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Abstract: There is often a mixture of very frequent labels and very infrequent labels in multi-label datasets. This varia-
tion in label frequency, a type class imbalance, creates a significant challenge for building efficient multi-label
classification algorithms. In this paper, we tackle this problem by proposing a minority class oversampling
scheme, UCLSO, which integrates Unsupervised Clustering and Label-Specific data Oversampling. Cluster-
ing is performed to find out the key distinct and locally connected regions of a multi-label dataset (irrespective
of the label information). Next, for each label, we explore the distributions of minority points in the cluster
sets. Only the intra-cluster minority points are used to generate the synthetic minority points. Despite having
the same cluster set across all labels, we will use the label-specific class information to obtain a variation in the
distributions of the synthetic minority points (in congruence with the label-specific class memberships within
the clusters) across the labels. The training dataset is augmented with the set of label-specific synthetic minor-
ity points, and classifiers are trained to predict the relevance of each label independently. Experiments using
12 multi-label datasets and several multi-label algorithms shows the competency of the proposed method over
other competing algorithms in the given context.

1 INTRODUCTION

In a multi-label dataset, a single datapoint is associ-
ated with more than one relevant label. This type of
data is obtained naturally from real-world domains
like text (Joachims, 1998; Godbole and Sarawagi,
2004), bioinformatics (Barutcuoglu et al., 2006),
video (Qi et al., 2007), images (Boutell et al., 2004;
Nasierding et al., 2009; Li et al., 2014) and mu-
sic (Li and Ogihara, 2006). We denote a multi-
label dataset as D = {(xi,yi), i = 1,2, . . . ,n}. Here,
xi is the ith input datapoint in d dimensions, and
yi = {yi1,yi2, . . . ,yiq} is the corresponding label as-
signment for xi among the possible q labels. yik in-
dicates if the kth label is applicable (or relevant) for
the ith datapoint: yik = 1 denotes that the kth label is
relevant to xi, and yik = 0 denotes that the kth label
is not applicable, or is irrelevant, to xi. The target of
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multi-label learning is to build a model that can cor-
rectly predict all of the relevant labels for a datapoint
xi.

Multi-label datasets are often found to possess
an imbalance in the representation of the different
labels—some labels are relevant to a very large num-
ber of datapoints while other labels are only relevant
to a few. The quantitative disproportion in the rep-
resentation of different classes of a dataset is known
as class imbalance problem (Das et al., 2022). In a
binary class-imbalanced dataset, the over-represented
and the under-represented classes of the dataset are
termed as the majority class and the minority class re-
spectively. Let the set of the majority points and the
set of the minority points in an imbalanced dataset be
denoted by Ma j and Min. Imbalance ratio quantifies
the degree of disproportion in a dataset and it is rep-
resented as follows.

imbalance ratio =
|Ma j|
|Min|

(1)

In a multi-label dataset, the number of labels, L is
greater than 1. We have a positive class and a negative
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class for each label. Often, the labels in a multi-label
dataset have widely varying imbalance ratios and this
is a challenging aspect for building multi-label clas-
sification models which will work good on all imbal-
ance ratios.

Addressing label-specific imbalances to improve
multi-label classification is an active field of re-
search, and several methods have been proposed to
address this problem (Zhang et al., 2020; Daniels and
Metaxas, 2017; Liu and Tsoumakas, 2019; Pereira
et al., 2020a). There is, however, room for sig-
nificant improvement. Label-specific oversampling
can be a solution to address the issue of varying la-
bel imbalances in multi-label datasets. In this light,
we propose UCLSO, which integrates Unsupervised
Clustering and Label Specific data Oversampling.
The essence of the UCLSO approach is to integrate i]
label-invariant information — information about the
proximity of points (through clustering) and ii] label-
specific information — about the class-memberships
of the points, to address the issue of class imbalance
in multi-label datasets. In this work, i) synthetic mi-
nority points are generated from local data clusters
(obtained from unsupervised clustering of the fea-
ture space), and ii) the cardinality of the label-specific
oversampled minority set obtained in a cluster will de-
pend on the cluster’s share of label-specific minority
data. In effect, the method oversamples the minority
class by focusing on the cluster-specific distributions
of the minority instances. The key highlights of our
work are,

• We propose UCLSO, a new minority class over-
sampling method for multi-label datasets, which
generates synthetic minority datapoints specifi-
cally in the minority regions of the input space.

