A Study on Hybrid Classical: Quantum Computing Instructions for a
Fragment of the QuickSI Algorithm for Subgraph Isomorphism

Radu-Iulian Gheorghica*

a

Faculty of Mathematics and Computer Science, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords:

Abstract:

Quantum Computing, Classical Computing, Subgraph Isomorphism.

The purpose of the research presented in this paper is replacing classical computing instructions of a QuickSI

Algorithm (Shang and collaborators, 2008)(Lee and collaborators, 2012) fragment for subgraph isomorphism
with quantum computing instructions that serve the same purpose, but have a much better performance in
terms of execution times. The key results are quantum circuits that can replace specified instructions in the
QuickSI Algorithm source code. The quantum circuits have the role of oracles which are composed of gates
that manipulate qubits. In the following sections are presented three quantum computing approaches: two for
graph creation and one for generating truly random numbers.

1 INTRODUCTION

In this work it was studied how to obtain the equiv-
alent in quantum computing of several lines of code
from classical computing from a fragment of the
QuickSI algorithm. Also, through this hybrid ap-
proach, this study aims to achieve an easy to under-
stand way of converting classical algorithms into hy-
brid ones. The state of any classical computer can
be represented as a very long set of ones and ze-
roes. Quantum bits can have not only values of one
and zero, but also linear combinations of these values
(IBM Quantum, 2022a). Thus, in principle, a quan-
tum computer can do everything a classical computer
can do. Still, the limitations of quantum computers
consist of the number of qubits available and the min-
imal diversity regarding quantum gates. In time, the
performance of execution times and quantity of data
that can be used will be increased by the availability
of larger numbers of qubits for each quantum com-
puter and the existence of new quantum gates. There-
fore, all classical algorithms can also be performed
on a quantum computer (Lanzagorta and Uhlmann,
2009). Many companies, including Google, Hon-
eywell, IBM, and Intel, have developed gate model
quantum computers. Another approach is known as
quantum annealing, which aims to use the effects
of quantum fluctuations. Instead of formulating the

(2 https://orcid.org/0000-0002-5543-5023
*Supervisor Dr. Parv Bazil, Professor Emeritus

Gheorghica, R.

problem in terms of quantum gates, it is expressed
as an optimization problem and the quantum anneal-
ing computer searches for the optimal solution. D-
Wave Systems is a company that offers publicly avail-
able quantum annealing computers (Brown, 2023).
Ullmann’s Algorithm (Ullmann, 1976) pioneered the
search method that was developed for finding isomor-
phic patterns in 1976. This algorithm the main frame-
work for a significant number of newer subgraph iso-
morphism algorithms (Guo, 2022). This study is
made in the context of subgraph isomorphism. In this
problem, we are given two graphs G and G, G be-
ing a smaller graph than G,, and we are asked to test
the existence of a subgraph of G, that is isomorphic
to G (Erciyes, 2015). The hypothesis investigated is
that any line of code from classical computing can be
converted to quantum computing.

2 EXISTING WORK ON THE
SUBJECT

1. In (Endo and collaborators, 2021) the au-
thors summarise the most basic ideas of hybrid
quantum-classical algorithms and quantum error
mitigation techniques.

2. In (Callison and Chancellor, 2022) the authors
explore very directly the concept of an algo-
rithm being hybrid quantum-classical by build-
ing a definition based on previous work in ab-

505

A Study on Hybrid Classical: Quantum Computing Instructions for a Fragment of the QuickSI Algorithm for Subgraph Isomorphism.

DOI: 10.5220/0011942400003464

In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 505-512

ISBN: 978-989-758-647-7; ISSN: 2184-4895

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

506

straction/representation theory, arguing that what
makes an algorithm hybrid is not directly how it
is run (or how many classical resources it con-
sumes), but whether classical components are cru-
cial to an underlying model of the computation.

. According to (Callison and Chancellor, 2022),

Shor’s algorithm is far from being a purely quan-
tum algorithm, and should certainly be consid-
ered a hybrid algorithm. The algorithm relies on a
polynomial-time reduction of the factoring prob-
lem to the problem of finding the order r of a pe-
riodic function. Almost all of the steps are en-
tirely classical The only part of the algorithm that
is quantum is the call to the quantum phase esti-
mation circuit, which forms the core of the order-
finding subroutine.

