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Abstract: In this paper, we present CSP-DC, a data cleaning system that integrates a new intelligent solution into the
cleaning process to improve data accuracy, consistency, and minimize user involvement. We address three
main challenges: (1) Consistency: Most repairing algorithms introduce new violations when repairing data, es-
pecially when constraints have overlapping attributes. (2) Automaticity: User intervention is time-consuming,
we seek to minimize their efforts. (3) Accuracy: Most automatic approaches compute minimal repairs and
apply unverified modifications to repair ambiguous cases, which may introduce more noise. To address these
challenges, we propose to formulate this problem as a constraint satisfaction problem (CSP) allowing updates
that always maintain data consistency. To achieve high performances, we perform a first cleaning phase to au-
tomatically repair violations that are easily handled by existing repair algorithms. We handle violations with
multiple possible repairs with a CSP solving algorithm, which selects from possible fixes, values that respect
all constraints. To reduce the problem’s complexity, we propose a new variables ordering technique and prun-
ing strategies, allowing to optimize the repair search and find a solution quickly. Our experiments show that
CSP-DC provides consistent and accurate repairs in a linear time, while also minimizing user intervention.

1 INTRODUCTION

Lately, data has been widely used for prediction, anal-
ysis, and decision making, therefore it has become
the most valuable resource in the world. However,
real data is usually of poor quality, according to
a Kaggle survey1, dirty data is considered as the
biggest barrier in data science (Berti-Equille, 2019).
Moreover, the use of this poor-quality data can lead
to bad decision-making which can cause time and
money losses, as well as serious repercussions in
some critical application areas, such as healthcare
and automotive (Yakout et al., 2011). Consequently,
data quality management has become crucial for both
data scientists and decision makers.
To improve the quality of the data, quality rules
(QRs) have been used to identify errors and incon-
sistencies. Data is then modified to respect the set
of QRs expressed as integrity constraints (ICs) such
as: Functional Dependencies (FD) (Bohannon et al.,
2005), Conditional Functional Dependencies (CFD)
(Cong et al., 2007), Denial Constraints (DC) (Xu Chu
et al., 2013), etc. (Ilyas and Chu, 2015)

1https://www.kaggle.com/code/amberthomas/kaggle-
2017-survey-results/report

Over the years, several data cleaning approaches
have been proposed (Raman and Hellerstein, 2001),
(Yakout et al., 2011), (Fan et al., 2012), (Volkovs
et al., 2014). Most of them have opted for repairs
that minimize a cost function defined as the distance
between original and modified data (Dallachiesa
et al., 2013), (Bohannon et al., 2005), (Chiang and
Miller, 2011), (Wang and Tang, 2017). However,
choosing the minimal repair may add more noise to
the data by modifying the wrong cells or selecting
incorrect repair values (Rezig et al., 2021), (Yakout
et al., 2011). Furthermore, repairing cells that
participate in several ICs is challenging, especially
when dealing with errors from the active domain.
To improve the quality of repairs, external data like
knowledge bases (KBs) have been used to extract
relevant data repairs (Chu et al., 2015), (Abdellaoui
et al., 2017). However, human intervention is usually
needed especially when multiple possible repairs are
proposed (Yakout et al., 2011), (Chu et al., 2015),
(Abdellaoui et al., 2017). Human intervention is
a tedious and time-consuming process, especially
with the huge amount of data to deal with and the
high number of possible repairs usually generated by
repair algorithms.
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Figure 1: The workflow of CSP-DC.

With the aim of automating the repair process
and minimizing human effort without trading off
the consistency nor the accuracy of the repairs,
we propose CSP-DC, a new data cleaning system.
CSP-DC uses one of the state of the art data cleaning
algorithms to automatically repair data when possible
or generate possible repairs otherwise. For this step,
we use QDflows (Abdellaoui et al., 2017) but our
solution supports any other repair algorithm as long
as it returns possible fixes that could be exploited by
the CSP-based solution.
Instead of involving the user to choose the appropriate
repair, we propose a new solution to automatically re-
pair ambiguous repair cases. Our solution is inspired
from constraint satisfaction problems resolution
(CSP) (Poole and Mackworth, 2010). A CSP consists
of variables X , domains D which represent variables’
possible values, and a set of constraints C. They
are designed to solve problems under constraints by
assigning to each variable a value that satisfies all
constraints. In our case, it consists of finding repairs
to dirty cells, which respect the entire set of integrity
constraints simultaneously. The choice of translating
the consistency problem to a CSP was based on the
fact that the two problems are very similar. Indeed,
variables correspond to cells, domains refer to the
possible repairs of cells, and constraints represent
the set of ICs. Furthermore, when solving a CSP, the
purpose is to find assignments to variables that must
respect all constraints. Data cleaning on the other
hand aims to find repairs to dirty data in order to
respect the ICs.
As far as we know, no existing approach has for-