• UCLSO works towards preserving the intrinsic
class distributions of the local clusters. The goal
is avoid generating synthetic minority instances
in the majority region, or as outliers in the input
space.

• UCLSO ensures that the number of synthetic mi-
nority points added in a region is in accordance
with the original minority density in that region.

• In UCLSO, instances belonging to the clus-
ters are same for all the labels but their label-
specific class-information varies. We integrate
this label-specific class information (by virtue of
memberships) and the physical proximity of the
points (obtained through clustering) to generate
the label-specific synthetic minority points.

• An empirical study involving 12 well-known,
real-world multi-label datasets and nine com-
peting methods illustrates the competency of

UCLSO in handling label-specific imbalance of
multi-label data over other competing methods.

The remainder of the paper is structured as follows.
Section 2 discusses the relevant existing work in the
multi-label domain. In Section 3 we first describe the
motivations of our approach and then present the steps
of the proposed UCLSO algorithm. The experiment
design is described in Section 4 and the results of the
experiments are discussed in Section 5. Finally, Sec-
tion 6 concludes the paper and discusses some direc-
tions for future work.

2 RELATED WORK

Existing multi-label classification methods are princi-
pally classified into two types: i) Problem transfor-
mation methods that modify the multi-label dataset
in different ways such that it can be used with exist-
ing multi-class classification algorithms (Tsoumakas
et al., 2011; Fürnkranz et al., 2008; Read et al., 2011;
Zhang and Zhou, 2013), and ii) Algorithm adaptation
approaches that modify existing machine learning
algorithms to directly handle multi-label datasetets
(Zhang and Zhou, 2007; Nam et al., 2014; Zhang and
Zhou, 2006; Zhang and Zhou, 2013).

Multi-label algorithms can also be categorised
based on if and how they take label associations into
account, which allows algorithms to be categorised
as: i) first-order, ii) second-order or iii) higher-order
approaches based on the number of labels that are
considered together to train the models. First or-
der approaches do not consider any label association
and learn a classifier for each label independently
of all other labels (Zhang and Zhou, 2007; Tanaka
et al., 2015; Zhang et al., 2018). In second order
methods, pair-wise label associations are explored to
achieve enhanced learning of multi-label data (Park
and Fürnkranz, 2007; Fürnkranz et al., 2008). Higher
order approaches considering associations between
more than two labels (Boutell et al., 2004). A num-
ber of diversified techniques have facilitated higher
order label associations through interesting schemes
including classifier chains (Cheng et al., 2010; Read
et al., 2013), RAkEL (Tsoumakas et al., 2011), ran-
dom graph ensembles (Su and Rousu, 2015), DM-
LkNN (Younes et al., 2008), IBLR-ML+ (Cheng and
Hüllermeier, 2009), and Stacked-MLkNN (Pakrashi
and Namee, 2017).

In recent years, data transformation has been a
popular choice for handling multi-label datasets. The
two principal ways of data transformation in multi-
label domain are: i) feature extraction or selection,
and ii) data oversampling or undersampling. One
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of the earliest applications of feature extraction in
multi-label learning was through LIFT (Zhang and
Wu, 2015), which brought significant performance
improvements. Most feature selection or extraction
methods select a label-specific feature set for each la-
bel to improve the discerning capability of the label
specific classifiers. Subsequently, a number of differ-
ent feature selection and extraction approaches have
been proposed (Huang et al., 2018; Xu, 2018; Xu
et al., 2016; Li et al., 2017). In (Huang et al., 2019),
label specific features are generated and the authors
also address the issue of the missing labels Recently,
the class imbalance problem in multi-label learning
has received more interest from the researchers. One
common approach to handling imbalance is to bal-
ance the cardinalities of the relevant and irrelevant
classes for each label. One way of achieving this
is through the removal of points from the majority
class of each label– for example using random un-
dersampling (Tahir et al., 2012) or tomek-link based
undersampling (Pereira et al., 2020b). Another way to
achieve this is by adding synthetic minority points to
the minority class (Liu and Tsoumakas, 2019; Sad-
hukhan and Palit, 2019; Charte et al., 2015). Al-
though this approaches have been shown to be effec-
tive there is still a lot of room for improvement.