TERMINOLOGY

. The qubit - It is the physical carrier of quantum

information (IBM Quantum, 2022b).

. Quantum circuit - A quantum circuit is a com-

putational routine consisting of coherent quantum
operations on quantum data, such as qubits, and
concurrent real-time classical computation (IBM
Quantum, 2022¢)(IBM Quantum, 2022c).

. Oracle - A function f which returns f(x) = 0 for

all unmarked items x and f(w) = 1 for the win-
ner. To use a quantum computer for this problem,
we must provide the items in superposition to this
function, so we encode the function into a unitary
matrix called an oracle (IBM Quantum, 2022e)
(IBM Quantum, 2022d).

. Amplitudes - They are complex numbers and each

possible outcome has a corresponding amplitude.
Amplitudes are analogous to conventional prob-
abilities, as the magnitude of the amplitude is
correlated to the chance of measuring that out-
come. Unlike conventional probabilities, ampli-
tudes have phase and can interfere with each other.
According to (IBM Quantum, 2022d) it is the am-
plitude, and not just the probability, that is being
amplified. In the current case, amplitudes are used
to present a data graph subgraph’s viability of be-
ing the occurence of the query graph (IBM Quan-
tum, 2022¢) (IBM Quantum, 2022d).

. Gates - Classical and quantum operations can be

used to manipulate qubits in a quantum circuit.
Quantum operations include quantum gates, such
as the Hadamard gate, as well as operations that
are not quantum gates, such as the measurement

operation (IBM Quantum, 2022¢)(IBM Quantum,
2022f).

6. Hadamard gate - It rotates the states |0) and |1)
to |[+) and |—), respectively. It is useful for mak-
ing superpositions. If you have a universal gate
set on a classical computer and add the Hadamard
gate, it becomes a universal gate set on a quantum
computer (IBM Quantum, 2022¢)(IBM Quantum,
2022a)(IBM Quantum, 2022f).

7. Query graph and data graph - The query graph
is used for searching its occurrences in the data
graph.

8. A classical algorithm, known as a non-quantum
algorithm, is a well-defined sequence of instruc-
tions that is created as a solution to a particular
problem.

9. Hybrid quantum-classical algorithms are regarded
as well-suited for execution on NISQ (noisy
intermediate-scale quantum) devices by combin-
ing quantum computers with classical computers,
and are expected to be the first useful applications
for quantum computing (Endo and collaborators,
2021).

10. In the field of quantum computing, a quantum al-
gorithm refers to an algorithm that is created to
be executed on a practical quantum computing
model. The most frequently used model for this
goal is the quantum circuit model of computation.
(Nielsen and Chuang, 2000)(Mosca, 2008).

4 THE QuickSI ALGORITHM
FRAGMENT

In this section is presented a fragment of the
QuickSI Algorithm transposed in Python (van
Rossum, 1989) by the author of the current pa-
per.

1: class QuickSIAlgorithm(): {Here is the
creation of two edge lists for the same
graph by using the adjacency matrix of
the graph: 0-based uses the indices
of the matrix as it was created through
numpy (Oliphant and collaborators, 1995).
l-based is the list that will be used by
NetworkX (Hagberg and collaborators, 2005)
to create the graph. The numbers from
this list represent nodes.}
edgelist2_0 based = []
edgelist2_1 based = []
for i in range(0, b.shape[0]) do

for j in range(0, b.shape[l]) do

if b[i, j] == 1 then

oY U1 B W DN

9:
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22
23:
24
25:
26:
27
28:

29:

30:

31:

32:
33:

34:

35:

36:
37:

A Study on Hybrid Classical: Quantum Computing Instructions for a Fragment of the QuickSI Algorithm for Subgraph Isomorphism

edgeList2_0_based.append([i, 7])
edgelist2_1 based.append([i + 1, j
11)
end if
end for
end for{Adding the edges:}
graphB.add_edges_from(edgeList2_1_based)
¢ = np.matrix(((o, 1, 0, 0, 0, 01, [1, O,

