic value (Quan 
et.al, 2005). There have been some concerns raised 
about the above-mentioned approaches on 
discounting the nature of diseases and their 
chronological order of progression, etc. (Valderas, 
2009) but generally they have remained the 

predominant tools for measuring comorbidity with 
good prognostic outcomes. 

There is a long list of other comorbidity indices 
developed or calibrated according to the outcomes of 
interest, relation to primary diseases, and regulations 
governing regional health systems, etc. The 
performance of the same comorbidity indices varies 
when applied in different diseases. For instance, one 
comorbidity index may perform well for a specific 
type of cancer but not for hip-joint replacement. Some 
other broader but prominent comorbidity indices 
include Chronic Disease Score (CDS) by Von Korff 
(1992), ICED Index of Co-existing Diseases by 
Greenfield (1993), Health-related Quality of Life 
Comorbidity Index (HRQL-CI) by Mukherjee et al 
(2011), the National Institute on Aging (NIA) and 
National Cancer Institute (NCI) comorbidity index 
(Havlik et al, 1994), and the Adult Comorbidity 
Evaluation-27 (ACE-27) by Piccirillo et al (2004). 
These and several others are used by providers as a 
single or combination comorbidity measures when 
dealing with various medical areas or diseases.  

Since the decision on diagnosis and treatments has 
to come from the physician/s, the role of these 
indices, whether calculated manually or 
automatically, is mainly clinical decision support 
during admission, on the patient bed-side, during 
discharge and adherence monitoring, etc. Physicians 
use comorbidity indices, especially CCI and EHI, to 
measure severity of illness, mortality risk, prognosis, 
treatment difficulty, need for intervention, required 
resource intensity, and hospital readmissions risk, etc. 
in these situations.   

2.2 NLP in Healthcare AI and Clinical 
Decision Support Systems 

Current EHR-based health information systems are 
able to streamline workflows, boost productivity and 
improve doctor-patient interactions. They also play a 
major role in emerging AI-based predictive analytics 
and deep learning models for clinical decision 
support. The diversity of information, however, 
comes with the cost of varying structured and 
unstructured storage formats. Patient demographics, 
weight, height, blood pressure, binary lab results, and 
administered medications are a few examples of the 
structured data. Contrarily, narrative data found in 
EHRs such as surgical records, clinical notes, 
discharge summaries, and pathology and radiology 
reports are not amenable to computational analysis 
and it needs to be transformed or integrated with 
structured data points to increase their usability. The 
integration of diverse data types opens up avenues for 
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research but is not free from its own challenges. 
These challenges include heterogeneous data formats, 
non-flexible storage structures, and the lack of a big 
data pipeline (Evans, 2016). Thus, the conversion of 
unstructured health information into standards-
compliant, comparable, and consistent data are 
essential for health informatics research. 

Over the years, researchers have tapped into 
Natural Language Processing (NLP) models for 
comprehension of unstructured data in the medical 
domain. NLP is a  range of computational techniques 
for the automatic analysis and representation of 
human language (Cambria and White, 2014). They 
allow computer systems to comprehend free text by 
transforming it into a format that is machine-readable. 
In the medical domain, NLP is in a period of robust 
development, with 100 publications annually with an 
incremental trend (Wang et al, 2020). Some notable 
venues of NLP research have been discussed in the 
following paragraphs. 

Named Entity Recognition (NER) is a semantic 
information extraction technique that locates and 
categorizes relevant entity data from the text at scale 
(Aya, 2020). Named entities include everything from 
names, brands, addresses, locations, and virtually any 
classifiable textual information. NER makes these 
specific entities usable in NLP models. Unstructured 
clinical notes often contain valuable information such 
as tumor location, diagnosis explanations, and at 
times ICD codes, that when present in a structured 
format would allow for quicker analysis. Several 
attempts have been made to convert these notes into 
a structured format with the help of NER modeling. 
In (Tome et al, 2017), a rule-based NER that consists 
of two phases was used for dietary recommendations. 
The first one involves the detection and determination 
of the entities mentioned, and the second one involves 
the selection and extraction of the entities. Bio-NER 
(Soomro et al, 2017) is another NER model for 
biomedical entities. Parts of speech tags and N-grams 
were used to enhance the performance compared to 
previously existing NERs. Panchendrarajan & 
Amaresan’s (2018) NER technique combined deep 
learning and Bidirectional LSTM-CRF model. This 
model includes bidirectional LSTM with a 
bidirectional Conditional Random Field that is able to 
capture both the word level and sentence level 
encodings along with the positional encodings of text. 
Combined with the context from LSTM, the  
encodings are then fed to the CRF for classification. 
BI-CRF has improved performance in comaprison to  
unidirectional CRF and backward CRF. 