3 UNSUPERVISED CLUSTERING
AND LABEL SPECIFIC DATA
OVERSAMPLING (UCLSO)

In this section we discuss the motivation and
then present the proposed approach: Unsupervised
Clustering and Label-Specific data Oversampling
(UCLSO).

3.1 Motivation

Let us consider a two-dimensional toy dataset with
two labels (1 and 2) shown in Figure 1(a). The imbal-
ance ratios of labels 1 and 2 in this dataset are 24.7
and 14.4 respectively. Figure 1(b) shows 5 clusters in
this datatset which are found using k-means. In Fig-
ures 1 (c) and (d), we mark the points with respect to
their label-specific class memberships. The colours
red and blue indicate the majority and the minority
class points respectively. Data pre-processing via mi-
nority class oversampling is a popular choice to tackle
the issue of imbalance in imbalanced datasets (He and
Garcia, 2009). In a multi-label dataset, due to spa-
tial and quantitative variation of class-memberships
across the labels, we need a label-specific approach.

Figures 1 (e) and (f) show the label-specific SMOTE-
based (Chawla et al., 2002) oversampling (synthetic
points in yellow) for label 1 and label 2 respectively.
It can be seen that SMOTE oversamples the synthetic
minority points in the majority-populated regions on
a number of occasions for both labels 1 and 2 (high-
lighted by black circles in Figures 1 (e) and (f)).

In order to achieve an effective learning of a
dataset, we need to prevent the majority space en-
croachment during oversampling. We tackle this is-
sue by clustering (using k-means) the feature space.
Clustering the dataset will give us k localized sub-
spaces. Oversampling only within each cluster can
prevent the majority class encroachment.

This work is motivated by an effort to balance the
cardinalities of the minority and majority classes of
the labels without encroaching on the majority class
spaces, as well as an effort to preserve the underlying
distribution of the datapoints.

As indicated in Figures 1 (e) and (f), a generic
oversampling for all labels will not be fruitful as dif-
ferent labels have different quantitative and spatial
distribution of the minority points. The are two as-
pects we need to keep in mind. i) Where should we
perform the oversampling? To answer this, we cluster
the feature space in an unsupervised manner (only the
feature attributes of the points are taken into account).
ii) If there is more than one subspace in which to per-
form oversampling, how much should we oversample
in each subspace? We look into the distribution of the
minority points (label-specific) in the clusters to de-
cide this. The degree of label-specific oversampling
in a cluster should be proportional to its original mi-
nority class distribution for that label. Figures 1 (g)
and (h) show the oversampling on labels 1 and labels
2 through the proposed method UCLSO. The degree
of encroachment in the majority class region is much
less for UCLSO compared to SMOTE.

3.2 An Intuitive Description of UCLSO

• We add synthetic minority points to each
imbalanced label.
Our aim is to reduce the bias of our classifier
towards the well and over-represented majority
class against the quantitatively scarce minority
class. To achieve this, a synthetic minority set is
selected for each label.

• What is the modus operandi of the proposed
oversampling?
We randomly select two existing minority points
and sample a synthetic minority point at a random
location on their direction vector.
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(b) Clusters in the dataset
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(g) Oversampling using 
UCLSO for label 1
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(h) Oversampling using
UCLSO for label 2

Figure 1: A toy dataset illustrating the problems with oversampling, and how UCLSO addresses them.

• Where should we initiate the sampling so that we
are more confident of sampling in the minority
class region rather than encroaching the majority
space?
Adding any synthetic minority point cannot guar-
antee that it is being added to the minority re-
gion in the input space and it is not ”encroaching”
into the majority class. We can avoid regions of
the input space where adding a synthetic minority
point is equivalent to adding an outlier or being
in a majority region. Intuitively, if the two origi-
nal minority points involved in the oversampling
lie within a small neighbourhood, we can ensure
oversampling of a ”non-encroaching synthetic mi-
nority point”.

• How do we arrange for the two original minority
points to lie within a locality?
A common choice of selecting two points within a
locality or neighbourhood is by selecting the first
point and then selecting the second from the first
one’s nearest neighbourhood. But, for a label with
high imbalance ratio and sparsely distributed mi-
nority points, the neighbours from the same class
can lie far part. In this case, it is highly likely that
the neighbours encompass a significant volume of
feature space and are not actually local (in spite of
being neighbours). Oversampling a synthetic mi-
nority point on the direction vectors of two such
neighbours can lead to the generation of synthetic
minority point in some arbitrary location causing
encroachment into the majority spaces.