1’ Ol Ol O:|I [O! 1! Ol 1’ OI O:|l [O! Ol 1’
o, o, o3, to, o, 1, o, 0, 0], [0, 1, 0, O,

0, 011)
graphC = nx.Graph()
graphC.add_node (1) cl = Vertex("N", "cl"

()
graphC.add-node (2) c2 = Vertex("C", "c2")
graphC.add_node (3) c3 = Vertex("C", "c3")
graphC.add_node (4) c4 = Vertex("C", "c4")
graphC.add-node (5) c5 = Vertex("C", "c5")
graphC.add_node (6) c6 = Vertex("O", "c6")
edgeList3_1 based = []
for i in range(0, c.shape[0]) do

for j in range(0, c.shape[l]) do
if c[i,j] == 1 then
edgelist3_1_based.append([i+1, j+1])
end if
end for

end for{In the following part is
attempted the implementation of a QI
Sequence (Lee and collaborators, 2012)

for a graph. } {A data graph from (Lee

and collaborators, 2012):}

{Nodes: }

al = Vertex("N", "al"), a2 = Vertex("C",
"a2") ’

a3 = Vertex("C", "a3"), a4 = Vertex("C",
"a4") ,

ab = Vertex("C", "a5"), a6 = Vertex("C",
"a6"),

graphA_node_list = [al, a2, a3, a4, a5,
a6] {Adjacency matrix for an undirected
graph having edge weights:}

a = np.matrix([[0, 1.40, 0, O, 0, 0], [1,
0, 45.10, 0, 0, 5.10], [O, 1, O, 5.10, O,
01, 0, 0, 1, 0, 5.10, 0]

5.101, [0, 1, 0, 0, 1, O]

graphA = nx.Graph()

graphA.add_node (al), graphA.add._node(a2),
graphA.add-node (a3), graphA.add-node (a4),
graphA.add_node (a5), graphA.add_node (ab)

1)

edgelist = [(al, a2), (a2, al), (a2, a3),
(a2, a6), (a3, a2), (a3, a4d), (a4, a3l),
(a4, a5), (a5, a4), (a5, a6), (a6, a2),
(a6, ab)]

{Iterating the adjacency matrix:}
for i in range(0, a.shape[0]) do
for j in range(0, a.shape[l]) do
if a[i, j) != 0 and i < j then {i
< j will select the elements above

(0, 0, 0, 1, 0,

the main diagonal of the adjacency
matrix}
38: graphA.add_edge (graphA_node_list[i],
graphA_node_list[j], weight=a[i,j])
39: end if
40: end for

41: end for

42: P = graphA.edges (data=True)

43: gqw = graphA

44: P2 = []

45: if len(P) > 1 then

46: for i in range(0, len(P)-1) do

47 if gqw.degree(P[1][0])
+ gqw.degree(P[i][1]) <
qw.degree (P[i+1][0]) +
qw.degree (P[i+1][1]) then

48: P_2.append(P[i]) {P[i] is "e"}

49: end if

50: end for

51: i = random.randrange (0, len(P_2))

52: selectedEdgeFromP 2 = P_2[1i]

53: end if

In order for a quantum computer to work with the in-
put data, a methodology is needed in order encode it
for the oracle. Thus, an index will have to be assigned
to the query data. For example, a query graph can
have an index 00. Then the oracle will look for this
index by using gates in a quantum circuit that amplify
the amplitude for the outcome 00 (Bick, 2018)(Mc-
Caig, 2021).

The part of the code at lines 1 - 12 represents the cre-
ation of the first graph for the algorithm. The second
graph is created between the lines 13 and 28. The
third graph is created between lines 29 and 41. Let’s
consider that each of these graphs has 6 nodes. Lines
of code from classical computing will be transformed
into quantum computing. The quantum computing
equivalent for this, according to the terminology, is
the following. There are two approaches.

1. There are three input graphs, thus there were cre-
ated three quantum circuits, each graph being en-
coded in a circuit.