Transformer models are also being used for NER. 
BERT (Bidirectional Encoder Representation from 

Transfer), is one of the most popular transformer 
models that produce a state-of-the-art result for NER 
task (Devlin et.al., 2018). BioBERT is the biomedical 
version of the BERT language model for the 
biomedical text and is widely used by the biomedical 
text-mining domain experts for NER, question 
answering and summarization tasks (Lee et al., 2020). 
The BERT model has been finetuned on Wikipedia, 
PMC and PubMed articles. ClinicalBERT (Alsentzer 
et al, 2019) is another  extension of BioBERT and has 
been further trained on the MIMIC III dataset. All 
discharge summaries (880M words) were used to 
finetune this BERT to create embeddings for tasks 
associated with BERT. 

Knowledge graphs (KG) are increasingly being 
used to further enrich information contained in EHRs. 
Vafajoo et al (2018)  investigated the risk factors of 
cancer and chronic disease by creating KGs from 
biomedical literature. The suggested methodology 
included KG, disease-specific word embedding using 
NLP approaches, and literature-based discovery 
(LBD). The developed KG revealed that the clinical 
characteristics were the main emphasis of the breast 
cancer literature rather than the conventional 
chemical recommendations. KG built from EHRs has 
been offered as a diagnostic tool also Chaudhri, 
2022). Using string matching on the two datasets 
provided by Beth Israel Deaconess Medical Center. 
the mentions of diseases and their symptoms were 
manually retrieved from both organised and 
unstructured data. Google Health Knowledge Graph 
(GHKG) was used to compare the disease-symptom 
edge that was generated for the constructed KG, 
based on evaluation metrics including recall and 
precision. Esteban et al (2017) proposed the Clinical 
Knowledge Graph (CKG), an open-source platform 
with more than 16 million nodes and 220 million 
relationships, to represent the experimental data, the 
literature, and public databases. Using CKG with 
statistical and machine learning approaches 
significantly accelerated the analysis and 
interpretation of conventional proteomics procedures. 

NLP is also being used to deduce or predict 
patient health outcomes from clinical texts so that 
appropriate interventions could be made in time. 
Conventional prognostic scores usually require 
predefined clinical variables to predict health 
outcomes (Sung et al, 2021). They have used free text 
on the history of the present illness and computed 
tomography reports to build NLP-based machine 
learning models to predict the poor functional 
outcome at 90 days post-stroke. Similarly, Arnaud et 
al, (2021) employed convolutional neural networks 
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(CNN) to provide an early prediction of the medical 
specialities at hospital admission.  

Lastly, NLP techniques can also be seen in models 
aiming to improve the quality of life of patients and 
assist the overall healthcare system. For instance, 
deep learning techniques have been regularly applied 
to clinical notes to predict their ICD labels (Bao et al, 
2021). Moreover, Le et al (2020) aimed to evaluate 
the hypothesis that possible future medical concepts 
can be predicted from a patient’s EHR. By using 
time-based prefixes and suffixes, where each prefix 
or suffix was a set of medical concepts from a medical 
ontology, comparisons between prefixes of patients in 
the collection were done with the state of the current 
patient using various interpatient distance measures. 
Their study shows that indications of future events 
using this methodology are feasible. 

In the above sections, not only have we discussed 
the criticality of comorbidities in clinical decicions 
but we have also comprehensivley discussed several 
applications of traditional and emerging NLP 
approaches in the healthcare information systems 
area. We did notice  a few cases of medical codes 
extraction and labelling from narrative portions of  
EHRs. However, we are not aware of, to the best of 
our knowledge, research that has attempted to extract 
ICD-10 codes for comorbidities from unsturctured 
data. In the next section, we attempt at developing and 
testing such an approach.  

