
Course Scheduling Under Uncertainty for Defence Workforce Training

Trudy Lam1 a, Vicky Mak-Hau1 b and Kristan Pash2

1School of Information Technology, Deakin University, Waurn Ponds, Geelong, Australia
2Defence Science and Technology Group, Department of Defence, Fishermans Bend, Australia

Keywords: Scheduling, Uncertainty, Simulation, Optimisation.

Abstract: In this paper, we revisit a previously studied Defence course scheduling problem where trainees are allocated
to course sessions, the Simultaneous Sequencing and Allocation Problem. The courses have a non-linear
prerequisite structure, each course has a number of sessions, and each session has a class size limit. The
uncertainty in the planning is due to a historical pass-rate associated with each course, and a trainee will not
be able to proceed once s/he fails a course. We develop a simulation-based three-stage solution algorithm
that optimises the scheduling for each scenario using integer programming. The way pass-rates are handled
is different from previous approaches, and because of this, we are able to provide decision-makers with better
insights on best-case, average-case, and worst-case outcomes.

1 INTRODUCTION

In this paper, we study a Defence trainee course
scheduling problem with multiple business require-
ments.

Defence personnel maintain and develop their
professional skills by attending applicable courses
throughout each phase of their careers, with some
courses forming part of the requirements for promo-
tion to higher ranks.

The efficient scheduling of course sessions and al-
locating personnel to sessions can reduce the number
of times each course must be sessioned, reduce wait-
ing times, give more time for individuals to practice
their learned skills, reduce time to promotion, and in-
crease morale.

1.1 Problem description

The optimisation problem concerns the allocation of
Defence trainees to course sessions in a planning hori-
zon.

The courses have a pre-requisite structure. See
Figure 1 for an example, where the course structure
of a 25-course instance is provided. Since the courses
are not linearly structured, there are multiple com-
ponents of the courses that can be taken in a differ-
ent order. Take the 25-course system as an example.

a https://orcid.org/0000-0003-1412-6598
b https://orcid.org/0000-0002-9306-5780

Once a trainee has successfully completed Course 2,
they can proceed to either Courses 3, 4, 6, 7, 8, 9, 10
or 17 without violating any pre-requisite requirement.
Course 13, on the other hand, can only be taken if a
trainee has successfully completed Courses 1, 2, and
4–12, but it can be taken either before or after Courses
3 and 17. Course 13 is also a direct pre-requisite for
Courses 14 and 15 and an implied pre-requisite for
Courses 16–25. Each trainee has only one chance to
complete a course. If a trainee fails a course, s/he is
most likely offered a transfer to a less complex trade
or be asked to leave the service. Each course has a
number of sessions. A trainee will only take one ses-
sion for each course. All sessions for the same course
have the same duration; however, the span of different
sessions of a course may overlap. A trainee can only
take one (course) session at a time. Each course ses-
sion has a lower limit and an upper limit on the size
of the class (i.e., the number of trainees that can be
admitted to the session).

There is a historic pass-rate associated with each
course (as shown in Figure 1). We were informed
that the pass-rates are independent of the sequence
the courses taken so far by a trainee. This means that,
for example, the probability of a trainee successfully
completing Courses 1, 2, 6, 11, and 8 will be 0.3249.
However, these five courses can be taken in one of the
following orders (1, 2, 6, 11, 8), (1, 2, 6, 8, 11), and
(1, 2, 8, 6, 11). This leads to an interesting question -
how far can each trainee reach in the system (in other
words, how many courses can a trainee complete be-

Lam, T., Mak-Hau, V. and Pash, K.
Course Scheduling Under Uncertainty for Defence Workforce Training.
DOI: 10.5220/0011924200003396
In Proceedings of the 12th International Conference on Operations Research and Enterprise Systems (ICORES 2023), pages 269-278
ISBN: 978-989-758-627-9; ISSN: 2184-4372
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

269

Figure 1: This figure illustrates the course structure of the problem instances with 25 courses. The nodes are the courses. An
arc between two courses indicates the pre-requisite relation (e.g., Course 1 is a pre-requisite of Course 2). The numbers in red
on top of each node represent the historic pass-rate of the course the node represents.

fore s/he is out of the system) and in what sequence
are these courses completed?

A mathematical description of the Simultaneous
Sequencing and Allocation Problem (SSAP) is given
below. Consider a directed graph D = (V,A), where
V represents all the course sessions and is partitioned
to |C | clusters. Each cluster represents a course, and
the vertices in each cluster represent available ses-
sions for the course. Each vertex has a capacity (class
size) and a time-window associated with it. The time-
windows for all vertices in the same cluster have the
same span; however, the time windows themselves
are different but may overlap. Precedence relations
exist between some clusters. The optimisation prob-
lem is to find a “route” for each trainee such that no
more than one vertex from each cluster is visited. In
this aspect, the SSAP problem is similar to a gener-
alized Vehicle Routing Problem with Time-Windows
(GVRP-TW). However, the major difference is that
vehicles do not disappear mid-tour in a Vehicle Rout-
ing Problem, but in the SSAP problem, trainees will
not be able to proceed if they fail a course.

1.2 Literature Review

Optimal scheduling and timetabling problems can be
found in many industry sectors, e.g., hospital trainees
scheduling (Beliën and Demeulemeester, 2006), mil-
itary aircraft fleet management, (Looker et al., 2017),
and army training (Lee et al., 2009), among others.

