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Abstract: This paper explores a novel technique that can aid firms in ascertaining a customer’s risk profile for the purpose
of safeguarding them from unsuitable financial products. This falls under the purview of Know Your Customer
(KYC), and a significant amount of regulation binds firms to this standard, including the Financial Conduct
Authority (FCA) handbook Section 5.2. We introduce a methodology for computing a customer’s risk score
by converting their transactional data into a heatmap image, then extracting complex geometric features that
are indicative of impulsive spending. This heatmap analysis provides an interpretable approach to analysing
spending patterns. The model developed by this study achieved an F1 score of 94.6% when classifying these
features, far outperforming alternative configurations. Our experiments used a transactional dataset produced
by Lloyds Banking Group, a major UK retail bank, via agent-based modelling (ABM). This data was computer
generated and at no point was real transactional data shared. This study shows that a combination of ABM
and artificial intelligence techniques can be used to aid firms in adhering to financial regulation.

1 INTRODUCTION

Know Your Customer. The Financial Conduct Au-
thority (FCA) handbook Section 5.2 (Financial Con-
duct Authority, 2004) states that firms are required to
Know Your Customer (KYC); that is, a customer’s
risk profile should be ascertained before offering a
customer financial advice or a financial product. KYC
also includes an assessment of a customer’s credit
risk, as well as the anti-money laundering and fraud
checks that a financial institution must complete when
a transaction occurs (GOV.UK, 2016). According to
Hyperion (2017), performing KYC checks costs the
average bank £55m annually. In addition, in the UK,
25% of bank applications are abandoned due to KYC
friction, resulting in a further loss of potential rev-
enue. This friction occurs due to extensive reliance
on manual checks, which are both costly for the bank
and cumbersome for the customer. Online checks
have been used in an attempt to solve this issue; how-
ever, these have a high failure rate of up to 20% due
to the poor-quality data that is typically provided by
customers. Lastly, some banks opt to outsource these
checks to onboarding and compliance platforms such
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as Pass Fort (PassFort, 2015), which are costly.
Non-compliance with KYC procedures can also

lead to hefty fines. In the EU, the “Fifth Anti-
Money Laundering Directive” (5AMLD) penalises
non-compliance with fines of up to 10% of annual
turnover. For example, Deutsche Bank was fined
£163m for failing to correctly adhere to the preced-
ing legislation (the “Fourth Anti-Money laundering
Directive”, 4AMLD). Similarly, Barclays was fined
£72m for failing to perform 4AMLD checks on sev-
eral ultra-high-net-worth clients. These fines would
be approximately £2.5bn and £2bn if 5AMLD was ap-
plied retrospectively (Ogonsola and Pannifer, 2017).

Machine Learning (ML) Solutions for KYC. To
comply with KYC legislation and reduce the associ-
ated friction and cost per check, ML techniques have
been proposed to automate KYC processes (Chen,
2020). To address the credit risk assessment as-
pect of KYC, Khandani et al. (2010) applied ML
to transactional data to predict consumer credit de-
fault and delinquency. Their predictions proved to
be highly accurate at forecasting such events in the
3–12-month range. For fraud detection, Sinanc et al.
(2021) used the novel approach of converting credit
card transactions into an image using a Gramian an-
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gular fields (GAF) representation before employing a
convolutional neural network (CNN) (LeCun et al.,
1998) to classify whether a transaction was fraud-
ulent. This technique achieved a high F1 score of
85.49%, which exceeds the results of related studies
in the field (Sinanc et al., 2021).

However, from a customer safeguarding per-
spective, only Butler et al. (2022) have devel-
oped techniques to ascertain customer risk to deter-
mine whether they should be offered specific prod-
ucts (FCA Section 5.2 (Financial Conduct Authority,
2004)). This is likely because the majority of avail-
able datasets are designed to train ML models to pre-
dict credit events and fraud (Khandani et al., 2010;
Sinanc et al., 2021) and lack gold labels for customer
spending behaviour. As a result, this work focuses
on the customer safeguarding portion of KYC and at-
tempts to predict the risk of a given customer.

Furthermore, owing to the General Data Protec-
tion Regulation (GDPR) (Wolford, 2016), it is not
possible for firms to provide researchers with real
transactional datasets for the purpose of developing
ML techniques. Therefore, ABM is typically em-
ployed to produce accurate datasets (Koehler et al.,
2005), but the existing ABM work in this field is
concerned with datasets for fraud detection (Koehler
et al., 2005), as opposed to customer safeguarding;
only Butler et al. (2022) has used data produced by
ABM for this aspect of KYC. Thus, utilising ABM to
generate transactional datasets for the purpose of cus-
tomer safeguarding represents a gap in the literature.