3 DATA AND METHODS  

3.1 NLP-Enhanced Approach to 
Calculate Comorbidity Scores 
based on Extracted ICD-10 Codes   

Our proposed model consists of four major steps. The 
first step involves extracting and pre-processing patient 
dataset for hospital readmissions with ample structured 
variables of intertest also containing rich unstructured 
texts such as clinical notes or discharge summaries. 
Second step involves extracting additional ICD-10 
codes from unstructured text using an NLP technique. 
To that end, we planned to employ an HLAN 
(Hierarchical Label-wise Attention Network) deep 
learning technique. However, in this particular 
instance, we have used a transfomer-based  BERT 
model to predict additional comorbid conditions. The 
third step focuses on re-organizing data in a way that 
enables calculations, and comparative evaluations. The 
highlight of this part is to assign, clean and organize the 
extracted comorbid codes to patient records in a clean 

and consistent manner. The final step requires that 
comorbidity scores for each disease included in the 
selected comorbidity index are calculated and made 
available as features of the target variable in our model 
i.e. hospital readmissions. That involves 
operationalization of either tested summary 
comborbidity indices such as Elixhauser (EHI), VW 
(vanWalraven, 2009) and Thompson score 
(Thompson,2015), or devising own algorithms based 
on diseases and outcomes of interest. Since our 
research focuses on all-cause hospital readmissions 
and general adminsitrative data, therefore we limit 
oursleves to diseases/comorbidities specified in EHI 
comorbdity index for now. But we do plan to devise 
own weighted adjustments in the future.   

For testing and evaluation step, that is not a regular 
part CDSS pipeline , we plan to employ statistical 
testing. At first, chi-squared test of independence will 
identify the dependence of the 30-days hospital 
readmissions on each of the thirty Elixhauser index 
cormobidities or otherwise. Logistic regression based 
feature scoring will then calculate the weighted 
influence of each comorbidity on the 30-days hospital 
readmissions classification. Principal component 
analysis will show the top 5 components affecting 
hosiptal readmissions prediction and alignment of 
identified comorbisities with those key components. 
They help us in comparing infleunetial comorbidities 
in different datasets as well as comparative evaluation 
of the variance explained  by multiple models (based 
on datasets explained in the next sub-section). It is 
dreiterate that the purpose of PCA is not to suggest new 
prinicipal components but deomstrate the alignment of 
various diseases/comorbidities included in Elixhauser 
model with the logistic regression feature scores 
(weights). Lastly, a t-test of summary Elixhauser 
comorbidity scores calculated from these datasets 
based on the  diagnosed codes, NLP-extracted codes, 
and a combination of the two types of codes, enable a 
comparative assessment of each.  

3.2 Data Preparation 

We used MIMIC-III clinical database containing over 
58976 all-cause admissions records of aorund 40,000 
patients staying at Beth Israel Deaconess Hospital 
between 2001 and 2012 (Johnson et al, 2016, 2019). 
The database is anonymized and the calendars of all 
the events have been off-set. The dataset is open to 
public with terms and conditions of use. It contains 
sturctued EHR data on patient’s admissions, labs, 
treatments, medicines, transfer, and discharges as 
well as unstructured textual discharge summaries 
dictateted or narrated by physicians.  
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Records with 30-days readmissions were identified 
by scanning multiple admission IDs for the same 
patient ID and the days between the discharge and next 
admission. Patients readmitted within 30 days of 
discharge were labelled ‘1’ while others were labelled 
‘0’. Since it is mainly an emergency room database, 
filters were applied to exclude NEWBORN or 
ELECTIVE admissions, leaving only 37812 records. 
After counting the frequency of admitted patients 
against specific diseases, the records were filtered only 
for those diseases where the patient count was 100 or 
more, leaving us with only 29528 records.  

Clinical notes for each admission were then  
extracted from NOTEEVENTS. Even though they 
contain lab reports, discharge summaries, and nursing 
reports, etc., we only considered discharge summaries 
for each admission since they contain all the 
information for this analysis. If there were multipe 
discharge summaries against an admission ID, only 
the most recent one was kept. That brought down the 
dataset to 21368 entries. After balancing the numbers 
of readmitted and non-readmitted patients for the 
final sample dataset, it was reduced to 3213 patients 
with discharge summaries. 