Many are based on graphs and networks, for exam-
ple, timetabling problems as graph colouring prob-
lems, (de Werra, 1985). Integer programming models
that lead to further research in solution methodologies
for real-world timetabling problems can be found in,
e.g., (Carter, 1989; Costa, 1994; Burke et al., 2005).
Many heuristic approaches for timetabling- as well as
scheduling-family problems can be found in the liter-
ature. For example, (Glover and Laguna, 1997; Battiti
and Tecchiolli, 1994; Dell’Amico and Trubian, 1993;
Hertz and Widmer, 1996; Nowicki and Smutnicki,
1996). Regarding meta-heuristic algorithms, their
hybrids and hyper-heuristics have some success in
scheduling problems in various domains (Teoh et al.,
2015; Pillay, 2016). In vehicle routing-family prob-
lems, much recent research is on the “rich” optimisa-
tion version of the problems, such as (Lam and Hen-
tenryck, 2016).

In the literature of scheduling work in the educa-
tion domain, the majority of work are on examination
timetabling and course timetabling (Rudová et al.,
2011; Bettinelli et al., 2015; Müller and Rudová,
2016). The university course timetabling problems
are mainly about scheduling lectures, tutorials, and
so on, that recurs on a weekly basis, be it schedul-
ing classes after students have enrolled, whereas in
post-enrolment course timetabling, or the schedule of
classes are defined before enrolment in curriculum-
based course timetabling. For this reason, they are
very different from the SSAP problem.

WAPAT 2023 - Special Session on Workforce Analytics - Practical Application and Theory

270

In military training, policy effects, bottlenecks,
and resource utilisation has been studied in, e.g.,
(Davenport et al., 2007; Séguin and Hunter, 2013;
Novak et al., 2015; Nguyen et al., 2016). System
dynamics simulations in workforce planning is re-
viewed in (Wang, 2005). Heuristic approaches can
be found in (Yang and Ignizio, 1987) for peacetime
scheduling of training activities of battalions where
decisions must be made in regards to the kind of
training tasks to be performed, by which battalion,
at what time, with the objective of minimizing the
make-span. In military and other aircrew training,
heuristic methods can be found in, e.g., (Lee et al.,
2009). A hybrid heuristic-integer programming ap-
proach was used to schedule examination timetables
for cadets in (Wang et al., 2010). A two-phase heuris-
tic method is proposed for scheduling army battalion
training exercises in (Yang and Ignizio, 1987). Inte-
ger programming has been applied in (Scott, 2005)
to produce multi-year schedules at the Defence Lan-
guage Institute. In (Qi et al., 2004), a hybrid Branch
and bound method and heuristics are applied to the
scheduling of the retraining of pilots for Continen-
tal Airlines. Dynamic programming and column gen-
eration approaches were used in (Raffensperger and
Schrage, 2008) for training in a tank battalion. A re-
source scheduling problem is presented in (McGinnis
and Fernandez-Gaucherand, 1994) for the US Army’s
basic combat training program. An intra-theatre mil-
itary airlift problem was presented in (Brown et al.,
2013). In (Squires and Hoffman, 2015), a mili-
tary maintenance planning and scheduling problem is
modelled as ILPs and solved using Benders decom-
position. A logic-based Benders decomposition ap-
proach for multi-phase course timetabling is proposed
in (Esmaeilbeigi et al., 2022).

The SSAP problem has been studied in (Nguyen
et al., 2018), (Mak-Hau et al., 2021), and (Nguyen
et al., 2022). The common feature of these meth-
ods is that schedules are formed by sequencing the
course sessions either before the optimal allocation
of trainees to these schedules, or the two problems
solved simultaneously. The course pass-rates are han-
dled deterministically in the sense that the number of
trainees to be taking a particular session of a course
is obtained by multiplying the number of trainees al-
located to the session by the accumulative pass-rate
from the first course to the course immediately before
the current course. Further details will be provided in
Section 3.

In (Nguyen et al., 2018), the timetabling problem
is solved as a generalised exact cover problem. The
set of all feasible schedules is enumerated using Don-
ald Knuth’s Dancing Links algorithms DLX.

On the other hand, multiple mixed-integer linear
programming (MILP)-based approaches are proposed
and tested in (Mak-Hau et al., 2021). The first MILP
model considers each trainee individually as a sched-
ule. A continuous decision variable is used to repre-
sent the probability that a trainee has not failed when
s/he reaches a course, and the class size constraint
is based on the expected number of trainees attend-
ing a course session. The second method is a two-
stage approach with the Stage-one MILP using an in-
teger variable to determine the expected number of
trainees taking a schedule. Given that the Stage-one
MILP did not show significant improvement, Stage-
two MILP was not implemented. The third method
is a column generation-based heuristic, where an in-
teger programming (IP) model is solved, with each
column as a schedule. Column generation is used
for solving the Linear Programming (LP) relaxation,
and the columns obtained are ultimately used as the
set of columns in the IP. The LP solution to all but
two instances tested are naturally integral, and for the
ones that are not, they are solved to optimality at the
root node in under 0.05 seconds due to the pre-solve,
reduction, and cutting planes implemented automati-
cally by CPLEX.