In their work on customer safeguarding, Butler et
al. (2022) introduced a novel heatmap representation
of transactional data and used a CNN to classify ge-
ometric features in the heatmap. Theirs is the only
study in the literature to employ a heatmap represen-
tation for time series classification (TSC). This repre-
sentation is advantageous compared to conventional
TSC techniques due to its high human interpretabil-
ity. A limitation of this prior work, however, is that
the CNN was only trained to classify basic geomet-
ric features in the heatmaps that are only able to cap-
ture a limited range of behavioural patterns. This
is significant from a KYC perspective, as complex
geometric features are indicative of complex spend-
ing behaviours, which can be extracted to inform a
firm of an individual’s impulsivity, and thus be used
to safeguard a customer. Another limitation is that
a more advanced CNN architecture could have been
used to improve the performance of the geometric fea-
ture classifier, such as a CNN with grouped convolu-
tion (Krizhevsky et al., 2012), a global pooling layer
(Lin et al., 2013), and binary focal cross-entropy loss
(Lin et al., 2017). The methodology could also be

improved by deconstructing the heatmap images into
their geometric components, using contemporary im-
age analysis techniques, which could then be used to
directly infer spending behaviour. Lastly, the eval-
uation could be improved by comparing the perfor-
mance of the heatmap representation with a conven-
tional 1D feature vector that is typically used for TSC.

In this paper, we develop techniques to address
the limitations of previous work using heatmaps for
TSC, and create an algorithm to determine customer
risk using geometric features present in a heatmap.
This results in several per-category risk scores, which
could be used by a firm to determine whether an indi-
vidual should be offered a specific financial product.
For example, if an individual’s scores show that they
are spending impulsively in the takeaway or restau-
rant categories, it would not be appropriate and con-
trary to FCA section 5.2 (Financial Conduct Author-
ity, 2004) to offer them a cashback card that offers
incentives when eating out.

1.1 Aims and Objectives

The objectives of this study are:
• Using simulated transactional data produced via

agent-based modelling, classify complex geomet-
ric data types present in heatmap representations.

• Show how the heatmap representation is superior
to a conventional feature vector used during TSC.

• Explore whether conventional image analysis
techniques can be used to derive insights about a
customer from the heatmap representation.

• Lastly, develop an algorithm to output a risk
score for a customer that can aid in the customer-
safeguarding aspect of KYC.

2 RELATED LITERATURE

2.1 Contemporary Techniques for TSC

Time series data is composed of “a sequence of
data points indexed in time order” (Bowerman and
O’Connell, 1993). A popular TSC approach in-
volves the use of a nearest neighbour classifier (K-
NN), which is commonly used in conjunction with
the dynamic time warping distance measure as a
baseline classifier for TSC problems (Fawaz et al.,
2019). A large amount of research has been con-
ducted to outperform this baseline such as the devel-
opment of the collective of transformation-based en-
sembles (COTE) (Bagnall et al., 2016), and its succes-
sor HIVE-COTE (Lines et al., 2016). HIVE-COTE
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is considered state-of-the-art (Bagnall et al., 2017),
however it is computationally very expensive and suf-
fers from a lack of interpretability due to it being an
ensemble of multiple classifiers.

Image-transform, which converts a time series
into an image before classification by a CNN, over-
comes the limitations of HIVE-COTE by both be-
ing highly interpretable and computationally efficient
(Fawaz et al., 2019). An example image transform
technique is the use of recurrence plots (Hatami et al.,
2017). These are a 2D representation of the data’s re-
currences and they have been shown to produce com-
petitive results on the UCR (University of California,
Riverside) time series archive, a collection of datasets
commonly used as a benchmark TSC performance, to
state-of-the-art TSC algorithms (Hatami et al., 2017) .
However, a recurrence plot, while more interpretable
than a raw time series, requires training to derive in-
sights from (Marwan, 2011). To solve this issue,
the heatmap representation has been proposed (But-
ler et al., 2022), which contains pixels whose spatial
positions are directly related to the time dimension,
making it far more interpretable.

2.2 The Heatmap Representation

The heatmap representation is an image-transform
technique for time series data (Butler et al., 2022).
This representation involves using two time dimen-
sions, e.g. day of the week and week number, for
the Cartesian coordinates of a pixel. The value of
the pixel represents an aggregate (e.g. sum) of the
values at that time step; an example heatmap can be
seen in Figure 1. Compared to alternative TSC tech-
niques, the visual representations created by image-
transform are easier for users to interpret. This is be-
cause the spatial position of the pixel is directly re-
lated to the time step of the data, so any geometric
features present can be intuitively understood and be
related back to the context of the data. For example, in
Figure 1, columns of adjacent pixels indicate spend-
ing on consecutive days, while rows of adjacent pixels
indicate spending on the same day of the week. Con-
sequently, this interpretability allows complex tem-
poral relationships, which are challenging for con-
ventional TSC techniques to learn (Wang and Oates,
2015), to be clearly depicted in the image’s geometry.
Lastly, the heatmap technique has rarely been used in
the literature (Butler et al., 2022), and thus represents
a key gap in the literature to be explored.