3.2.1 ICD-10 Code Extraction (Prediction) 
from Unstructured Texts 

Predicting appicable ICD-10 codes correctly from the 
discharge summaries played a key role in calculating 
Elixhauser comorbidity score. Since  the process of 
training a BERT would take a lot of time and 
computational resources, a pre-trained BERT model 
was acquired from the Hugging face community to 
predict ICD-10 codes from the discharge summaries 
against each admission (Devlin et,a;, 2018; Hugging 
face, n.d.). The BERT model extracted multiple codes 
successfully from the unstructured text of each 
discharge summary.   

We noted a couple of limitations working with 
BERT here. The first one was the limited size of 
unstructured text a BERT model could take as an 
input. To overcome that, larger discharge summaries 
were broken down into smaller blocks and serially 
processed through BERT.  Second, if certain portions 
or types of textual summaries are richer than others in 
terms of terminologies related to the diseases, they 
will generate more codes, hence lot of overlapping 
codes to be dealt with. In ICD-10 codes, it is common 
to have extended codes adding depth to the diseases 
classification. Therefore, keeping the codes used for 
predictions uniform is another challenge.   

Extended codes were removed from the extracted 
codes and results were saved as ‘PREDICTED_ 

COMORBIDITIES’ dataset. Similarly, ICD-10 data 
was obatined for the specific diagnosis made by the . 
The ICD-10 codes were the saved as ‘DIAGNOSED’ 
dataset. A third data set was constucted by combing 
the two above datasets. This combined dataset  
was titled ‘DIAGNOSED + PREDICTED 
COMORBIDITIES’. 

3.2.2 Final Data Parsing for Comorbidities 
Risk Calculation and Hospital 
Readmissions Prediction Model 

Next, each of the 30 diseases listed in the Elixhauser 
comoribidity index was separtaetd in a column 
against 3213 patient-admission rows. If an ICD-10 
code was found for a disease, it was marked 1 
otherwise 0. In this way, not only multiple ICD-10 
codes for the diseases in the same disease related 
groups (DRGs) were eliminated in a pateint, but the 
correct count of comoborbidities a patient had was 
also recorded in a table format that could be readily 
input to a classfier.  

Since the above data pasing was done first for the 
codes of diseases directly entered into the EHRs, it 
only prepared one dataset DIAGNOSED. The above 
parsing steps were repeated on BERT extracted codes 
and saved as PREDICTED_CORMORBIDITIES’ 
dataset with its own 30 columns for the diseases and 
count of comorbidities based on the extracted codes. 
Lastly, the codes from both the above datasets were 
logically “ORed” to keep one instance from either 
DIANOSED or PREDICTED_CORMORBIDITIES’ 
and the newly formed dataset was saved as 
DIAGNOSED+PREDICTED_ COMORBIDITIES’.  

Elixhauser comoridity score was also calculated 
for each patient-admission in three separate columns 
just for comparitive evaluation of the three scenarios 
covered in the above datasets.  

Our holistic 30-days hospital readmissions 
prediction model takes into account variables 
(features) from multiple areas. However, for the 
purpose of measuring direct effect of each comorbidity 
listed in Elixhausers’s index on hospital readmissions, 
we used simple logistic regression model with 30DRA 
as target variable and all the thirty comorbid diseases 
as features. For compartiave evaluation purposes 
between physician diagnosed, NLP extracted and a 
combination of both, the model was tested on the three 
above datasets separately. In this way, it was a reduced 
model of the original just to test the effectiveness of 
NLP-extracted comorbidities from unsturctued text. 
The aim is to incoporate a summary cormobdity score 
as one a single feature into the holistic 30-days-
hospital-readmissions prediction model.   
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4 RESULTS AND ANALYSIS 

As mentioned earlier, several statistical tests were 
conducted on the diseases/comorbidities datasets 
including chi-square test for independence, logistic 
regression feature scoring and principal component 
analysis (PCA). Many statistical tests were performed 
mainly because we wanted to leverage the pros of 
multiple techniques to analyse the performance from 
various angles. The above tests were conducted on 
three different datasets mentioned above i.e. 
DIAGNOSED, PREDICTED COMORBIDITIES and 
DIAGNOSED + PREDICTED COMORBIDITIES 
datasets in relation with 30-days hospital readmissions 
predictions.  Table 1 presents the complete results of 
these tests attached at the end of the paper due to its 
size and format. The results reported in Table 2 have 
been sorted (rank-ordered) as per logistic regression 
feature scores of the comorbidities based on NLP-
predicted codes. 