To tackle this issue, we resort to clustering of the
original points. We employ k-means clustering
for this purpose and use it in an unsupervised for-
mat. By unsupervised, we mean that the cluster-
ing process does not involve any class or label in-
formation of the points. Clustering is done solely
on the basis of inter-point euclidean distances be-
tween the points.
After segregating the points into a pre-fixed num-
ber of clusters, we inspect the label-specific class-
memberships of the points in the clusters. We se-
lect two intra-cluster minority points from a clus-
ter and compute the synthetic minority point at
a random location on their direction vector. We
compute the synthetic minority points from the
original minority points lying in the k clusters.
The number of synthetic minority points gener-
ated from a cluster will depend on the share of
original minority points in the clusters.
Let us consider two clusters C1 and C2 with dif-
fering shares of minority instances for label l. Let
the shares of C1 and C2 be denoted by s1 and s2
respectively such that s1 > s2. The total number
of minority points, minority points in C1 and mi-
nority points in C2 are denoted by n, n1 and n2
respectively. The share of minority instances in
a cluster does not depend on the total number of
points in a cluster, rather it depends on how many
out of the total original minority points we have
in that cluster. We will oversample more points in
C1 than C2 because, C1 has more original minority
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points than that of C2, and we have more confi-
dence on adding a point to C1 over C2 if we want
non-encroachment to the majority class as much
as possible. On a similar logic, if we get a cluster
with zero minority instances share for some la-
bel, we will not oversample any synthetic minor-
ity point in that cluster as it represent a majority
region.

3.3 Approach: UCLSO

Algorithm 1: UCLSO.

1: procedure UCLSO(D,k) ▷ D: Training dataset,
k: number of clusters in k-means clustering

2: {C1,C2, . . . ,Ck} = k means ({xi|1 ≤ i ≤ n},k)
▷ Cluster the input space

3: for l ∈ 1,2, . . . ,L do
4: Sl = {}
5: for p ∈ 1,2, . . .k do
6: nl p = number of original minority

points for label l in Cp
7: ▷ Find the synthetic

minority instance shares of each cluster
8: minl = {xi|∀iyil = 1}
9: ma jl = {xi|∀iyil = 0}

10: synl p = ⌈nl p × |ma jl |−|minl |
|minl |

⌉, p =

1,2, . . . ,k
11: ▷ Generate synthetic

points
12: for j ∈ 1,2, . . . ,synl p do
13: up is selected randomly from Cp
14: vp is up’s randomly selected near-

est neighbor in Cp
15: r ∈ (0,1) selected randomly
16: s(l)p j = up +(vp −up)× r ▷ jth

synthetic pt. for label l from Cp

17: Sl = Sl
⋃
{(s(l)p j ,y

(l)
p j = 1)}

18: end for
19: end for
20: Al = D ∪Sl ▷ Augment original data
21: end for
22: return {Al |l = 1,2, . . . ,q} ▷ Per label

augmented synthetic datasets
23: end procedure

The main idea of this oversampling method is to gen-
erate the synthetic minority points in the minority
populated regions of the input space. We follow this
scheme to introduce more synthetic minority points in
the minority regions, thereby avoiding the introduc-
tion of the synthetic minority points in non-minority
regions. This should ideally improve the detection of

the minority points with respect to the majority points
— as the error optimization in the classifier modelling
phase will have equivalent contribution from both the
minority points and the majority points. This will in
turn help in mitigating the bias of the majority class
and learning a better decision boundary for an imbal-
anced label.

A common approach for generating synthetic mi-
nority datapoints is to select two points within a
neighbourhood and then generate a synthetic point
by interpolation at a random location on the direc-
ton vector connecting the two (Chawla et al., 2002).
For a label with a high imbalance ratio and sparsely
distributed minority points, the neighbours from the
same class for this label can lie far apart. Conse-
quently, the neighbourhood can encompass a large
volume of feature space. Therefore, oversampling in
the given manner may lead to the generation of syn-
thetic minority points which end up in the majority
region of the input space.