Another search algorithm is proposed in (Nguyen
et al., 2022), where schedules with minimum cost-
function values are generated by Knuth’s Dancing
Links indexing scheme with A∗ search, and trainees
are greedily allocated until the maximum class size is
reached by one or more of sessions. This approach
is most computationally efficient when compared to
(Nguyen et al., 2018) and (Mak-Hau et al., 2021).

These methods essentially provide an “expected
number” of trainees attending each course session,
and it must be within the class size’s lower and up-
per limits. Essentially this gives users insights into
an average-case outcome. If resources (such as in-
structors and equipment) are planned based on the
average-case scenario, in real-life practice, there may
be an under-resourcing issue. However, resourcing
for worst-case or somewhere between average-case
and worst-case requires the knowledge of what the
worst-case scenarios are, which previous approaches
cannot tell us unless we change the pass-rate. For this
reason, we propose an alternative approach that will
allow us to obtain insights on best-case, average-case,
and worst-case solutions, and to take them into con-
sideration in evidence-based decision-making.

1.3 Contributions and Outline of Paper

This paper proposes a new paradigm to integrate his-
torical pass-rates into our optimisation procedure, and

Course Scheduling Under Uncertainty for Defence Workforce Training

271

because of that, we obtained a new integer program-
ming formulation for the SSAP problem. We imple-
mented and extensively tested the new method on the
same set of test instances used in (Nguyen et al., 2018;
Nguyen et al., 2022; Mak-Hau et al., 2021), and pre-
sented best-case, average-case, and worst-case out-
comes in the number of distinct sessions required as
well as total make-span. We provide the Integer Pro-
gramming formulation in Section 2 and a detailed ex-
planation of pass-rate based progression simulation in
Section 3. In Section 4, we present the computational
experiments. Finally, we conclude our findings and
present future research directions in 5.

2 INTEGER PROGRAMMING
FORMULATION

First we introduce the mathematical notation used in
the rest of the paper. Let:

• S = {1, . . . ,S} be the set of all trainees;

• C = {1, . . . ,C} be the set of all courses;

• pc, the pass-rate of Course c;

• K = {1, . . . ,K} = {1, . . . ,n1,n1 + 1, . . . ,n2,n2 +
1, . . . ,nc−1 +1, . . . ,nc} be the set of all sessions;

• Es the time trainee s enters the training program;

• kmin and kmax the minimum and maximum num-
ber of trainees Session k can take;

• nc − nc−1 the number of sessions for Course c;
with n0 = 0;

• σk and εk the start and end time of Session k; and

• E = {(c,c′) | c,c′ ∈ C ,c is a pre-requisite of c′}
the set of all pairs of courses with a pre-requisite
relation.

We define the following decision variables.

• zk ∈ {0,1} with zk = 1 indicating Session k is
scheduled and zk = 0 otherwise; and

• xsk ∈ {0,1} with xsk = 1 indicating trainee s is al-
located to Session k, and xsk = 0 otherwise.

We now discuss the constraints used to capture the
business rules. Each trainee will take no more than 1
session for a course.

nc

∑
k=nc−1+1

xsk ≤ 1, ∀s ∈ S ,c ∈ C (1)

The number of trainees enrolled in a session must be
within its lower and upper class size limit.

kminzk ≤ ∑
s∈S

xsk ≤ kmaxzk, ∀k ∈K (2)

The constraint below will ensure that if Course c is a
pre-requisite of Course c′, then a trainee cannot take
Course c′ unless they have taken Course c.

n′c

∑
k=nc′−1+1

xsk ≤
nc

∑
k=nc−1+1

xsk, ∀s∈ S , (c,c′)∈E (3)

Now, if a trainee will take both of Courses c and c′,
then the start date of Course c′ for this trainee can-
not be earlier than the end date of Course c for this
trainee. To model this requirement, let αsc be a bi-
nary decision variable with αsc = 1 if trainee s will
complete Course c and αsc = 0 otherwise. We have
that

αsc =
nc

∑
k=nc−1+1

xsk, ∀s ∈ S , c ∈ C (4)

We introduce another binary decision variable βs,c,c′

with βs,c,c′ = 1 representing trainee s will take both
Courses c and c′, and βs,c,c′ = 0 otherwise (which
means that they trainee would have failed some
courses before reaching Course c′). These can be cap-
tured by the following constraints.

αs,c +αs,c′ ≤ βs,c,c′ +1, ∀s ∈ S , (c,c′) ∈ E (5)

βs,c,c′ ≤αs,c, βs,c,c′ ≤αs,c′ , ∀s∈ S , (c,c′)∈E (6)

We have that
nc

∑
k=nc−1+1

εkxsk +1≤
nc′

∑
k=nc′−1+1

σkxsk

+Mc′(1−βs,c,c′), ∀s ∈ S , (c,c′) ∈ E (7)

where Mc′ is a large number and we used the latest
session finish time of Course c′.

Each trainee can only be taking one session at a
time. We enumerate the set of all cliques Ξ, where
each clique contains a maximal set of sessions that
cannot be taking simultaneously.

∑
k∈ξ

xsk ≤ 1, ∀s ∈ S , ξ ∈ Ξ (8)

See Figure 2 for an illustration of all cliques for Prob-
lem Instance 2repsPrYr 5courses.