4.1 Comorbidities Diagnosed by the 
Physicians   

A chi-square test of independence was performed to 
test the relation between each Elixhauser comorbid 
condition and 30-days hospital re-admission. With N 
= 3213, df = 30, the critical value for the chi-square 
distribution comes out at 43.773. For the 
DIAGNOSED scenario, the names of the diseases 
(along with their ICD-9 does) are diagnosed by the 
physicians. All values of chi-square statistics are 
below the critical value indicating significant 
relationship between all comorbidity measures in the 
EHI and hospital readmissions at p<0.5 significance 
level. The logistic features scores on its right-side 
highlight Hypertension, Congestive Heart Failure, 
Hyperthyroidism, Renal Failures and Peripheral 
Vascular Disorders as the top five contributing 
comorbidities to hospital readmissions. However, 
there are at least 10 features that have NaN values 
which implies there are several conditions that are not 
commonly diagnosed (or ignored) by the physicians. 
There is a possibility that this could be due to the 
Emergency Room data of MIMIC-III that certain 
types of diseases or conditions were not common 
among this group. Furthermore, even though top 5 
principal components identified by PCA analysis 
explain 74% of the variance (See Table 1), they are 
not very well-aligned with the key features 
highlighted by the logistic regression.  

Table 1: Cumulative variance explained by principal 
components. 

  Cumulative variance   
  1 PC 2 PCs 3 PCs 4 PCs 5 PCs

DIAGNOSED 0.29 0.44 0.58 0.68 0.74 

PREDCITED_ 
COMORBIDITIES 0.25 0.47 0.6 0.71 0.78 

DIAGNOSED + 
PREDCITED 
COMORBIDITIES 

0.27 0.47 0.61 0.71 0.77 

4.2 Comorbidities Extracted by NLP 

The Chi-square test performed on the PREDICTED 
COMORBIDITIES dataset also returns chi-square 
statistics for all the co-morbidities well below the 
critical value. Therefore, the relation between EHI 
comorbidities predicted by the NLP is significant at 
p<0.05. However, there are conspicuous differences 
in the diseases/comorbidities highlighted as most 
influential ones in this dataset in comparison to the 
DIAGNOSED dataset. Except for the AIDS/HIV 
Lymphoma which is life-threatening, rest of them 
appear to be chronic but slowly developing conditions 
gradually affecting patient’s quality of life. It is not 
surprising that Psychoses, Hypothyroidism, 
Rheumatoid Arthritis, Peptic ulcer diseases, and drug 
abuse have been noted in the unstructured parts of the 
EHRs but not in the main diagnosis. The doctors 
would typically note the most prevalent and billed 
comorbidities in their diagnoses while discussing the 
other notable historical conditions in the notes.  

It shows the effectiveness of NLP techniques in 
identifying conditions that are otherwise side-lined. 
But what is even more notable are the 78% variance 
explained by principal components as well as much 
better alignment between the logistic regression 
features and the principal components. This looks like 
a stronger model than the first one. But at the same, it 
is surprising that well-known comorbidities leading 
to early mortality, such as congestive heart failure and 
hypertension have not been identified as key factors 
behind early hospital readmissions. There are few 
overlaps between the significant principal 
components of the two datasets.  