2.3 Uses of the Heatmap Representation

In Butler et al. (2022), two simulated transactional
datasets were provided to the authors by Lloyds Bank-
ing Group. This data was produced via ABM and
was used to train a CNN classifier, which, in con-
junction with statistical analysis, was able to cate-
gorise accounts based on a heatmap representation.
The heatmap structure used in this paper was a 9×31
image (i.e. 9 months by 31 days) wherein each pixel
represented the normalised sum of the transactions on
a given day. Two types of heatmap geometries were
explored: “line”, where a clear line was present in
the image, and “spotty”, where the pixels were ran-
domly dispersed. The CNN classifier was able to dis-
tinguish between the two data types with an accuracy
of 99.585%. Moreover, statistical analysis was used
to analyse the density and skewness of the heatmap
values. Customers were also labelled based on how
much they spent on a given transaction category as
a proportion of their salary. This was then used to
output a label in each category, which summarised an
individual’s spending behaviour.

However, a limitation of Butler et al. (2022) is
that the CNN classifier was trained on a relatively ba-
sic geometric feature (i.e. the presence of a line in
the heatmap). In this paper we show that this can be
extended by looking at more complex geometric fea-
tures, which indicate more complex customer spend-
ing behaviour. Also, Butler et al. (2022) used a
generic CNN with a single kernel, which means the
CNN can only learn one representation of the input
data, and it is thus limited in the number of features
it can learn. This is disadvantageous as the geometric
features present in a heatmap can be numerous and
highly varied. One solution to this issue explored in
this paper is grouped convolution (Krizhevsky et al.,
2012), which employs two or more parallel CNNs on
the same input image, allowing a greater variety of
features to be learned in parallel (Xie et al., 2016).

Furthermore, the CNN used in Butler et al. (2022)
uses a max pooling layer with a parameter that affects
the pool size. This layer was likely overfitted as a side
effect of parameter optimisation (Lin et al., 2013).
Therefore, in this paper we eliminated this parame-
ter by using global pooling (Lin et al., 2013) instead.
In addition, the loss function used in Butler et al.’s
model is sparse categorical cross-entropy, which can
cause a model to yield overconfident predictions and
reduce its ability to generalise to new data (Lin et al.,
2017). As a solution, we implemented binary focal
cross-entropy instead to improve the model’s ability
to generalise (Lin et al., 2017).

Lastly, Butler et al. (2022) analysed the statis-
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tics of customer spending independently from the heat
map geometry, before combining the results of both
avenues to reach a final spending type classification.
This ignores the large number of insights that can
be derived by extracting customer spending statistics
directly from the heatmap itself. Therefore, in this
study, we amalgamate these two approaches by de-
constructing the heatmaps into their constituent ge-
ometry and extracting statistics from these geometric
features. This allows complex spending behaviours
to be analysed as image features and thereby provide
more valuable insights about customer behaviour.

Figure 1: Example 7×40 heatmap i.e., 7 days of the week
by 40 weeks, depicting the sum of an individual’s transac-
tions per day in the time period.

3 METHODOLOGY

3.1 Dataset Simulation

The dataset used in this study was a simulated dataset
provided by Lloyds Banking Group, which was pro-
duced by their in-house, agent-based model (ABM)
(Koehler et al., 2005). The simulation for this dataset
involved 1,304 unique agents within a simulated town
and was processed on a minute by minute timescale
(Butler et al., 2022). An agent was either a vendor or a
customer and the town was modelled as a graph where
each node represented an individual agent and edges
the distance between agents. Traits were randomly
assigned to each agent, based on that agent’s initial
parameters, which affected the probability that they
would carry out a transaction. The initial parameters
for each agent were assigned based on expert knowl-
edge of customer behaviour from the retail banking
community, hence we assume that the overall simula-
tion approximates real world data well (Butler et al.,
2022). Lastly, the dataset produced from this simu-
lation contained information such as the time of the
transaction, the amount, the customer’s balance and
the third party account number/vendor name.

3.2 Overall Algorithm Structure

An outline of the overall algorithm produced by this
study can be seen in Figure 2: it converts customer
transactional data into a series of per-category RGB
heatmaps, which are classified by a CNN (LeCun

et al., 1998) and analysed using contour detection
(Suzuki and Abe, 1985). The output of both are then
used by the risk score algorithm, which outputs a se-
ries of per-category risk scores for that user.