mulated the data cleaning problem as a CSP. We
believe that this representation and the use of a CSP
solving algorithm allow us to improve data quality
and guarantees the consistency of repairs. Since all
constraints are verified when instantiating variables,
a holistic choice is made to repair each erroneous
cell which ensures high accuracy. Like many data
cleaning solutions (Mahdavi and Abedjan, 2020),
(Geerts et al., 2013),(Xu Chu et al., 2013), (Yakout
et al., 2011), we enable users’ intervention when no
possible repair is returned by QDflows. This allows
us to repair violations when no evidence is available
in data or when the repair value must be out of the
active domain.
To achieve our goal, we face several challenges
including:

- The data cleaning problem has never been formal-
ized as a constraint satisfaction problem. There-
fore, there is no definition or representation of the
problem. The challenge is: (1) Identifying the
variables of the problem and how to relate them to
the data without losing the context of the cells. (2)
In a CSP, a constraint is defined on variables but in
our case, ICs are defined on attributes. Therefore,
it is difficult to translate an IC into a constraint on
variables without losing generality (i.e., exhaus-
tively defining a constraint for each subset of the
problem’s variables). (3) Since a part of the data
is automatically repaired, the CSP solving algo-
rithm must take into account their values without
modifying them.

- Solving a CSP consists of finding a repair that re-
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spects all constraints. If the initialized variables
do not respect the constraints, the CSP may be-
come unsolvable. As a part of the data is repaired
automatically and used as an initialization of the
CSP, their repair must be done with great care in
order to avoid generating inconsistencies, because
the final result strongly depends on this step.

- Solving a CSP is NP-Complete (Pang and Good-
win, 2003). Moreover, the time complexity of
the most known CSP solving algorithms is expo-
nential (Razgon, 2006). For example, the worst
case time complexity of the backtracking algo-
rithm is of the order O(e ∗ dn) (with n the num-
ber of variables, e the number of constraints, and
d the size of the largest domain) (Mouelhi et al.,
2013). As our problem has a large number of vari-
ables and values, it becomes challenging to solve
it efficiently.

Contribution:

1. We propose a representation of the data cleaning
problem as a CSP (Section 3.1) and solve it using
one of the dedicated solving algorithms (Section
3.2). This allows to:

- Find repairs to the ambiguous repair cases in an
effective and consistent way.

- Repair cells participating in several ICs safely.
As changing their values is difficult and can
trigger new violations, these cells are critical
to repair. By formulating our problem as a
CSP, the solving algorithm takes into account
all constraints while repairing.

- Replace the user intervention by automatically
selecting fixes to errors not easily handled by
classical algorithms.

2. We propose a pruning strategy to improve the ef-
ficiency of our solution (Section 4.1)

3. We propose a new variable ordering technique
adapted to our data cleaning problem which al-
lows us to solve it efficiently (Section 4.2).

4. We conduct experiments to assess our solution’s
effectiveness and efficiency. We compare its per-
formance to those of some existing algorithms and
study how our optimizations impact the complex-
ity of the problem (Section 5).

2 MOTIVATION & SOLUTION
OVERVIEW

In this section, we present some motivating examples
as well as the architecture overview of CSP-DC.

2.1 Motivation

Let the relation in Figure 2 and the following set of
integrity constraints:
FD1 : ZIPCode→ State
FD2 : PhoneNumber→ ZIPCode
FD3 : ProviderNumber→City,PhoneNumber
CFD : (ZIPCode→ State,35233∥AL).
A typical cleaning scenario is to detect violating tu-
ples, for instance, tuples t4, t6, and t7 violate the FD1
and t1 t2, and t5 violate the FD3, then use a repair al-
gorithm to find updates that satisfy the defined ICs.
In the following, we define multiple scenarios where
it would be useful to use our proposed solution.

1. When multiple possible repairs validated by exter-
nal data are returned, but still can’t decide about
cells to modify and values to select: In this case,
users are involved to repair dirty data.