To tackle this issue, we partition the original
points into k clusters
{C1,C2, . . . ,Ck}, on the basis of their Euclidean dis-
tances. We use the k-means algorithm to perform this
clustering. Once we get the clusters, for each clus-
ter Cp, we randomly select up, a minority point from
a cluster, and vp, which is a randomly chosen near-
est neighbour of up ∈ Cp (randomly chosen minor-
ity neighbor of up from the same cluster). We com-
pute the synthetic minority point by interpolation at a
random location of the direction vector connecting up
and vp. The synthetic point is computed as follows

s(l)p j = up +(vp −up)× r (2)

where s(l)p j is the jth synthetic datapoint generated in
cluster Cp for the label l, and r ∈ (0,1) is a random
number sampled from the uniform distribution, which
decides the location of the synthetic point between up
and vp.

The number of synthetic minority points gener-
ated from a cluster is directly proportional to the share
of original minority points in that cluster. Therefore,
more synthetic minority points will be introduced in
the clusters with more original minority points. This
is because, we are more confident about adding mi-
nority points in a region which originally had more
original minority points. The number of synthetic mi-
nority points to be added is computed as.

synl p = ⌈nl p ×
|ma jl |− |minl |

|minl |
⌉ (3)

where minl and ma jl are the sets of minority and ma-
jority datapoints for the label l respectively. Here nl p
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is the number of original minority datapoints for la-
bel l in cluster Cp. This way, the clusters which have
more original minority points will be populated with
more synthetic minority point.

Following the above steps, we obtain the synthetic
minority set Sl for the label l. The original training
dataset D is appended with Sl to get an augmented
dataset Al for each label l. This augmented training
set, Al , is used to train a binary classifier model for
the corresponding label l. The above process is sum-
marised in Algorithm 1.

4 EXPERIMENTS

We performed a set of experiments to evaluate the
effectiveness of the proposed UCLSO method. This
section describes the datasets, algorithms, experimen-
tal setup, and evaluation processes used for the exper-
iments.

Several well-known multi-label datasets were se-
lected which are listed in Table 1 1. Here, in-
stances, inputs and labels indicate the total number
of datapoints, the number of predictor variables, and
the number of potential labels respectively in each
dataset. Type indicates if the input space is numeric
or nominal. Distinct labelsets indicates the number of
unique combinations of labels. Cardinality is the av-
erage number of labels per datapoint, and Density is
achieved by dividing Cardinality by the Labels.

The datasets are modified as recommended in
(Zhang et al., 2020; He and Garcia, 2009). Labels
having a very high degree of imbalance (50 or greater)
or having too few positive samples (20 in this case)
are removed. For text datasets (medical, enron, rcv1,
bibtex), only the input space features with high degree
of document frequencies are retained.

To compare the performance of different ap-
proaches, we have selected the label-based macro-
averaged F-Score and label-based macro-averaged
AUC scores recommended in (Zhang et al., 2020).
For the experiments evaluating the proposed al-
gorithm we have performed a 10 × 2 fold cross-
validation experiment. The experiment setup and en-
vironment was kept identical to Zhang et. al.(Zhang
et al., 2020). For clustering, the number of clusters
was set to 5 for the k-means step of UCLSO. In the
classification phase, a set of linear SVM classifiers
are used, one for each label.

We compare the performance of UCLSO against
several state-of-the-art multi-label classification algo-
rithms – COCOA (Zhang et al., 2020), THRSEL (Pil-

1http://mulan.sourceforge.net/datasets-mlc.html

lai et al., 2013), IRUS (Tahir et al., 2012), SMOTE-
EN (Chawla et al., 2002), RML (Petterson and Cae-
tano, 2010), and binary relevance (BR), calibrated la-
bel ranking (CLR) (Fürnkranz et al., 2008), ensem-
ble classifier chains (ECC) (Read et al., 2011) and
RAkEL (Tsoumakas et al., 2011). We base our ex-
periments on the experiment presented in Zhang et.
al. (Zhang et al., 2020), and extend the results of that
paper by adding the performance of UCLSO.

5 RESULTS

Tables 2 and 3 shows the label-based macro-average
F-Score and label-based macro-averaged AUC results
respectively2, along with the relative ranks in brackets
(lower ranks are better) of the algorithms compared
for each dataset. The last row of both tables indicate
the average rank for the algorithms. The best values
are highlighted in boldface.