2. Let’s consider, for example, three quantum cir-
cuits, each having 6 qubits. Just like it was men-
tioned at the first point, a circuit belongs to a
graph. In this case, each graph is divided in parts
which are assigned to different outcomes. The
qubits interact between each other and exchange
information. From here results that the aforemen-
tioned hypothesis is valid because the nodes of the
graph also interact with each other.

For larger numbers of qubits exist larger numbers of
outcomes. For 6 qubits there are 26 = 64 outcomes,
for 15 qubits there are 25 = 32768 outcomes and

507

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

for 300 qubits there are 230 = 2.037036¢ + 90 out-
comes. Consequently, larger graphs can be stored
when the quantum computer has a larger number of
qubits. From this can be considered that the max-
imum capacity of a quantum computer’s number of
qubits represents a graph in itself as seen in Figures 1
and 2. In those figures, the nodes represent the qubits
and the edges are the connections between them. The
colors of the nodes represent the value readout assign-
ment error. The colors of the connections represent
the value of the CNOT error (IBM Quantum, 2022g)
(IBM Quantum, 2022h).

Figure 1: The undirected graph of the qubits for the
ibm_nairobi quantum computer (IBM Quantum, 2022g).

Figure 2: The undirected graph of the qubits for the
ibm_oslo quantum computer (IBM Quantum, 2022h).

In time, after the quantum internet will be more
evolved, quantum computers will be able to transfer
data between each other. The basis for this is quan-
tum entanglement. According to the definition of the
amplitudes specified in the terminology at section 3,
they interfere with each other. In conclusion, we can
consider that interference and quantum entanglement
can be the equivalent of the interactions between the
nodes of the encoded graph. The performance eval-
uation of the quantum circuits is based on extremely
small execution times. In Tables 1, 2 and 5 are pre-
sented the execution times of quantum circuits repre-
sented in Figures 3, 5, 7,9, 11, 13, 15 and 17. Each
circuit was executed 8192 times by quantum comput-
ers. For exemplification of the execution speed, each
table also contains the run time of just one execution
for each quantum circuit.

S THE FIRST APPROACH

In the following section is presented a procedure for
graph creation using quantum computing after which
there have been presented test cases, results and dis-
cussion. We can encode each graph in a separate out-
come. For example, the first input graph can be en-
coded in the outcome 000111. For this, in Figure 3 is
presented the quantum circuit associated with this op-

508

eration. In Figure 3 were used the reset operation,
the Hadamard, Toffoli and Y gates, finishing with
the measurement operation. The Toffoli gates create
quantum entanglement between qubits.

T RE 1] <
o 1 © H K <

Of oS
HE:E| =
of (]] o

m.i.n <

Figure 3: The quantum circuit associated with the first input
graph.

In Figure 4 the amplified amplitude for the 000111
outcome represents the first graph.

Figure 4: The histogram with the amplified amplitudes for
the circuit presented in Figure 3.

The second graph has been encoded in the out-
come 001110. The corresponding circuit is presented
in Figure 5. For the test in this circuit were used the
reset operation, the Hadamard, Toffoli and Y gates,
finalizing with the measurement operation.

wer [6] JE + HE

Nl RY | 7
 mHOHE z,
a5l ¢« o<
; \n>.‘L. <

> 5O &

Figure 5: The quantum circuit associated with the second
input graph.

In the histogram from Figure 6, the amplified am-
plitude for the outcome 001110 represents the second
graph.

Figure 6: The histogram with the amplified amplitudes for
the circuit presented in Figure 5.

The third graph is encoded in the outcome
011100. For this graph, the circuit is presented in
Figure 7. This circuit also uses the reset operation,
the Hadamard, Toffoli and the Y gates, finishing with
the measurement operation.

A Study on Hybrid Classical: Quantum Computing Instructions for a Fragment of the QuickSI Algorithm for Subgraph Isomorphism

o 5+ 1=
» @E 3 =
- o HQH
,|n>.I.

- BE - H|

- mEHOH

Figure 7: The quantum circuit associated with the third in-
put graph.

In Figure 8 the amplified amplitude for 011100
represents the third graph.

| I | ISP M I T

Figure 8: The histogram with the amplified amplitudes for
the circuit presented in Figure 7.