Example 1. Consider that we use a repair al-
gorithm that returns multiple possible repairs ex-
tracted from data or KBs. For the first violation,
(‘35233’, ‘35235’) are returned as possible fixes
for t4[ZIPCode] and ‘SC’ for t4[State]. For the
second one, ’10011’ and ’2053258100’ are re-
turned as possible repairs for t5[ProviderNumber]
and t5[PhoneNumber] respectively. Instead of in-
volving the user to ensure data consistency, we
mark each cell participating in these violations,
extract the possible repair values and select via a
CSP solving algorithm the combination that guar-
antees the data consistency.

2. When dealing with ICs with overlapping at-
tributes: Repairing such a case is difficult be-
cause modifying a cell value to resolve a vi-
olation may trigger a new violation of another
IC. Most existing repair algorithms do not han-
dle these types of ambiguous repair cases very
well. To resolve violations mentioned in Exam-
ple 1, they would apply a random repair or mod-
ify the right-hand-side to resolve the violation.
This may introduce more noise in data by modi-
fying t4[State] or generate a new violation of FD2
by changing t4[ZIPCode] value to ‘35233’ and/or
t5[PhoneNumber] to ’2053258100’.
By formulating our problem as a CSP, dealing
with overlapping attributes becomes safer as all
constraints are verified before updating data.

3. When the data do not contain enough evidence to
resolve the conflict safely: A possible way to han-
dle this case is to use lluns (Geerts et al., 2013)
or fresh values (Xu Chu et al., 2013) for example
to mark the concerned cells. This allows to return
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Figure 2: Example of tuples from a dirty Dataset.

a consistent result then, ask for the user interven-
tion to repair marked cells. CSP-DC on the other
hand, handles this case via the CSP based solution
as long as possible fixes to the concerned cells are
available.

Example 2. A possible repair is to update
t8[State] to ‘AL’ or to change t8[ZIPCode].
However, no possible value from the active do-
main satisfies the ICs therefore, the user interven-
tion is required to guarantee the accuracy.

2.2 Solution Overview

Figure 1 illustrates the workflow of CSP-DC. It is
composed of two cleaning phases:
1. Violation Detection and Updates Discovery: In

this phase, violations are identified using the spec-
ified QRs expressed as ICs. Then, QDflows con-
structs for each violation, a repair pattern based on
properties involved in the concerned QRs. Next,
horizontal and vertical matches of the repair pat-
terns are searched in the KB. Outputs of QDflows
are divided into three groups:

(a) Violations with one possible repair: this means
that the proposed update is likely to be the right
one, data is thus automatically repaired.

(b) Violations with no possible repairs: here, the
users are invited to repair the involved cells.

(c) Violations with multiple possible repairs: in
this case, no decision is made at this stage. The
concerned cells are annotated using “tags” and
their possible repair values are collected.

At the end of this phase, the consistency of data
is verified. If new violations were triggered when
repairing the first violations, another cleaning it-
eration is done.

2. CSP Based Repair: In this phase, updated data,
QRs, and possible repairs are transformed to de-
fine the problem as a CSP and initialize its ele-
ments. Variables referring to clean data are initial-
ized, domains of annotated cells are constructed

using the possible repairs, and the QRs are trans-
lated to constraints on variables. Finally, the CSP
is solved by finding repair to annotated data using
a backtracking search algorithm which returns the
repaired data.

3 CSP BASED SOLUTION

In this section, we present our solution based on con-
straint satisfaction problems by explaining how our
problem is translated into a CSP, how its elements are
initialized, and how the problem is solved.

3.1 Problem Definition and
Initialization

Our data cleaning problem is composed of two main
elements: (1) Data that represents a list of tuples, each
one contains multiple attribute values. (2) Integrity
constraints that formulate a set of quality rules in or-
der to ensure data consistency.
The representation of our problem as a CSP was in-
spired from AIMA’s 2formulation of the SUDOKU
problem to a CSP. We define our problem as follows:

− Variables (X ): Each cell is considered as a vari-
able Xi. j of the problem where ”i” indicates the
identifier of the tuple to which the variable be-
longs and ” j” the attribute it refers to.

− Domains (D): Represent the different possible
values that can be assigned to variables. Each
variable has its own domain but it’s possible to
have multiple variables sharing the same domain.

Example 3. D(X4.3): [”AL”, ”SC”],
D(X4.4): [”29730”, ”35233”, ”35235”].

− Constraints(C ): are a translation of ICs into con-
ditions on variables. A variable may be under
multiple constraints.