Also, to further analyse the differences between
the algorithms, we performed a non-parametric sta-
tistical test for a multiple classifier comparison test.
Following (Garcı́a et al., 2010), we have performed
a Friedman test with Finner p-value adjustments, and
the critical difference plots from the test results are
shown in Figure 2 3.

Table 2 clearly shows that the overall performance
of the proposed UCLSO algorithm is better than all
the other algorithms, attaining the best average rank
of 1.25. The second best rank is attained by COCOA
(avg. rank 3). Also, the proposed method UCLSO
achieved much better performance than the other ap-
proaches for many datasets and attained the top rank
for nine of the datasets, and on the remaining three
datasets it attained the second rank. these results also
show that methods that attempt to explicitly consider
the label imbalance issue perform better than those
that do not. The other algorithms which specifically
address label imbalance attained the following order:
RML (avg. rank 3.29), THRSEL (avg. rank 4.62),
SMOTE-EN (avg. rank 5.12) and IRUS (arg. rank
6.33). The algorithms which do not consider the label
imbalances like BR (avg. rank 7.42), RAkEL (avg.
rank 7.5), ECC (avg. rank 8.12), and CLR (avg. rank
8.33) all performed poorly.

Multiple classifier comparison results in Figure 2
show that when UCLSO is compared with other al-

2Note that results for Table 3 does not have the results
RML (Petterson and Caetano, 2010) as the implementation
does not provide prediction scores.

3The full result tables in supplementary mate-
rial: https://github.com/phoxis/uclso/blob/main/UCLSO
Supplementary Material.pdf
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Table 1: Description of datasets.

Dataset Instances Inputs Labels Type Cardinality Density Distinct Proportion of Imbalance Ratio
Labelsets Distinct min max avg

Labelsets
yeast 2417 103 13 numeric 4.233 0.325 189 0.078 1.328 12.500 2.778
emotions 593 72 6 numeric 1.869 0.311 27 0.046 1.247 3.003 2.146
medical 978 144 14 numeric 1.075 0.077 42 0.043 2.674 43.478 11.236
cal500 502 68 124 numeric 25.058 0.202 502 1.000 1.040 24.390 3.846
rcv1-s1 6000 472 42 numeric 2.458 0.059 574 0.096 3.342 49.000 24.966
rcv1-s2 6000 472 39 numeric 2.170 0.056 489 0.082 3.216 47.780 26.370
rcv1-s3 6000 472 39 numeric 2.150 0.055 488 0.081 3.205 49.000 26.647
enron 1702 50 24 nominal 3.113 0.130 547 0.321 1.000 43.478 5.348
bibtex 7395 183 26 nominal 0.934 0.036 377 0.051 6.097 47.974 32.245
llog 1460 100 18 nominal 0.851 0.047 109 0.075 7.538 46.097 24.981
corel5k 5000 499 44 nominal 2.241 0.050 1037 0.207 3.460 50.000 17.857
slashdot 3782 53 14 nominal 1.134 0.081 118 0.031 5.464 35.714 10.989

Table 2: Each cell indicates the averaged label-based macro-averaged F-Scores scores (best score in bold) along with the
relative rank of the corresponding algorithm in brackets. The last row indicates the overall average ranks.