3 PROGRESSION SIMULATION
BASED ON PASS-RATE

Previously, the course pass-rates are handled in the
following manner. Take the 5-course problem in-
stances as an example. The historic pass-rates of
Courses C1, C2, C3, C4, and C5 are 0.9, 0.5, 0.9, 0.8,
and 0.7, respectively. Suppose that a trainee takes the
course schedule: C1, C2, C4, C3, followed by C5, in

WAPAT 2023 - Special Session on Workforce Analytics - Practical Application and Theory

272

Figure 2: Illustration of the set of all cliques Ξ for the 2rep-
sPrYr 5courses problem instance. The colours represent
the course to which the nodes (i.e., sessions) belong. That
is, blue denotes Course 1, green denotes Course 2, red de-
notes Course 3, olive denotes Course 4, and yellow denotes
Course 5.

this precise order. The cumulative pass-rates will be
0.9, 0.45, 0.36, 0.324, and 0.2268. In other words,
there is a 36% chance, for example, the trainee will
pass C1, C2, and C4. Once s/he makes it to Course
C3; however, the probability of passing the course
is still 80%. Time-feasible schedules (a session for
each course, and all courses must be included ex-
actly once) are either exhaustively enumerated using
DLX (Knuth’s Dancing Links) or generated within a
mixed-integer linear program. For each course ses-
sion, all the schedules generated by DLX that con-
tain the course session are considered in the class-size
constraint.

As an example, suppose that Session 2 of Course
C3 has a lower class size limit and an upper limit of
2 and 3, respectively. Now, in a solution, Session
2 of Course C3 are only taken by Schedule 1 and
Schedule 2. Schedule 1, with the following order:
(C1, C2, C4, C3, C5), has two trainees allocated to
it. The probability that a trainee can pass courses C1,
C2, and C4 and reach C3 is 36%. Schedule 2, with
the following order: C1, C2, C3, C4, C5, has three
trainees allocated to it, and also takes Session 2 of
Course C3. The probability a trainee can pass courses
C1 and C2 and reach C3 is 45%. The expected num-
ber of trainees taking Session 2 of Course C3 will be
0.36× 2+ 0.45× 3 = 2.07. Since 2 ≤ 2.07 ≤ 3, the
class size constraint for Session 2 of Course C3 is sat-
isfied. Pass-rates handled in this manner, in a way,
provide users with an average-case outcome.

In reality, however, if we have both trainees allo-
cated to Schedule 1 and two out of three trainees allo-
cated to Schedule 2 passing the relevant prior courses
and reach Course C3, the upper class size limit of
3 would have been violated, and one of them would

have to be re-allocated to another session. This has an
impact on resourcing for the planning horizon. Re-
source planning based on an average-case scenario is
risky, and therefore being able to obtain insights into
the risk boundaries is critical.

In what follows, we propose a new approach for
handling pass-rates. The key idea of the proposed
method is the course failure simulation, which deter-
mines the course at which a trainee may fail based on
the historic pass-rates. A trainee who fails a course
will not be able to repeat the course. As a result, fail-
ing a course suggests that the trainee will not take all
other courses for which the failed course is the direct
or implied prerequisite course. Additionally, the pro-
posed method incorporates a post-processing proce-
dure in order to determine the courses to be done prior
to the failed course. This post-processing procedure
can help find the set of to-do courses more easily for
some large problem instances. It is noted that the ex-
istence of a large number of courses that can be done
before the failed course renders the enumeration of all
possible permutations inefficient. Take the 25-course
problem instance (see Figure 1) as an example. If the
trainee fails Course 3, then there are 22 other courses
(i.e., 4, 5, ..., 24, 25) that Course 3 can be among in
any position. This gives a total of 23! possible permu-
tations.

The new approach is summarised in Algorithm 1.
In this pseudocode, pred(c) denotes the set of direct
and implied prerequisite courses of c∈ C , succ(c) de-
notes the set of all courses for which c is a direct or
implied prerequisite course.

The algorithm starts with Phase 1 (WHILE loop
lines 5 - 12), which is an iterative procedure that finds
the failed course for the considered trainee. At each
iteration, a course c is assigned a random number
r generated from uniform distribution U(0,1). If r
is not greater than the pass-rate, then the procedure
moves to the next course. Otherwise, this course c
will be considered as a failed course. In the pseu-
docode below, the failed course of trainee s is denoted
by c∗s . This procedure terminates when a failed course
is found or when all courses have been considered.
Note that if c∗s is 0 when the While loop completes,
this indicates that the trainee passes all courses. If
this happens, Phase 2 will not be invoked, and the al-
gorithm simply returns the set of all courses (lines 13
- 15).

Given the failed course c∗s of trainee s, Phase 2 of
the algorithm includes a post-processing procedure,
which attempts to determine what number of courses
and exactly which courses are done before c∗s (lines 17
- 60). When determining how many courses from the
set Parallel(c∗s) that should be done before the failed

Course Scheduling Under Uncertainty for Defence Workforce Training

273

Algorithm 1: Simulating Trainee’s Progression.