3.3 Heatmap Design

The transactions to vendors in the dataset were first
categorised into 15 groups ranging from “Finances”
to “Pub/Bar” through manual sorting of the vendor
names. The transactions for each customer in a given
category were then converted into three pivot tables,
each of size 7×40, where 7 represents the number of
days in a week and 40 the number of weeks present in
the dataset. The first pivot table contained a Boolean
array, where 1 represented that there were payments
on a given day and 0 that there were no payments. The
second pivot table contained the sum of the transac-
tions on a given day for that transaction category. The
third pivot table contained the sample standard devi-
ation of payments on a given day. Days where the
number of payments was < 20 were deemed insuffi-
cient for yielding a statistically valid sample standard
deviation (Hackshaw, 2008) and were instead set to
0. The second and third pivot tables were then nor-
malised so their values would fall into the 0−1 range,
enabling these pivot tables to be used as image com-
ponents. The three layers were then combined to pro-
duce a 7×40 RGB (Red-Green-Blue) image, with the
R layer composed of the Boolean pivot table, the G
layer the normalised sum pivot table and the B layer
the normalised standard deviation pivot table.

Heatmap Design Justification. The Boolean R
layer in the heatmap was chosen because it preserved
the macro-structure of the image so that high-level
features, such as spending on consecutive days and
spending on the same day of the week, were not ob-
scured by variations in the pixel intensity of these fea-
tures. These high-level features could then be eas-
ily identified, which were found to effectively reveal
an individual’s spending behaviour in a given cate-
gory. The G layer provided information about the
proportion of a customer’s total spending in a cate-
gory on a given day during the 7 × 40 period; this
was found to be significant, as sudden variations in
spending during the time period could indicate risky
spending behaviour. Lastly, the B layer provided in-
formation about the nature of an individual’s spend-
ing on a given day, so when it was combined with
the information contained in the G layer, it could in-
dicate whether risky spending behaviour occurred on
that day. For example, if a high proportion of a cus-
tomer’s spending in a category occurred on a specific
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Figure 2: Overall algorithm produced by this study.

day and there was also a large degree of variability in
their spending on that day, it is possible to infer that
their spending was impulsive.

3.4 Conventional Feature Vector

As a comparison with the heatmap representation, we
also evaluated a conventional 1D time series feature
vector containing a user’s transactions over the 280
day period. These time series were split into the same
categories as the heatmaps to allow for direct com-
parison between the performances of the two feature
vector structures. The 1D time series were produced
in a similar way to the R layer of the heatmap where
there is a 1 on a day’s time step if there was a payment
on that day, and a 0 if there were no payments.

3.5 Labelling Strategy

The customer heatmaps were split into those with a
clear geometric structure in their R layer and those
whose payments were more randomly dispersed over
the period. Heatmaps with clear geometric features
were labelled “Tetris”, owing to the appearance of ge-
ometric features that resembled the components of a
Tetris game (Britannica, The editors of Encyclopedia,
2022). An example Tetris heatmap appears in Figure
3. Heatmaps that did not fit this description were re-
ferred to as “Non-Tetris”. The labelling criteria for a
Tetris heatmap were as follows:

• Does it have at least one horizontal chain of three
payments and one vertical chain of three pay-
ments?

• Does it have geometric components that look like
Tetris pieces, or does it look like a completed
Tetris section?

There were a total of 10,812 heatmaps to label,
so to aid in the labelling process, we followed the
method of Butler et al. (2022), by first clustering
heatmaps, then labelling each cluster, and manually

checking for errors. To validate these labels, the la-
belling process was repeated for a second run, and
any differences between the two labelling runs were
investigated and a final verdict reached.

Distinguishing between these two heatmap data
types was deemed important for the completion of
the overall aim of this study because if an image has
clear geometric features, it implies that an individ-
ual’s spending in the 7×40 period is affected by that
individual’s behavioural patterns. For example, con-
secutive weekly spending on Friday at the supermar-
ket indicates that this is a weekly shop. Alternatively,
repeated spending on a luxury purchase, such as take-
away, every day of the week for several weeks indi-
cates potentially impulsive spending behaviour.

Figure 3: Example Tetris heatmap.

The conventional feature vectors outlined in Sec-
tion 3.4 each correspond to a per-category heatmap.
Hence the labels applied to the heatmaps were also
used for the conventional feature vectors.

3.6 Model Designs

Baseline Models. As a baseline model for classify-
ing the heatmap feature vectors (Section 3.3), we used
a rules-based classifier that assigns a Tetris label in
the presence of a consecutive chain of three payments,
horizontally or vertically. This model’s purpose was
to investigate how a complex model performed in re-
lation to a simple rule. As this image baseline cannot
take a 1D time series as an input, this model was not
evaluated using the conventional feature vectors.

The second baseline model used in this study is a
K-NN classifier (with k = 1) applied to the conven-
tional feature vectors. This is a common bench mark
for TSC in the literature when used with the dynamic
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time warping metric (Fawaz et al., 2019). However,
this metric was found to be too computationally ex-
pensive and so was replaced with Euclidean distance.