The other less amplified amplitudes from Figures
4, 6 and 8 are considered other graphs that have differ-
ent encodings. The circuits in Figures 3, 5 and 7 were
executed on the real quantum computer ibm_nairobi
(IBM Quantum, 2022g) having 7 qubits.

Table 1: Execution times for the circuits in Figures 3, 5 and
7. Each circuit was executed 8192 times.

Circuit Execution Execution times
times (sec) | for a single run (sec)

Figure 3 6.8 0.00083

Figure 5 6.6 0.0008

Figure 7 6.9 0.00084

6 THE SECOND APPROACH

In this section is presented a second procedure for
graph creation using quantum computing. Afterwards
there have been presented test cases, results and dis-
cussion. Let’s consider each of the 6 nodes of the first
input graph be associated with different outcomes.
The corresponding circuit is presented in Figure 9. It
uses the reset operation, the Hadamard, RX, RY and
Y gates. After these gates the measurement operation
has been used.

Figure 9: The quantum circuit associated with the first input
graph.

There are two amplitudes that are amplified more than
the rest as seen in Figure 10: 000110 and 000111.
The graph is divided in half: three nodes for the first
amplified amplitude and the other three nodes for the
second amplified amplitude. Also in Figure 10 can be
seen similar encodings of the graph, but for less am-
plified amplitudes. For example, 010110 and 010111.
Each node is a smaller part of the larger graph. Each
part of a graph, according to how the user wants to
encode it, can be associated to an outcome.

Figure 10: The histogram with the amplified amplitudes for
the circuit presented in Figure 9.

The quantum circuit from Figure 11 is associated
with the second input graph. This circuit is created
with the reset operation, the Hadamard, RX, RY, Y, Z
and /X gates, ending with the measurement opera-
tion.

Figure 11: The quantum circuit associated with the second
input graph.

In Figure 12 the second input graph is divided in
four parts: two nodes for 111100, another two nodes
for 111101, one node for 111110 and one node for
111111. Also in Figure 12 are presented similar en-
codings of the graph. For example: 101100, 101101,
101110 and 101111.

Figure 12: The histogram with the amplified amplitudes for
the circuit presented in Figure 11.

The quantum circuit presented in Figure 13 cor-
responds to the third input graph. This circuit uses
the reset operation, the Hadamard, RX, RY and VX
gates. Each v/X gate used has a control qubit associ-
ated to it. If a control qubit has the state |1), then its
belonging v/X gate will be executed. Afterwards, the
measurement operation has been used.

509

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

Figure 13: The quantum circuit associated with the third
input graph.

In Figure 14 the third input graph is divided in
three parts: two nodes for 111000, two nodes for
111011 and the last two nodes for 111111. In the
same figure are represented similar encodings of this
graph: 111001, 111100 and 111101.

Figure 14: The histogram with the amplified amplitudes for
the circuit presented in Figure 13.

The circuits in Figures 9, 11 and 13 were executed on
the real quantum computer ibm_oslo (IBM Quantum,
2022h) having 7 qubits.

Table 2: Execution times for the circuits in Figures 9, 11
and 13. Each circuit was executed 8192 times.

Circuit Execution Execution times
times (sec) | for a single run (sec)
Figure 9 6.4 0.00078
Figure 11 6.3 0.00076
Figure 13 6.6 0.0008

7 TRULY RANDOM NUMBERS

At line of code number 51 from the fragment of the
QuickSI Algorithm in section number 4 is presented
the pseudorandom generation of a value from a given
range of values. In quantum computing truly random
values can be generated according to (Li and collab-
orators, 2021)(Q-munity, 2022). Through the use of
the Hadamard gate and thus, the superposition of all
the possible numbers that can be generated, true ran-
domness can be achieved. The author of (Q-munity,
2022) has used a quantum simulator to obtain the
probabilities of occurrence for each value from O to
7. For the tests in this paper, the real quantum com-
puter ibm_oslo (IBM Quantum, 2022h) has been used
having 7 qubits. In Figure 15 is presented the circuit
for this and in Figure 16 are all the possible numbers