2https://github.com/aimacode/aima-python
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After formalizing the problem, we initialize its ele-
ments using the CSPBasedRepair algorithm, given in
Algorithm 1 (line 1). Variables related to the clean
cells are initialized by assigning the value correspond-
ing to the tuple ”i” and the attribute ” j” to the variable
Xi. j the rest of variables (related to annotated cells)
are set to ‘tags’. After that, the possible repairs re-
turned for the annotated cells, are used in addition to
their original values to construct their domains.

3.2 Problem Resolution

Our constraint satisfaction problem’s resolution is
done using a backtracking search algorithm which
consists in assigning to each variable a value and
recursively checking for each assignment, if a solu-
tion to the problem can be returned from the cur-
rent set of assignments. If no solution is possible
(i.e., the assignment does not respect one or multi-
ple constraints), a backtrack is necessary. Algorithm
2, referred to as BacktrackingSearch, describes the
different steps. It takes as input variables related to
each cell, their domains, their neighbors (i.e., other
variables to be compared with in order to ensure the
consistency), the defined constraints, and optionally,
heuristics for variables and values ordering and/or a
filtering strategy (inference). In turn, from the set
of unassigned variables, a variable is chosen and a
value from its domain is selected. Variables and val-
ues could be picked randomly but it is possible to use
existing variable selection heuristics and value order-
ing heuristics to optimize the search. If an assignment
respects all constraints (i.e., No triggered violation)
then, this value is assigned to the current variable.
In the same way, assignments to other variables are
found. If a variable has all its domain values violating
one or multiple constraints, a backtrack is triggered.
The purpose is to change the value of a previously in-
stantiated variable that may cause this inconsistency,
which offers more options for the next steps of the
search. The solution is returned when all variables
are instantiated which means that consistent data is
returned.

4 OPTIMIZATIONS

As solving a CSP is NP-complete, we propose multi-
ple optimizations to avoid the exponential time com-
plexity of the backtracking search.

Algorithm 1: CSPBasedRepair.
Input: An annotated dataset D, Constraints C, Variables V ,
VariableSelectionHeuristic V SH, ValueOrderingHeuristic VOH,
inference in f
Output: Repaired dataset

1: Partial assignment← initPartial assignment(D,V )

2: return BacktrackingSearch (Partial assignment, V , C, Dom, N, V SH,
VOH, in f )

Algorithm 2: BacktrackingSearch.
Input: Partial assignment, V , C, Dom, N, V SH, VOH, in f
Output: Solution to the CSP

1: if |Partial assignment|= |V | then
2: return Partial assignment
3: end if
4: for var in V SH(V ) do
5: for val in VOH(Dom[var]) do
6: for var2 in N[var] do
7: val2← Partial assignment[var2]
8: if constraints(var,val,var2,val2) then
9: Partial assignment[var]← val

10: if in f (var,val,Partial assignment) then
11: result ←BacktrackingSearch (Partial assignment,

V , C, Dom, N, V SH, VOH, in f )
12: end if
13: if result is not None then
14: return result
15: end if
16: end if
17: end for
18: return None
19: end for
20: end for

4.1 Neighbors and Domains Pruning

Neighbors Pruning: The complexity of the backtrack-
ing search depends on the number of variables, con-
straints, and values of the largest domain. However,
as explained before, instantiating a variable implies a
consistency verification with respect to all constraints.
In practice, this comes to a pairwise comparison be-
tween each non-instantiated variable and all the other
variables concerned by the same constraint (neigh-
bors).
To overcome the pairwise comparison, we propose
a pruned list of neighbors. To do this, for each IC,
we extract a non-redundant list of ”n”-uplets (For in-
stance (35233, AL)) with ”n” the number of attributes
of the IC. This means that the comparison will be
done only with one occurrence of the ”n”-uplets in-
stead of all of them, which avoids the comparison
with the same data combination multiple times. The
list of neighbors is constructed then, by selecting vari-
ables referring to cells of the first appearance of the
”n”-uplet in data. If a variable corresponds to an at-
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tribute participating in multiple constraints, neighbors
are selected considering all these constraints.
Domains Pruning: A possible way to initialize vari-
ables’ domains is to select all values of the attribute’s
domain that the concerned variable refers to. To avoid
the exponential time complexity, we use the list of
possible repairs. This allows us to narrow down the
number of values to test before finding the right re-
pair and consequently, reducing the repair time.