1: Input: Trainee s ∈ S ; pass-rate pc,∀c ∈ C ;
2: Output: Failed course c∗s ; set of courses that trainee s may com-

plete before the failed course Rs
3: Phase 1: Determine at which course the trainee may fail
4: Set c← 1, c∗s ← 0
5: while c≤C do
6: Generate r ∼U(0,1)
7: if r ≤ Pc then
8: Set c← c+1
9: else

10: c∗s ← c; break
11: end if
12: end while
13: if c∗s = 0 then
14: return C
15: end if
16:
17: Phase 2: Determine which courses are done before the failed

course c∗s
18: Initialise parallel(c∗s)← C \ (pred(c∗s)∪ succ(c∗s)∪{c∗s})
19: Set n← |parallel(c∗s)|
20: Calculate πk,k = 0, ...,n according to (9)
21: Using πk , randomly select a number k ∈ [0, ...,n]
22: ImmediateNext← /0, status← True
23: for all c ∈ parallel(c∗s) do
24: for all j ∈ pred(c) do
25: if j ∈ parallel(c∗s) then
26: status← False; break
27: end if
28: end for
29: if status = True then
30: ImmediateNext← ImmediateNext ∪{c}
31: end if
32: end for
33: Rs← /0

34: if k ≤ |ImmediateNext| then
35: while |Rs| ≤ k do
36: c′ ← randomly select a course from the set

ImmediateNext.
37: Rs← Rs ∪{c′}
38: ImmediateNext← ImmediateNext \{c′}
39: end while
40: else
41: while |Rs| ≤ k do
42: c′ ← randomly select a course from the set

ImmediateNext.
43: Rs← Rs ∪{c′}
44: F ← parallel(c∗s)\ (Rs ∪ ImmediateNext)
45: ImmediateNext← ImmediateNext \{c′}
46: for all i ∈ F do
47: status← True
48: for all j ∈ pred(i) do
49: if j ̸∈ Rs then
50: status← False; break
51: end if
52: end for
53: if status = True then
54: ImmediateNext← ImmediateNext ∪{i}
55: end if
56: end for
57: end while
58: end if
59: Add (c,c∗s) to E , for all c ∈ Rs
60: Rs← Rs ∪ pred(c∗s)
61: return c∗s , Rs

course (lines 18 - 21), the number is chosen randomly
with non-uniform probability, i.e., larger number has
lower probability of being chosen. Specifically, the
probability of having to do exactly k courses before
the failed course is given by

πk =
n− k+1

(n+1)(n+2)/2
, (9)

where n is the total number of courses in the set
Parallel(c∗s). The rationale behind (9) is that as
there needs to be more courses done before the failed
course, hence the higher the chance a trainee would
have failed before they reach this course. A more so-
phisticated formula can be considered and we leave
this for future research. Let k be the number cho-
sen at random based on (9). The next step of the
post-processing procedure is as follows. First, a set
of courses that can be immediately taken after the
last course in pred(c∗s), denoted by ImmediateNext,
is constructed (lines 22 - 32). Then, we initialise
a set of courses that trainee s may complete before
the failed course, denoted by Rs, which is empty at
the beginning. Next, we randomly select a course
c′ ∈ C from the set ImmediateNext and add it into
the set Rs. If the size of the set ImmediateNext
is not greater than k, this step repeats by adding
courses from ImmediateNext to Rs until the size of
ImmediateNext reaches k. On the other hand, if the
size of the set ImmediateNext is greater than k, an ad-
ditional step is performed to insert courses that can
be immediately done after course c′, that is not al-
ready in ImmediateNext. We present an example of
the trainee’s progression simulation procedure below
using a 25-course problem instance.
Example. Suppose that the considered trainee, i.e.
s = 1, fails course 3 (see Figure 3 for an illus-
tration of the failed course). According to the
course structure in Figure 1, we have pred(3) =
{1,2} and succ(3) = /0. Thus, the set of courses
that can be completed before reaching Course 3 is
Parallel(3) = {1, ...,25}\{1,2}\{3}= {4,5, ...,25}
and the set of courses that can be immediately taken
after the last course in pred(3), i.e., Course 2, is
ImmediateNext = {4,6,7,8,9,10,17}. Suppose that
the random number chosen is 5, which means that
the trainee may complete five courses before reach-
ing Course 3. Since the size of ImmediateNext is
greater than 5, the algorithm randomly selects five
courses from ImmediateNext and adds them to R1,
e.g., R1 = {4,6,7,10,17}. Otherwise, if the random
number chosen is 8, which is greater than the size of
ImmediateNext. In this case, R1 is constructed as fol-
lows:

• Iteration 1: Suppose that Course 6 was cho-
sen at random from ImmediateNext. Then,

WAPAT 2023 - Special Session on Workforce Analytics - Practical Application and Theory

274

we have R1 = {6} and ImmediateNext =
{4,7,8,9,10,17,11}

• Iteration 2: Suppose that Course 4 was cho-
sen at random from ImmediateNext. Then,
we have R1 = {6,4} and ImmediateNext =
{7,8,9,10,17,11,5}

• Iteration 3: Suppose that Course 5 was cho-
sen at random from ImmediateNext. Then,
we have R1 = {6,4,5} and ImmediateNext =
{7,8,9,10,17,11}

• Iteration 4: Suppose that Course 7 was cho-
sen at random from ImmediateNext. Then,
we have R1 = {6,4,5,7} and ImmediateNext =
{8,9,10,17,11}

• Iteration 5: Suppose that Course 11 was cho-
sen at random from ImmediateNext. Then, we
have R1 = {6,4,5,7,11} and ImmediateNext =
{8,9,10,17,12}

• Iteration 6: Suppose that Course 12 was chosen
at random from ImmediateNext. Then, we have
R1 = {6,4,5,7,11,12} and ImmediateNext =
{8,9,10,17}

• Iteration 7: Suppose that Course 17 was chosen
at random from ImmediateNext. Then, we have
R1 = {6,4,5,7,11,12,17} and ImmediateNext =
{8,9,10}

• Iteration 8: Suppose that Course 10 was cho-
sen at random from ImmediateNext. Then,
we have R1 = {6,4,5,7,11,12,17,10} and
ImmediateNext = {8,9}

• Finally, R1 = {6,4,5,7,11,12,17,10} ∪ {1,2},
which gives R1 = {1,2,4,5,6,7,10,11,12,17}

Figure 3: Finding a course that the trainee may fail.