510

that can be generated with 7 qubits. This amounts to
a total of 27 = 128 possible numbers. This means that
the qubits will be in a superposition of all of these
numbers and in the following histograms we can see
the probabilities of each of those numbers to occur. In
order to highlight the randomness for the occurence of
the numbers, the circuits from Figures 15 and 17 were
executed, resulting two different histograms. The cir-
cuits in Figures 15 and 17 use the reset operation,
the Hadamard gate and the measurement operation.
The two histograms show different sets of occurrence
probabilities for the 128 numbers. For example, num-
ber 0 is encoded in the 0000000 outcome, number 1
is encoded in the 0000001 outcome, number 2 is en-
coded in the 0000010 outcome and so on until the last
number which is 127 thatis encoded in 1111111. This
applies for the histograms in Figures 16 and 18.

o [

cBHE B

: BH 2
w Z

- BH Z
w Z
w Z

Figure 15: The circuit for the first random number.

| T T T Y Il

I
| Il
| Il

Figure 16: Histogram for the circuit from Figure 15. Here
are the most frequent numbers from the 128 positions men-
tioned.

Table 3 belongs to the histogram in Figure 16. The
measurement outcomes are the computational basis
states, the frequencies are the amplified amplitudes
for those outcomes and the encoded numbers are as-
sociated to the specified outcomes. The number with
the highest probability to occur is number 19.

Table 3: Histogram from Figure 16 in detailed form.

Measurement | Frequency | Encoded
outcome number
0000000 764” 0
0000001~ 766" 1
0010011~ ”99” 19
11111117 ”53” 127

A Study on Hybrid Classical: Quantum Computing Instructions for a Fragment of the QuickSI Algorithm for Subgraph Isomorphism

=

BE =

o [l 55

i <

i <

i <

Figure 17: The circuit for the second random number.

MR

Figure 18: Histogram for the circuit from Figure 17. Here
are the most frequent numbers from the 128 positions men-
tioned.

Table 4 is associated with the histogram presented
in Figure 18. The measurement outcomes represent
computational basis states, the frequencies are the
amplified amplitudes for those outcomes and the en-
coded numbers are associated to the specified out-
comes. The number with the highest probability to
occur is number 91.

Table 4: Histogram from Figure 18 in detailed form.

Measurement | Frequency | Encoded
outcome number
0000000” ”54” 0
0000001~ 767" 1
710110117 786" 91
11111117 766" 127

The circuits in Figures 15 and 17 were executed on
the real quantum computer ibm_oslo (IBM Quantum,
2022h) having 7 qubits.

Table 5: Execution times for the circuits in Figures 15 and
17. Each circuit was executed 8192 times.

Circuit Execution Execution times
times (sec) | for a single run (sec)
Figure 15 6.4 0.00078
Figure 17 6.3 0.00076

8 ALTERNATIVE APPROACHES

An alternative approach to evaluating the execution is
the Qiskit library (MD A. SAJID et al., 2021). In-
stead of using the Circuit Composer (IBM Quantum,
2022e), it offers much more control through the use

of the Python programming language to formulate
quantum circuits and send them for execution to the
quantum computers directly from the code. As more
parts of the classical algorithm are converted into their
quantum counterparts, the less will matter the clas-
sical hardware platform that is used. The author of
this paper considers that with the right combination
of quantum gates, an algorithmic conversion is possi-
ble with a minimal time of work.

9 CONCLUSIONS

In this paper were presented three quantum comput-
ing approaches for replacing classical computing in-
structions in a fragment of the QuickSI Algorithm for
subgraph isomorphism. In the first and the second ap-
proaches, the quantum circuits created are the equiv-
alent for creating graphs for the algorithm. The third
quantum computing approach presented has the role
of generating truly random numbers. Starting from
the premise that for example, a classical computer can
exist in only one state out of 25, while a quantum
computer can exist in all 25 states at the same time
due to superposition, through the superiority of this
omnipresence and quantum entanglement of quantum
bits, the next step is the improvement, perfecting of
existing quantum gates and developing new ones.

ACKNOWLEDGEMENTS

I acknowledge the use of IBM Quantum services for
this work. The views expressed belong to the author,
and do not reflect the official policy or position of
IBM or the IBM Quantum team.