4.2 Variables Ordering Technique to
Improve the Repair Efficiency

As explained above, when the backtracking search
algorithm is used to solve a CSP, variable selection
heuristics and value ordering heuristics are usually
used. However, the use of the existing heuristics is
sometimes time consuming. Since our problem has
a high number of variables, we propose another way
to order them. The idea behind is to use conflict score
(c fF ) used for FD ordering (Chiang and Miller, 2011).
The conflict score c fF reflects the conflicts that a con-
straint F has with other constraints based on the num-
ber of common attributes between them. Instead of
calculating the c fF score for constraints ordering, we
propose to use it also for attribute ordering. Indeed,
variables can be grouped using the attributes that they
refer to, so instead of having n∗m variables to order,
we just define an order on the ”m” groups, each one
having ”n” variables. The selection of variables in-
side groups can be done randomly, since they share
the same constraints, the accuracy of repairs won’t be
affected. The selection is done as follows:
1. The constraint with the highest c fF is chosen first.

2. The most overlapping attributes of the chosen IC
are selected in descending order.

3. Two attributes having the same overlap level can
be selected randomly if they belong to different
ICs; otherwise, the LHS attribute is selected first.

4. The process is repeated for all other ICs by choos-
ing only attributes that were not selected yet.

5. Variables belonging to the same attribute are re-
paired in a random order or in a specific order us-
ing a dedicated heuristic.

Example 4. Consider the previously used FDs
and the annotated tuple t5:(tagi, BIRMINGHAM, AL,
35235, tag j). Repairing ProviderNumber first, can be
difficult and may take time. If ‘10018’ is selected tin
he first place, a backtrack is triggered when we look
for repairs to t5[PhoneNumber]Ṫhis happens because
the only value that respects FD3 is ‘2053258100’ but
it violates FD2 since the ZIPCode value is 35235.

By ordering the attributes the way we propose, we
find that c fF(FD2) > c fF(FD1) > c fF(FD3). The
order of attributes should be like : PhoneNumber,
ZIPcode, State, ProviderNumber, City. The Pho-
neNumber value is chosen first with no ambiguity as
only 2058383122 is accepted. The ProviderNumber
value will be then updated to ‘10011’ and the error
will be corrected.

5 EXPERIMENTAL STUDY

In our experimental study, we evaluate the efficiency
and the effectiveness of our solution. We use Hospi-
tal, a real-world dataset on health-care providers that
contains 100k records. Errors from the active domain
were generated on all attributes covered by the FDs
used in the previous examples (FD1, FD2, and FD3).
Our experiments aim to: (1) Evaluate the effective-
ness of CSPBasedRepair algorithm when varying the
error rate and the dataset size, (2) Study the impact
that the error rate and the dataset size have on the effi-
ciency of the algorithm, (3) Study the impact that our
optimizations have on the efficiency of the algorithm
and the complexity of the problem, (4) Compare our
results with some existing solutions.

5.1 Effectiveness

(a) Varying the Noise Rate and the Size of the
Dataset.
To evaluate the repair accuracy of CSP-DC, we
used 20k records of the Hospital dataset and in-
jected different error rates. Results illustrated in
Figure 3a show that the F1 score is stable and
higher than 99.8%. This is due to the good au-
tomatic repairs and the user intervention in the
first repair phase as well as the instantiation of the
annotated cells by their correct values using the
CSPbasedRepair algorithm.
Note that CSPBasedRepair returns consistent re-
pairs but in some cases, it is not possible to
achieve a 100% clean repairs. This happens when
dealing with some special cases difficult to handle
even by users (see Example 6).

Example 5. Consider the following tuples ex-
tracted from the used Hospital dataset: ti (50008,
SAN FRANCISCO, CA, 94115, 4156006000),
t j (50047, SAN FRANCISCO, CA, 94115,
4156006000), and tk (10018, SAN FRANCISCO,
CA, 94115, 4156006000). To repair this vi-
olation, two possible repairs are returned for
tk[ProviderNumber] 50008,50047.)İn this case,
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(a) Hospital (2% - 10%) (b) Hospital (20k-100k)

Figure 3: Accuracy when varying the noise rate and the dataset size.

both values guarantee the consistency and there is
no way to identify the good repair, especially that
tuples share the same ZIPCode and State values,
therefore, the F1 score may not reach 100%.

To study the impact of the dataset size on the ef-
fectiveness of repairs, we fixed the noise rate at
1% and varied the dataset size from 20k to 100k,
Figure 3b show that the F1 score is higher than
99% with a 100% precision all the time. It is clear
that our repair algorithm is not affected by the in-
crease of the dataset size as it depends on the pos-
sible repairs extracted in the previous step.