Single Kernel CNN Model. The Single Kernel
CNN model from Butler et al. (2022) can be seen in
Figure 4. We compare this to our proposed Grouped
CNN model outlined in the following section. This
model’s performance was also measured on the con-
ventional feature vectors by altering the 2D neural
network layers to 1D.

Figure 4: Single kernel CNN model structure (Butler et al.,
2022).

Grouped CNN Model. The grouped CNN struc-
ture (Figure 5) implements the changes to the single
kernel CNN model proposed in Section 2.3. We used
a grouped convolution with two kernels, as the use
of more than two kernels causes the processing time
to exponentially increase with no increase in classifi-
cation performance. A fully-connected layer (Basha
et al., 2020) was implemented to handle the final clas-
sification following global max pooling. Lastly, two
dropout layers were added, one following the pooling
stage and one following the fully-connected layer to
minimise overfitting (Hinton et al., 2012). This model
was used to classify both the heatmap feature vec-
tors and the conventional feature vectors. When ap-
plied to the conventional feature vectors, the 2D neu-
ral network layers were changed to 1D. The model
was trained using binary focal cross-entropy loss.

Validating the Models. To validate the grouped
CNN model for the heatmap feature vectors, a train-
test split of 20% was utilised in accordance with the
standard in the data science literature (Joseph, 2022).
This model’s performance was then measured on the
test set, and was compared to the image-baseline
model and the single kernel model. A paired boot-
strap test (Efron and Tibshirani, 1993), using 200000

virtual tests and a threshold of 0.01, was also per-
formed on the single kernel model and grouped CNN
model test set results, in order to establish whether the
performance differences are statistically significant.
We also compared the grouped CNN model to the
single kernel CNN and K-NN baseline using the con-
ventional TSC features to illustrate how the heatmap
feature vector performs in relation to the conventional
feature vector. Finally, 10-fold cross-validation (Ko-
havi, 1995) was also carried out on the grouped CNN
to assess the variation in the model’s performance
over different data splits.

3.7 Heatmap Image Analysis

3.7.1 Contour Detection

Contour detection involves extracting curves that out-
line a shape in an image (Gong et al., 2018). It
was used in this study to outline high-level features
present in the heatmap representation. We used the
Python package OpenCV (Culjak et al., 2012), which
implements the algorithms formulated by (Suzuki and
Abe, 1985). Contour detection outputted regions
where shapes were present in the heatmap. These
were then extracted from the original image, and
statistics about the regions were recorded as follows:

• The max width of a contour, a, which indicates the
largest chain of payments on consecutive days.

• The max length of a contour, b, which indicates
the largest chain of payments on the same day of
the week.

• The area of a contour, c, used to infer the number
of payments within the contour.

• The median of the G layer (Section 3.3) in the
contour (i.e. the median normalised sum payment
of the contour), denoted d. This value represents
the average size of a payment in a given contour.

• The median of the B layer (Section 3.3) in the con-
tour (i.e. the median normalised standard devia-

Figure 5: Grouped CNN model structure.
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tion of payments of the contour), denoted f . This
value yielded a measure of the average variation
of payments on a given day within a contour.

Contour extraction therefore allows us to obtain infor-
mation about an individual’s spending patterns from
the geometric heatmap features that can be used to
ascertain risk.

3.7.2 Risk Score Algorithm

The risk score of a heatmap was calculated first by in-
putting the logit (Bishop, 2016), x, from the grouped
CNN’s classification (see Figure 5) into the sigmoid
function to output a probability:

S(x) =
1

1+ e−x . (1)

This value, along with the contour statistics extracted
from the image (Section 3.7.1), were then inserted
into the following equation:

r =
∥∥∥(aαbβcγdδ)(1+ f )ε

∥∥∥×S(x), (2)

where a to f are the statistics of each contour in a
heatmap image defined in Section 3.7.1, and α to ε

are hyperparameters that weigh the relative impor-
tance of these extracted contour features. To calculate
the value of these hyperparameters, we ranked each
of the variables from a to f by their relative impor-
tance in determining whether an individual engages
in risky spending behaviour. For example, if the algo-
rithm user regards consecutive daily spending as the
most important variable, they would rank a as 1. We
then compute the reciprocal of the rank as the value
for the corresponding hyperparameter exponent. This
method effectively weights each of the contour statis-
tics based on its importance.

Moreover, 1+ f is included in Equation 2 because
the value of f can be equal to 0; this is because days
where the number of payments was < 20 automati-
cally had their values set to 0 in the G layer to pre-
serve statistical validity (see Section 3.3). Adding 1
to f prevents the value within the norm equalling 0,
which would invalidate the equation. Furthermore,
S(x) is multiplied by the norm of the contour features,
as S(x) indicates the model’s confidence level regard-
ing the presence of clear geometric features. The re-
sult of Equation 2 for a given heatmap is then mapped
to an overall risk score in the interval [0,1] as follows:

R = 1− 1
1+ r

(3)

In our experiments, we computed a risk score for each
spending category for each customer.