UCLSO COCOA THRSEL IRUS SMOTE-EN RML BR CLR ECC RAkEL
yeast 0.505 (1) 0.461 (3) 0.427 (5 ) 0.426 (6 ) 0.436 (4 ) 0.471 (2 ) 0.409 (9 ) 0.413 (8 ) 0.389 (10 ) 0.420 (7)
emotions 0.658 (2) 0.666 (1) 0.560 (9 ) 0.622 (5 ) 0.575 (8 ) 0.645 (3 ) 0.550 (10) 0.595 (7 ) 0.638 (4 ) 0.613 (6)
medical 0.783 (1) 0.759 (2) 0.733 (3.5) 0.537 (10) 0.700 (8 ) 0.707 (7 ) 0.718 (6 ) 0.724 (5 ) 0.733 (3.5) 0.672 (9)
cal500 0.273 (2) 0.210 (5) 0.252 (3 ) 0.277 (1 ) 0.235 (4 ) 0.209 (6 ) 0.169 (8 ) 0.081 (10) 0.092 (9 ) 0.193 (7)
rcv1-s1 0.443 (1) 0.364 (3) 0.292 (5 ) 0.252 (8 ) 0.313 (4 ) 0.387 (2 ) 0.285 (6 ) 0.227 (9 ) 0.192 (10 ) 0.272 (7)
rcv1-s2 0.432 (1) 0.342 (3) 0.275 (5 ) 0.234 (8 ) 0.305 (4 ) 0.363 (2 ) 0.272 (6 ) 0.226 (9 ) 0.173 (10 ) 0.263 (7)
rcv1-s3 0.480 (1) 0.339 (3) 0.275 (5 ) 0.225 (8 ) 0.302 (4 ) 0.371 (2 ) 0.271 (6 ) 0.211 (9 ) 0.163 (10 ) 0.257 (7)
enron 0.352 (1) 0.342 (2) 0.291 (5 ) 0.293 (4 ) 0.266 (8 ) 0.307 (3 ) 0.246 (9 ) 0.244 (10) 0.268 (6 ) 0.267 (7)
bibtex 0.442 (1) 0.318 (3) 0.303 (4 ) 0.253 (8 ) 0.283 (5 ) 0.326 (2 ) 0.263 (7 ) 0.265 (6 ) 0.212 (10 ) 0.252 (9)
llog 0.181 (1) 0.082 (6) 0.096 (3 ) 0.124 (2 ) 0.095 (4.5) 0.095 (4.5) 0.031 (7 ) 0.024 (8 ) 0.022 (10 ) 0.023 (9)
corel5k 0.209 (2) 0.196 (3) 0.146 (4 ) 0.105 (6 ) 0.125 (5 ) 0.215 (1 ) 0.089 (7 ) 0.049 (10) 0.054 (9 ) 0.084 (8)
slashdot 0.443 (1) 0.374 (2) 0.355 (4 ) 0.257 (10) 0.366 (3 ) 0.343 (5 ) 0.291 (8 ) 0.290 (9 ) 0.304 (6 ) 0.296 (7)
Avg. rank 1.25 3.00 4.62 6.33 5.12 3.29 7.42 8.33 8.12 7.5

gorithms, except for COCOA and RML, the null hy-
pothesis can be rejected with a significance level of
α = 0.05. Therefore, based on the statistical test,
UCLSO is significantly better than the other algo-
rithms, except COCOA and RML.

Table 3 shows the label-based macro-averaged
AUC scores, which shows that proposed method
UCLSO was able to attain the second best average
rank of 2.42, being very close to COCOA attain-
ing the best rank of 2.21. Interestingly UCLSO at-
tained more rank ones (six) than COCOA (two rank
ones). Also, interestingly ECC was able to perform
better than UCLSO in six of the datasets, but was
able to perform better in nine datasets when com-
pared to COCOA. It is also interesting to notice that
ECC and CLR had higherrankings for the label-based
macro-averaged AUC metric than for macro-averaged
F-Scores. It seems that a simple BR still performed
poorly. As ECC and CLR takes label associations into
consideration in a binary relevance and ranking fash-
ion, respectively, it helped improve the comparative
performances. RAkEL, on the other hand, taking la-
bel associations into account is sensitive on the label
subset size (value of k) and the specific combination,

which can lead to an even higher degree of imbalance.
The difference in the results of the label-based macro-
average AUC compared to the F-Score also indicates
the importance of thresholding the predictions when
deciding the relevance of a certain label.

Multiple classifier comparison results show in
Figure 2 that when UCLSO is compared with others,
the null hypothesis could not be rejected for COCOA,
ECC, CLR and IRUS in this case with a significance
level of α = 0.05. Although, UCLSO performed sig-
nificantly better than RAkEL, SMOTE-ML, THRSEL
and BR. Overall, the experiments demonstrate the ef-
fectiveness of the proposed method UCLSO, as it out-
performs the compared state of the art algorithms in
almost all cases.

6 CONCLUSION AND FUTURE
WORK

In this work we have proposed an algorithm to ad-
dress the class imbalance of labels in multi-label clas-
sification problems. The proposed algorithm, Un-
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Table 3: Each cell indicates the averaged Label-based macro-averaged AUC scores (best score in bold) along with the relative
rank of the corresponding algorithm in brackets. The last row indicates average ranks.