4 COMPUTATIONAL
EXPERIMENTS

This section presents the results of computational ex-
periments aimed at the evaluation of the new approach
to deal with course pass-rates. All computational ex-
periments were conducted on a computer with Intel
Core i5-7300U 2.60GHz and 8GB RAM. We coded
our models and algorithms in Python. IBM ILOG

CPLEX 12.10 was used to solve the mathematical
programming models.

The computational experiments use the synthetic
instances comprised of 5, 6, 15, 20, and 25 courses.
These instances are the same as in (Mak-Hau et al.,
2021). For each course, the number of sessions range
from 7 to 24 sessions, the durations range from 1 to 30
weeks, and the pass-rates range from 0.5 to 1. There
are 24 trainees in each instance. Table 1 summarizes
the main characteristics of the 14 synthetic instances.

In what follows, Section 4.1 explains a three-
stage approach to optimally allocate course-sessions
to trainees taking into account the historic pass-rate.
Section 4.2 evaluates the performance of the proposed
trainee’s progression simulation procedure.

4.1 Optimisation Procedure

In order to produce an optimal course-sessions-
trainees allocations, while considering uncertainty,
specifically, the course pass-rate, we propose a
simulation-based three-stage solution approach (see
Figure 4). The first stage determines, for each trainee,
the course s/he fails and the set of courses that s/he
may complete before the failed course, which can be
obtained using Algorithm 1 described in Section 3.
Each trainee s ∈ S thus has the associated set of to-do
courses As = Rs∪{c∗s}. Given As,∀s ∈ S , the second
stage tackles the SSAP problem, where the objective
is that the total number of course-sessions to trainees
allocations is maximised. The Integer Programming
model used in the second stage is as follows.

max : Zstage2 = ∑
s∈S

∑
k∈K

xsk (10)

s.t. (1)− (8)
xsk = 0, ∀s ∈ S , c ∈ C \As,

k = nc−1 +1, ...,nc (11)

where (11) fixes the x-variables to 0 for the course
sessions that the trainees cannot take. Note that the al-
location of course-sessions to trainees obtained from
the second stage is unlikely to be optimal, since we
seek for a maximum number of allocations in this
stage. The third stage attempts to improve the alloca-
tions by solving the following Integer Programming

Course Scheduling Under Uncertainty for Defence Workforce Training

275

Table 1: Characteristics of the problem instances.

Problem instances Total # courses Total # sessions Total pairs of overlapping sessions Total # cliques
2repsPrYr 5courses 5 60 260 31
3repsPrYr 5courses 5 72 324 36
4repsPrYr 5courses 5 84 392 42

INS 6 6 75 806 37
2repsPrYr 15courses 15 180 2048 47
3repsPrYr 15courses 15 240 2982 47
4repsPrYr 15courses 15 300 4132 47
2repsPrYr 25courses 25 300 4246 47
3repsPrYr 25courses 25 420 7246 47
4repsPrYr 25courses 25 540 11004 48

INS 994224 20 164 1666 81
INS 1743540 20 162 1676 81
INS 2233256 20 163 1676 81
INS 3353124 20 165 1696 81

Figure 4: A high-level view of the simulation-based three-stage solution approach.

model:

min : Zstage3 = ∑
s∈S

(T s
e −Es) (12)

s.t. (1)− (8), (11)

∑
s∈S

∑
k∈K

xsk ≥ Zstage2 (13)

T s
e ≥

nc

∑
k=nc−1+1

εkxsk, ∀s ∈ S , c ∈ As (14)

where (13) imposes the requirement that the total
number of course sessions to trainees allocations must
be greater than or equal to Zstage2 and (14) captures
the time the trainees finish their last course.

4.2 Computational Results

We apply the proposed simulation-based three-stage
solution approach on the 14 synthetic instances in Ta-
ble 1. For the parameter Mc′ ,∀(c,c′) ∈ E , a choice
of very large M can lead to slow progress in solv-
ing the MILP due to weak relaxation. In our imple-
mentation, we choose the value of Mc′ to be the lat-
est end time among all the sessions of Course c′, i.e.,
Mc′ = maxnc′

k=nc′−1+1 εk.
The time CPLEX spent to solve the IP models in

Stage 2 (construction of feasible course sessions to
trainees allocations) and Stage 3 (improvement), as
well as the total time are shown in Figure 5. We report

the average time (in seconds) over 100 runs. In these
two figures, the total time captures the running time of
the three-stage approach from start to end. For Stage
2, the largest instance, i.e., 4repsPrYr 25courses re-
quired only 0.8 seconds to produce an optimal solu-
tion to the SSAP problem. For Stage 3, CPLEX can
solve all the instances with C≤ 20 in less than 20 sec-
onds. When C = 25, CPLEX required, on average,
60 seconds. Overall, the time required by CPLEX
increased significantly as the number of courses in-
creased.