3.7.3 Risk Score Interpretation and Evaluation

In order to interpret the risk scores outputted from
Equation 3, as well as evaluate the algorithm’s per-
formance, the overall risk score distribution must be
explored. Firstly, the risk scores for the heatmaps in
the test set (Section 3.6) were calculated and repre-
sented as a histogram. We assessed the performance
of the algorithm at discriminating between risk score
values by analysing how well the histogram’s distri-
bution approximates a normal distribution. A normal
distribution was chosen as a benchmark for perfor-
mance because this would indicate the algorithm was
discriminating well between different levels of risk
and was not assigning similar values to each heatmap.
The risk score distributions of the Tetris heatmaps and
Non-Tetris heatmaps were then also evaluated, to see
how well the algorithm discriminates risk between
heatmaps of the same data type. Afterwards, the mean
(µ) and standard deviation (σ) of the overall distribu-
tion were calculated and used to compute a threshold:

Rcut = µ+2σ (4)

This equation utilises the empirical rule (Ross, 2009)
to calculate the risk score value where 97.5% of the
data lies below. This value was seen as the threshold
for whether an individual is engaged in risky spending
behaviour.

4 RESULTS

4.1 Final Datasets

The dataset of heatmaps, produced after the labelling
process described in Section 3.5, contained 10,812
heatmaps with 1,646 Tetris and 9,166 Non-Tetris la-
bels. Due to this class imbalance, the F1 score was
chosen to measure the performance of the models
(Umer et al., 2020). The same labels were used for
each heatmap’s corresponding conventional feature
vectors (see Section 3.4), producing a second dataset
of labelled conventional feature vectors.

4.2 Results for Heatmap Classification

Epoch Optimisation for the Grouped CNN. From
Figure 6, the optimum number of epochs for the
grouped CNN architecture, using the heatmap feature
vectors, was determined to be 10; this is where both
the training and validation loss begin to level out, im-
plying that any further training would not improve the
model’s performance.
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Model Performances. From Table 1, when predict-
ing the class of the heatmaps in the test dataset, the
grouped CNN model performed substantially better
than the image-baseline model and the single kernel
model, achieving an F1 score of 94.3% (p = 2e−5 ≪
0.01, paired bootstrap test).

Thus, the improved performance of the grouped
CNN model is likely not accidental. Moreover, from
Table 2 and Table 1 for the single and grouped CNN
architectures, the heatmap feature vectors showed far
greater performances on the test set than the con-
ventional feature vectors. Lastly, all the models per-
formed better at classifying the test set than the stan-
dard K-NN baseline that is typically used in the liter-
ature (Fawaz et al., 2019).

Figure 7 shows that the grouped CNN model using
heatmap feature vectors achieved a very high F1 score
of 94.8% during cross-validation, consistent with the
test set result. The cross-validation history shown in
Figure 8 indicates that there was minimal overfitting
throughout the cross-validation process.

Table 1: Performance on the test set using heatmap features.

Model Mean F1 score on test set (n=10)
Image-Baseline 78.6%

Single CNN 86.1%
Grouped CNN 94.3%

Table 2: Performance on the test set using conventional fea-
ture vectors.

Model Mean F1 score on test set (n=10)
K-NN 25.7%

Single CNN 80.4%
Grouped CNN 77.0%

Figure 6: Loss versus epoch for grouped CNN using
heatmap feature vectors.

4.3 Risk Score Algorithm Results

Hyperparameter Value Selection. The ranked im-
portance of the hyperparameters used in Equation 2
can be seen in Table 3. The values α, δ and ε, which
weigh the importance of the maximum width, median
normalised sum spending and median normalised
standard deviation, respectively, were all ranked high-
est. This is because the length of consecutive daily
spending (a) was seen to be equally important as the
average spending in a contour (d), and the average
variability in a day’s spending ( f ). The least impor-
tant variable was determined to be the area (c), so
its corresponding hyperparameter γ was ranked as 3.
While the area of a contour gives an idea of the num-
ber of payments present within it, the other contour
statistics have a more direct relationship with risky
spending behaviour. Lastly, consecutive spending on
the same day of the week (b) was seen as a greater
indicator of risky spending behaviour than the area of
a contour (c) but less significant than a, d or f , so its
corresponding hyperparameter β was ranked as 2.

Figure 7: 10-fold CV F1 score results. Median = 94.8%.
IQR = 1.7%.

Figure 8: 10-fold CV history. A: Loss vs epoch. B: Accu-
racy vs epoch.
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Table 3: Hyperparameter importance (1 is highest).