REFERENCES

Bick (2018). https://quantumcomputing.stackexchange.com
/questions/2149/grovers-algorithm-what-to-input-to-
oracle.

Brown, R. (2023). https://www.quantumcomputinginc.com
/blog/quantum-annealing-gate/.

Callison, A. and Chancellor, N. (2022). Hy-
brid quantum-classical algorithms in the noisy
intermediate-scale quantum era and beyond . DOI:
https://doi.org/10.1103/PhysRevA.106.010101.

Endo, S. and collaborators (2021). Hybrid Quantum-
Classical Algorithms and Quantum Error Mitigation.
Journal of the Physical Society of Japan, 90, 032001
(2021) 10.7566/JPSJ.90.032001.

511

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

Erciyes, K. (2015). COMPLEX NETWORKS An Algo-
rithmic Perspective. ISBN-13: 978-1-4665-7167-9
(eBook - PDF), CRC Press Taylor & Francis Group.

Guo, M. (2022). A (Sub)graph Isomorphism Identification
Theorem. PhD thesis, Swinburne University of Tech-
nology, Melbourne, Australia.

Hagberg, A. and collaborators (2005).
https://networkx.org/.

IBM Quantum (2022a). https://quantum-
computing.ibm.com/composer/docs/iqx/guide/creating-
superpositions.

IBM Quantum (2022b). https://quantum-
computing.ibm.com/composer/docs/igx/guide/the-
qubit.

IBM Quantum (2022c). https://quantum-
computing.ibm.com/composer/docs/igx/terms-
glossary/.

IBM Quantum (2022d). https://quantum-
computing.ibm.com/composer/docs/iqx/guide/grovers-
algorithm.

IBM Quantum (2022e). IBM Quantum Expe-
rience Circuit Composer. https://quantum-
computing.ibm.com/composer/files/new.

IBM Quantum (2022f). IBM Quantum Experi-
ence Operations Glossary. https://quantum-

computing.ibm.com/lab/docs/igl/operations_glossary/.

IBM Quantum (2022g). ibm_nairobi v1.2.0, 7 qubits,
processor type: Falcon r5.11H . https://quantum-
computing.ibm.com.

IBM Quantum (2022h). ibm_oslo v1.0.14, 7 qubits,
processor type: Falcon r5.11H . https:/quantum-
computing.ibm.com.

Lanzagorta, M. and Uhlmann, J. K. (1 January 2009).
Quantum Computer Science. Morgan & Claypool
Publishers. ISBN 9781598297324.

Lee, J. and collaborators (2012). An in-depth comparison of
subgraph isomorphism algorithms in graph databases.
PVLDB.

Li, Y. and collaborators (2021). Quantum random
number generator using a cloud supercon-
ducting quantum computer based on source-
independent protocol. Sci Rep 11, 23873 (2021).
https://doi.org/10.1038/s41598-021-03286-9.

McCaig, X. (2021). https://quantumcomputing.
stackexchange.com/questions/16350/how-can-
grovers-algorithm-be-implemented-when-having-a-
string-or-other-data-typ.

MD A. SAJID etal. (2021). Qiskit: An Open-source Frame-
work for Quantum Computing. DOI: 10.5281/zen-
0do.2573505.

Mosca, M. (2008). Quantum algorithms.
https://arxiv.org/abs/0808.0369.

Nielsen, M. A. and Chuang, 1. L. (2000). Quantum Compu-
tation and Quantum Information. Cambridge Univer-
sity Press. ISBN 978-0-521-63503-5.

Oliphant, T. and collaborators (1995). The fundamen-
tal package for scientific computing with Python.
https://mumpy.org.

512

Q-munity (2022). https://www.qmunity.tech/tutorials/quantum-
random-number-generator.

Shang, H. and collaborators (2008). Taming Verifica-
tion Hardness: An Efficient Algorithm for Test-
ing Subgraph Isomorphism. Proc. VLDB Endow.,
1(1):364-375.

Ullmann, J. R. (1976). An algorithm for subgraph isomor-
phism. J. ACM, 23(1):31-42.

van Rossum, G. (1989). Python Software Foundation.
https://www.python.org/.