Figure 5: The average time, in seconds, CPLEX spent to
solve the IP models in Stage 2 (green line) and Stage 3 (blue
line) as well as the total running time of the three-stage ap-
proach (red line).

The solution quality for Stages 2 and 3 are given
in Tables 2. In this table, we report the average value

WAPAT 2023 - Special Session on Workforce Analytics - Practical Application and Theory

276

Table 2: Summary of results for the SSAP problem. The best, average and worst values across 100 runs are reported.

Problem Instances
Stage 2 Stage 3

Avg. Distinct sessions make-span Distinct sessions make-span

SSA Best Avg. Worst Best Avg. Worst Best Avg. Worst Best Avg. Worst
2repsPrYr 5courses 71 30 35 41 30222 37927 44600 29 31 32 14878 17363 20681
3repsPrYr 5courses 72 36 43 48 33190 38212 46791 37 40 43 15508 17556 19428
4repsPrYr 5courses 71 39 45 50 31965 39214 49808 38 41 43 14325 16820 19456

INS 6 78 30 36 42 11287 15171 18273 29 29 31 6649 9142 11304
2repsPrYr 15courses 114 56 81 93 30817 40441 47869 52 75 84 16908 21698 27464
3repsPrYr 15courses 114 81 107 132 33498 41775 49220 84 105 121 17727 20495 26008
4repsPrYr 15courses 116 98 126 148 35808 41429 50970 97 127 144 17839 21108 27058
2repsPrYr 25courses 124 72 123 148 30299 39627 49052 78 120 144 18028 23090 29578
3repsPrYr 25courses 130 93 170 204 30124 38886 47750 88 165 197 15781 21520 27520
4repsPrYr 25courses 133 101 180 228 33127 40086 47484 100 176 219 16656 21945 29060

INS 994224 108 36 76 89 9460 14384 22816 30 71 83 5932 9310 15928
INS 1743540 109 26 76 92 8081 14595 21388 27 71 84 4259 9352 14738
INS 2233256 110 48 78 90 9922 14393 23390 42 73 84 5337 9439 15067
INS 3353124 111 20 76 92 8655 14266 20422 20 71 84 4791 9514 15361

of Zstage2 over 100 runs under the column titled ‘Avg.
SSA’. We also report the best, average, and worst val-
ues of the number of distinct sessions and the total
make-span over 100 runs. For all the instances, Stage
3 was able to improve the make-span objective by
about 44% on average. While minimising the total
make-span in Stage 3, it is noted that the total num-
ber of distinct sessions was also optimised. Stage 3
was able to reduce the number of distinct sessions by
about four sessions on average.

5 CONCLUSIONS AND FUTURE
RESEARCH DIRECTIONS

In this paper, we studied a Defence trainee course
scheduling problem where every course has a his-
toric pass-rate and a trainee will not be allowed to
progress further if they fail a course. We proposed
a new approach for handling pass-rate, in which the
failed course and the courses a trainee can complete
before the failed course are determined prior to the
optimisation procedure. A simulation-based three-
stage solution approach was presented, which con-
sists of a trainee’s progression simulation stage, an
initial course-sessions to trainees allocation stage, and
an allocation improvement stage. The computational
results show that the proposed approach yields opti-
mal solutions to the 25-course instances in less than
two minutes, on average. The proposed approach
also offers information on the best-case, average-case,
and worst-case solutions that can benefit managerial
decision-making.

Future research can apply the introduced solution
approach to an extended problem where geography
and language introduce additional business rules re-

garding the location of courses, and language match
between instructors and trainees.

REFERENCES

Battiti, R. and Tecchiolli, G. (1994). The reactive tabu
search. ORSA journal on computing, 6(2):126–140.

Beliën, J. and Demeulemeester, E. (2006). Scheduling
trainees at a hospital department using a branch-and-
price approach. European Journal of Operational Re-
search, 175(1):258 – 278.

Bettinelli, A., Cacchiani, V., Roberti, R., and Toth, P.
(2015). An overview of curriculum-based course
timetabling. TOP, 23(2):313–349.

Brown, Gerald, G., Carlyle, W., M., Dell, Robert, F., and
Brau, John, W. (2013). Optimizing intratheater mili-
tary airlift in iraq and afghanistan.

Burke, E., Dror, M., Petrovic, S., and Qu, R. (2005). Hybrid
graph heuristics within a hyper-heuristic approach to
exam timetabling problems. In The next wave in com-
puting, optimization, and decision technologies, pages
79–91. Springer US.

Carter, M. W. (1989). A lagrangian relaxation approach to
the classroom assignment problem. INFOR: Informa-
tion Systems and Operational Research, 27(2):230–
246.

Costa, D. (1994). A tabu search algorithm for computing
an operational timetable. European Journal of Oper-
ational Research, 76(1):98 – 110.

Davenport, J., Neu, C., Smith, W., and Heath, S. (2007). Us-
ing discrete event simulation to examine marine train-
ing at the marine corps communication-electronics
school. In 2007 Winter Simulation Conference, pages
1387–1394.

de Werra, D. (1985). An introduction to timetabling. Eu-
ropean Journal of Operational Research, 19(2):151 –
162.