Contour statistic Hyperparameter Rank
a α 1
b β 2
c γ 3
d δ 1
f ε 1

Analysing the Distribution of Risk Scores. The
overall distribution of risk scores, for the accounts in
the test set, can be seen in Figure 9. This distribu-
tion is heavily positively skewed and does not approx-
imate a normal distribution very well. Moreover, it is
composed of two overlapping distributions contain-
ing the Tetris and Non-Tetris risk scores, which can be
seen in Figures 10 and 11. The Tetris scores better ap-
proximate a normal distribution, while the Non-Tetris
scores are positively skewed. Furthermore, due to the
class imbalance in the dataset (see Section 4.1), when
these distributions are combined, the Non-Tetris data
dominates causing the overall distribution in Figure 9
to be heavily right-skewed. Finally, using Equation 4
and the overall distribution statistics (see Figure 9), a
cut-off point for risky spending behaviour was calcu-
lated to be 0.512.

Figure 9: Normalised distribution of risk scores in test set
with approximate normal distribution overlaid. µ = 0.112,
σ = 0.20.

Risk Scores per Spending Category. Table 4
shows a series of risk scores for each category in an
example customer’s transactional history along with
a risky spending label. This label is based on the risk
threshold calculated in Section 4.3. In the case of this
individual, they spend impulsively in the online shop,
clothing shop, supermarket, and takeaway categories.

Table 4: Risk scores for an example user in each category
with corresponding risky spending behaviour labels.

Category Risk Score Risky Spending?
Finances 0.018 N

Entertainment 0.017 N
Online shop 0.536 Y

Exercise 0 N
Personal care 0.417 N
Clothing shop 0.523 Y

Restaurant 0 N
Cafe 0 N

Supermarket 0.59 Y
Education 0.062 N

Home Shop 0.026 N
Pub/Bar 0 N

Takeaway 0.928 Y
Sports shop 0 N

Family 0 N

Figure 10: Normalised distribution of risk scores for the
Tetris labelled data in the test set with approximate normal
distribution overlaid. X̄ = 0.558, σ = 0.131.

Figure 11: Normalised distribution of risk scores for the
Non-Tetris labelled data in the test set with approximate
normal distribution overlaid. X̄ = 0.034, σ = 0.046.
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5 DISCUSSION

5.1 Critical Findings

From Section 4.2, when classifying the heatmap im-
ages the grouped CNN model significantly outper-
formed the baseline models and the single kernel
model on the test set, as well as during 10-fold cross-
validation of the training set. This finding shows that
when analysing the heatmap representation, the use of
a CNN with grouped convolution (Krizhevsky et al.,
2012), global max pooling (Lin et al., 2013) and fo-
cal loss (Lin et al., 2017) outperforms the alternative
configurations. This is likely due to the complex geo-
metric features present in the heatmap representation,
which can be difficult for a more conventional CNN,
like the one used in Butler et al. (2022), to classify.
Therefore, these results satisfy the first aim of this
study. Section 4.2 also shows that the heatmap rep-
resentation is superior to a conventional time series
representation in both the single and grouped CNN
models, satisfying the second aim of this study. Fur-
thermore, from Section 4.3, contour detection, a con-
temporary image analysis technique, was used to suc-
cessfully deconstruct the heatmap images into their
geometric components and derive information from
them, thereby satisfying the third aim of this study.

Section 4.3 demonstrated an algorithm for overall
risk score in several categories using the heatmap rep-
resentation. The overall distribution of risk scores in
the test set (Figure 9), is heavily positively skewed,
which at first glance implies the model is not discrim-
inating well between different levels of risk. How-
ever, this distribution is in fact composed of two over-
lapping distributions, one containing the Tetris risk
scores and one containing the Non-Tetris risk scores
(see Figures 10 and 11). The Non-Tetris risk score
distribution is highly right-skewed, and this is likely
because the risk score equation (Equation 2) weights
its output by the probability of a Tetris classifica-
tion; hence causing the Non-Tetris labelled data to
have far lower scores. This aligns with our aims, as
if a heatmap is labelled as Non-Tetris, it means the
heatmap lacks clear geometric features, which are as-
sociated with an underlying spending behaviour in
a given category and are a key indicator of impul-
sive spending. Consequently, it makes sense for Non-
Tetris heatmaps to have risk scores closer to 0 as these
heatmaps are far less likely to contain risky spending
behaviours.

On the other hand, the Tetris distribution in Figure
10 better approximates a normal distribution, which
shows that the risk score algorithm can effectively
distinguish between the different levels of risk in the

Tetris labelled data. Therefore, the risk score algo-
rithm appears to be a promising approach for cal-
culating risk because it discriminated risk effectively
within the Tetris heatmaps and because the high pos-
itive skew in the overall distribution was a conse-
quence of the class imbalance (see Section 4.3) and
the very low risk scores of the Non-Tetris data.