UCLSO COCOA THRSEL IRUS SMOTE-EN BR CLR ECC RAkEL
yeast 0.666 (3) 0.711 (1 ) 0.576 (8.5) 0.658 (4 ) 0.582 (7) 0.576 (8.5) 0.650 (5 ) 0.705 (2 ) 0.641 (6)
emotions 0.819 (3) 0.844 (2 ) 0.687 (8.5) 0.802 (4 ) 0.698 (7) 0.687 (8.5) 0.796 (6 ) 0.850 (1 ) 0.797 (5)
medical 0.967 (1) 0.964 (2 ) 0.869 (7.5) 0.955 (3.5) 0.873 (6) 0.869 (7.5) 0.955 (3.5) 0.952 (5 ) 0.856 (9)
cal500 0.550 (4) 0.558 (2 ) 0.509 (8.5) 0.545 (5 ) 0.512 (7) 0.509 (8.5) 0.561 (1 ) 0.557 (3 ) 0.528 (6)
rcv1-s1 0.919 (1) 0.889 (3 ) 0.643 (7.5) 0.882 (4 ) 0.626 (9) 0.643 (7.5) 0.891 (2 ) 0.881 (5 ) 0.728 (6)
rcv1-s2 0.912 (1) 0.882 (2.5) 0.640 (7.5) 0.880 (4 ) 0.622 (9) 0.640 (7.5) 0.882 (2.5) 0.874 (5 ) 0.721 (6)
rcv1-s3 0.956 (1) 0.880 (2 ) 0.633 (7.5) 0.872 (4.5) 0.628 (9) 0.633 (7.5) 0.877 (3 ) 0.872 (4.5) 0.718 (6)
enron 0.719 (5) 0.752 (1 ) 0.597 (8.5) 0.738 (3 ) 0.619 (7) 0.597 (8.5) 0.720 (4 ) 0.750 (2 ) 0.650 (6)
bibtex 0.844 (4) 0.877 (2 ) 0.673 (8.5) 0.894 (1 ) 0.706 (6) 0.673 (8.5) 0.811 (5 ) 0.873 (3 ) 0.696 (7)
llog 0.721 (1) 0.663 (4 ) 0.518 (7.5) 0.676 (2 ) 0.561 (6) 0.518 (7.5) 0.612 (5 ) 0.673 (3 ) 0.514 (9)
corel5k 0.695 (4) 0.718 (3 ) 0.559 (7.5) 0.687 (5 ) 0.596 (6) 0.559 (7.5) 0.740 (1 ) 0.723 (2 ) 0.552 (9)
slashdot 0.806 (1) 0.774 (2 ) 0.632 (8.5) 0.753 (4 ) 0.714 (6) 0.632 (8.5) 0.742 (5 ) 0.765 (3 ) 0.638 (7)
Avg. ranks 2.42 2.21 8.00 3.67 7.08 8.00 3.58 3.21 6.83

1 2 3 4 5 6 7 8 9

UCLSO
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RML
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CLR

(a) label-based macro-averaged F-Score

2 3 4 5 6 7 8
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UCLSO
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CLR
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BR

(b) label-based macro-averaged AUC

Figure 2: Critical difference plots. The scale indicates the average ranks. The methods which are not connected with the
horizontal lines are significantly different with a significance level of α = 0.05.

supervised Clustering and Label-Specific data Over-
sampling (UCLSO), oversamples label-specific mi-
nority datapoints in a multi-label problem to balance
the sizes of the majority and the minority classes of
each label. The oversampling of the minority classes
for each label is done in a way such that more mi-
nority class samples are generated in regions (or clus-
ters) where the density of minority points is high. This
avoids the introduction of minority datapoints in ma-
jority regions in the input space. The number of sam-
ples introduced per cluster also depends on the share
of the minority class for that cluster.

An experiment with 12 well-known multi-label
datasets and other state of the art algorithms demon-
strates the efficacy of UCLSO with respect to label-
based macro-averaged F-Score. UCLSO attained the
best average rank and the degree of its improvement
over existing approaches was significant. This shows
that UCLSO has successfully improved the classifi-
cation of imbalanced multi-label data. In future, we
would specifically like to incorporate some imbalance
informed clustering to extend our scheme. Moreover,
it would be interesting to amalgamate the oversam-
pling technique with label associated learning, an-
other key component of multi-label data.
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