Dell’Amico, M. and Trubian, M. (1993). Applying tabu
search to the job-shop scheduling problem. Ann. Oper.
Res., 41(1-4):231–252.

Course Scheduling Under Uncertainty for Defence Workforce Training

277

Esmaeilbeigi, R., Mak-Hau, V., Yearwood, J., and Nguyen,
V. (2022). The multiphase course timetabling prob-
lem. European Journal of Operational Research,
300(3):1098–1119.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer
Academic Publishers, Norwell, MA, USA.

Hertz, A. and Widmer, M. (1996). An improved tabu search
approach for solving the job shop scheduling problem
with tooling constraints. Discrete Applied Mathemat-
ics, 65(1):319 – 345.

Lam, E. and Hentenryck, P. V. (2016). A branch-and-price-
and-check model for the vehicle routing problem with
location congestion. Constraints, 21(3):394–412.

Lee, S.-Y., Kim, Y.-D., and Lee, H.-J. (2009). Heuristic
algorithm for a military training timetabling problem.
Asia Pacific Management Review, 14(3):289–299.

Looker, J., Mak-Hau, V., and Marlow, D. (2017). Opti-
mal policies for aircraft fleet management in the pres-
ence of unscheduled maintenance. In Syme, G., Hat-
ton MacDonald, D., Fulton, B., and Piantadosi, J.,
editors, Proceedings of MODSIM2017, 22nd Interna-
tional Congress on Modelling and Simulation.

Mak-Hau, V., Hill, B., Kirszenblat, D., Moran, B., Nguyen,
V., and Novak, A. (2021). A simultaneous sequenc-
ing and allocation problem for military pilot training:
Integer programming approaches. Computers & In-
dustrial Engineering, 154:107161.

McGinnis, M. L. and Fernandez-Gaucherand, E. (1994).
Resource scheduling for the united states army’s basic
combat training program. In Proceedings of IEEE In-
ternational Conference on Systems, Man and Cyber-
netics, volume 1, pages 553–558 vol.1.

Müller, T. and Rudová, H. (2016). Real-life curriculum-
based timetabling with elective courses and course
sections. Annals of Operations Research, 239(1):153–
170.

Nguyen, V., Mak-Hau, V., Moran, B., and Novak, A.
(2022). An efficient and exact algorithm for military
timetabling and trainee assignment problems. Com-
puters & Industrial Engineering, 169:108192.

Nguyen, V., Moran, B., Novak, A., Mak-Hau, V., Caelli, T.,
Hill, B., and Kirszenblat, D. (2018). Dancing links for
optimal timetabling. Military Operations Research,
23(2):61–78.

Nguyen, V., Shokr, M., Novak, A., and Caelli, T. (2016).
A reconfigurable agent-based discrete event simulator
for helicopter aircrew training. In International Sym-
posium on Military Operations Research (ISMOR).

Novak, A., Tracey, L., Nguyen, V., Johnstone, M., Le, V. T.,
and Creighton, D. C. (2015). Evaluation of tender so-
lutions for aviation training using discrete event simu-
lation and best performance criteria. In Winter Simu-
lation Conference.

Nowicki, E. and Smutnicki, C. (1996). A fast taboo search
algorithm for the job shop problem. Manage. Sci.,
42(6):797–813.

Pillay, N. (2016). A review of hyper-heuristics for educa-
tional timetabling. Annals of Operations Research,
239(1):3–38.

Qi, X., Bard, J. F., and Yu, G. (2004). Class scheduling for
pilot training. Operations Research, 52(1):148–162.

Raffensperger, J. F. and Schrage, L. E. (2008). Scheduling
training for a tank battalion: How to measure readi-
ness. Computers & Operations Research, 35(6):1844
– 1864. Part Special Issue: OR Applications in the
Military and in Counter-Terrorism.

Rudová, H., Müller, T., and Murray, K. (2011). Complex
university course timetabling. Journal of Scheduling,
14(2):187–207.

Scott, J. (2005). Optimally scheduling basic courses at
the defense language institute using integer program-
ming. Master’s thesis, Naval Postgraduate School,
Monterey, CA.

Séguin, R. and Hunter, C. (2013). 2 canadian forces flying
training school (2cffts) resource allocation simulation
tool. In Winter Simulations Conference (WSC), pages
2866–2877.

Squires, R. R. and Hoffman, K. L. (2015). A military main-
tenance planning and scheduling problem. Optimiza-
tion Letters, 9(8):1675–1688.

Teoh, C. K., Wibowo, A., and Ngadiman, M. S. (2015). Re-
view of state of the art for metaheuristic techniques in
academic scheduling problems. Artificial Intelligence
Review, 44(1):1–21.

Wang, J. (2005). A review of operations research applica-
tions in workforce planning and potential modeling of
military training. Technical report, DSTO, Salisbury,
South Australia.

Wang, S., Bussieck, M., Guignard, M., Meeraus, A., and
O’Brien, F. (2010). Term-end exam scheduling at
united states military academy/west point. Journal of
Scheduling, 13(4):375–391.

Yang, T. and Ignizio, J. P. (1987). An algorithm for the
scheduling of army battalion training exercises. Com-
puters & Operations Research, 14(6):479–491.

WAPAT 2023 - Special Session on Workforce Analytics - Practical Application and Theory

278