Lastly, if a financial product is strongly related to
a particular risk score category, this value and corre-
sponding label can be used to inform a retail bank of
that customer’s risk. For example, it would not be ap-
propriate to offer a customer a cashback card focused
on clothes shopping if the output of this algorithm
shows that the individual is spending impulsively in
that particular category. Therefore, this algorithm sat-
isfies the fourth aim of this paper.

5.2 Limitations and Recommendations

A key limitation of this study is that the utilised
dataset did not have any golden labels for the final
risk score. As a result, it is difficult to validate these
scores without involving the author’s bias. However,
the inclusion of adjustable hyperparameters (see Sec-
tion 3.7.2) allows for controlling and mitigating this
bias. An individual with access to data with golden
labels will be able to adjust these parameters accord-
ingly and validate the algorithm. Consequently, it is
recommended that if the user of this algorithm pos-
sesses a dataset with golden labels that are compa-
rable to the risk scores generated by this algorithm,
they should use these to validate their hyperparameter
value selections and the calculated impulsive spend-
ing threshold, and thus limit the integration of their
own bias into the algorithm. Therefore, the algorithm
produced in this study is a proof of concept to demon-
strate how ABM and applied artificial intelligence can
be used for the purpose of KYC and should not be di-
rectly implemented into a KYC pipeline. In addition,
as the dataset used in this study is synthetic, the anal-
ysis in relation to risk in this study (see Section 4.3)
will need to be validated through the deployment of
these techniques on real customer data.

Another limitation is that the transaction cate-
gories in this study were created by manually choos-
ing several categories that included all the available
vendors in the dataset. In practice, however, this is
not feasible, as developing a rules-based sorting sys-
tem for every possible vendor becomes problematic
due to the volume and variability in the transactions a
bank receives (UK Finance, 2022).
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5.3 Ethical Considerations

An ethical risk of the proposed algorithm is that the
risk scores could unintentionally highlight subsec-
tions of the population. This is because risky spend-
ing behaviour could be a result of compulsive buying
disorder (CBD), defined as “excessive shopping cog-
nitions and buying behaviour that leads to distress or
impairment” (Black, 2007). Research has shown that
CBD is associated with attention deficit hyperactivity
disorder (ADHD) (Brook et al., 2015). Thus, it may
be possible to predict neurodiversity from these risk
scores. Therefore, any further research into this al-
gorithm’s application must be solely focused on KYC
and customer-safeguarding to avoid identifying vul-
nerable members of the population.

6 CONCLUSIONS

This paper proposed a method for satisfying the cus-
tomer safeguarding aspect of KYC by representing
financial transactions as a heatmap, analysing the
heatmap using a CNN and contour detection, then
outputting a risk score and impulsivity label for each
spending category. These risk scores, along with their
corresponding labels, can be used to safeguard cus-
tomers from unsuitable financial products. In Sec-
tion 4.2, we showed that a CNN with grouped con-
volution, global max pooling, and binary focal cross-
entropy loss outperforms alternative configurations
when analysing the complex geometric features in the
heatmap representation. This model was able to dis-
tinguish between the heatmaps with a clear geomet-
ric structure (“Tetris”) and those without , yielding
an F1 score of 94.8% during 10-fold cross-validation,
which far exceeded the baseline models and the sin-
gle kernel model (Butler et al., 2022). The heatmap
representation also exceeded the performance of the
conventional feature vectors when evaluating both the
single and grouped CNN architectures. This work
demonstrates how agent-based modelling can pro-
duce datasets that applied artificial intelligence can
use to aid firms in adhering to KYC regulation.

6.1 Future Work

In Sinanc et al. (2021), the GAF image-transform
technique (Wang and Oates, 2015) has demonstrated
high effectiveness at predicting credit card fraud in
transactional data, and may also be applicable to the
customer-safeguarding aspect of KYC. One way to
achieve this is to combine GAF with a heatmap rep-
resentation where, instead of R, G and B layers (see

Section 3.3), each “pixel” is instead composed of a
GAF representation of that day’s spending. In our
current approach, the G and B layers aggregate a day’s
spending into a single value, thus removing the time
dimension and resulting in the loss of some infor-
mation. This new design, however, would maintain
the time series nature of an individual day’s spending
while preserving the image’s interpretability by struc-
turing the days in a heatmap.

Another avenue of future work is the use of natural
language processing (NLP) (Navigli, 2009) to cate-
gorise transactions as opposed to the rules-based sort-
ing method used in this study. A rules-based method
would be unable to handle the variety and volume of
vendor names that retail banks process (see Section
5.2). However, a theoretical NLP system could use
Regex (Aho, 1990) to extract key components of the
vendor names before using a technique such as latent
Dirichlet allocation (LDA) (Blei et al., 2003) to cat-
egorise them. This would allow a greater variety of
vendor names to be processed, thus overcoming the
second limitation discussed in Section 5.2.
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