4.3 Combined Comorbidities  

The Chi-square test performed on this combined 
dataset yields the same significant results for p<0.5 
that all considered comorbidities are related to 
hospital readmissions. However, these are even better  
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Table 2: Results of Chi-square, Logistic Regression Feature Scoring and Principal Component Analysis – sorted on Logistic 
Regression Features Scores of Predicted Codes. 
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since quite intuitively, this dataset has fewer NaN 
values i.e. only two compared to the eight and ten of 
the other two models. In other words, there are more 
significant relations between comorbidities and 
hospital readmissions in this dataset. The logistic 
regression feature scores definitely overcome the 
limitations shown by each of the earlier models. For 
instance, the top five influential features include 
Congestive Heart Failure and AIDS/HIV lymphoma 
on one hand and on the other hand they also check 
slowly progressing diseases like psychoses, paralysis 
and drug abuse. The combined variance explained by 
top 5 principal components is not improved further 
staying at 77% but it is evident visually that many 
more features are contributing to an align with these 
principal components. 

4.4 Comparative Classification 
Performance of the Three EHI 
Models 

The student T-tests for independent samples were 
performed on the three variants of the Elixhauser 
comorbidity scoring models discussed in the previous 
sub-sections.  Each data set (N=3123) was broken 
into a 75% training (n= 2395) and 25% test dataset 
(n=728). A logistic regression classifier was trained 
with the training dataset and then tested for 
classification performance (0,1) with the test dataset. 
The results are shown in Figs 1 a-c.   

The t-statistic of classification done by scoring 
model using diagnosed codes appears better but with 
p>.05 it becomes insignificant. Scoring models based 
on predicted codes (stand-alone or combination) are 
significant at p<0.5 hence they tend to perform better 
for hospital readmissions classification.  

Overall, it is abundantly clear that NLP-enhanced 
comorbidity scoring has merit and potential to 
improve performance of the CDSS employing 
comorbidities and comorbidity summary scores.  

5 CONCLUSIONS 

Improved comorbidity scoring is valuable as one of 
the features in AI-based decision models. This 
research aimed to test if comorbidity scoring can be 
improved using NLP-enhanced approaches, 
especially by gleaning additional ICD-10 codes from 
unstructured portions of the EHRs. Such 
improvements have huge implications for better 
healthcare delivery, cost savings, and patient 
outcomes.   

 

 

 
Figure 1: a, b and c: Classification performance of the three 
datasets based on calculated Elixhauser comorbidity scores 
(a) Diagnosed, (b) Predicted_Comorbidities, and (c) 
Combination of Diagnosed + Predicted_Comorbidities. 

We employed a BERT model to glean additional 
ICD-10 codes from unstructured portions of the 
MIMIC-III patient EHRs. The comorbidities 
represented by these codes and included in Elixhauser 
index were then tested for hospital readmission 
classification, separately as well as in combination 
with existing codes diagnosed by the physians. We 
noted improvements both in comorbidity 
measurements as well as 30-days hospital 
readmissions predictions. It is anticipated that better 
NLP techniques, such as HLAN and KGs will offer 
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even more improvements. We also demostrated any 
improvements in Computer-assisted coding (CAC) 
especially for ICD-10 and ICD-11 codes will also 
support other venues in the CDSS area. There is room 
for building user trust in CDSS.   

Like every research study, we faced limitations. 
At first, the MIMIC-III dataset is primarily an 
emergency admissions database. The physicians’ 
healthcare goals in emergency settings are different 
from those in a general admissions so they may view 
comorbidites and some variables differently from the 
physicians handling regular admissions. The high 
variations in logistic regression features scores 
between DIAGNOSED and 
PREDICTED_COMORBIDITIES could partly be 
stemming from such differences. Another limitation 
could be using a binary classifier for 30-days hospital 
readmissions. The performance and effects would 
have been more practical if a 30-days risk scoring 
model was used using comorbidity summary score/s 
as feature/s.  

Methods and pipelines for testing and analysis can 
also be improved. The effects of most diseases are 
caclulated separately. Multimorbidity indices are 
considered more relevant for assessing risks in some 
medical areas. Co-occurene and covariances would 
have be to accounted in comborbidy risk calculations.   

We do intend to revisit and improve this research 
using an HLAN (Hierarchical Label-wise Attention 
Network) technique and a holistic 30-days risk 
scoring model (including medical, demographic and 
socio-economic features) as the final output of our 
hospital readmission risks score cosidering alternate 
care facilities.   
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