(b) Studying the Degree of User Intervention.
In this experiments, we used 20k records and var-
ied the error rate from 2% to 10%. The Figure 4
shows that when the error rate is lower than 4%,
100% of the dirty cells are repaired automatically.
The user intervention rate increases slightly when
increasing the error rate, which was expected be-
cause the more noise we have, the more diffi-
cult it becomes to find repairs. Despite the in-
crease of human involvement, it didn’t go beyond
0.08% even when the error rate was rather high
(10%), which means that only 8 cells were man-
ually repaired. On the other hand, about 34%
of the dirty cells were repaired automatically via
CSPBasedRepair instead of repairing them semi-
automatically.

Figure 4: User intervention when varying the dataset size.

5.2 Efficiency and Run-Time

5.2.1 Run-Time Results

In Figure 5, we report the run-time results when vary-
ing: 1) the error rate on 20k records and 2) the dataset
size from 20k to 100k with the error rate fixed at 1%.
The Figure 5 illustrates the efficiency of CSPBase-
dRepair. Since the algorithm is executed after a first
cleaning phase, the initial error rate does not represent
the rate of cells to repair.
Our experiments are run on a 64bit AMD Ryzen 7
5800H and 32GB RAM. As the CSPBasedRepair can
be executed in parallel, we used 16 CPU threads for
its execution.
Results illustrated in Figure 5a and Figure 5b show
that our algorithm is fast. We observe a linear curve
when varying the error rate or the dataset size. This
is due to our optimizations as well as the fact that the
algorithm is designed to be executed in parallel.

5.2.2 Optimization Impact on Run-Time

To study the impact of the domains and neighbors
pruning as well as our variables ordering on the ef-
ficiency, we varied the dataset size from 5k to 20k
and fixed error rate at 1%. We consider three com-
binations: (1) CSPBasedRepair with the pruning pro-
cess and our proposed variables ordering technique.
(2) CSPBasedRepair and variables ordering technique
but without the pruning process. (3) CSPBasedRepair
without the pruning process nor the variables ordering
technique (i.e., random selection). As illustrated in
Figure 6, using our optimizations allowed us to accel-
erate the repair process. Indeed, when the dataset size
reaches 20k our repair time is 300 times faster than the
repair without the pruning and 1500 times faster than
the repair without the pruning nor the variables order-
ing. In other words the pruning process and the vari-
ables ordering allowed us to reduce the repair time by
more than 21% and 78% respectively (i.e, 99% when
used together). We also notice that the more data we
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(a) Noise (b) Size

Figure 5: Run-time results.

Figure 6: Optimizations impact on the run-time.

have, the larger the gap between the curves becomes,
which means that our optimizations helped to reduce
the complexity of the problem. We explain this by
the fact that domain pruning allowed us to reduce the
search space, neighbor pruning reduced the number
of comparisons between variables by selecting as few
neighbors as possible, and variable ordering helped us
to converge quickly to the solution by avoiding dead
ends and thus backtracks.

5.3 Comparison to Baselines

We compared the accuracy of the repair process of
CSP-DC and Baran (Mahdavi and Abedjan, 2020)
a recent data cleaning system using one of AI tech-
niques (transfer learning). We used a sample of 20k
records from the Hospital dataset and verified the er-
ror rate to assess and compare its impact on both so-
lutions. As Baran may return different results in each
run, ten runs were averaged to calculate the metrics.
As shown in Table 1, CSP-DC performed better than
Baran in both cases. Indeed, we achieved 100% accu-
rate repairs and resolved all violations which is due
to: 1) The high quality repairs applied before the
CSPBasedRepair. 2) The strength of CSP formula-
tion which allowed us to apply 100% consistent and
accurate repairs as it considers all constraints at the
same time when looking for a possible update. Baran
on the other hand had an unexpected behaviour as it

achieved a higher F1 score when the error rate was
lower. This also means that Baran was not nega-
tively affected by the error rate because Hospital is a
context-rich dataset and Baran makes use of the con-
textual information available in the dataset which al-
lows it to exploit the remaining trustworthy data. Al-
though Baran returned a rather high F1 score, the pre-
cision scores show that about 17% (resp. 7.5%) of
the data were not correctly updated when the error
rate is 1% (resp. 10%). This could be explained by
the high number of possible fixes returned by its dif-
ferent models interacting holistically, which makes it
difficult to choose the good repair value. Also, Baran
is a general cleaning system, it looks for repairs to
multiple types of errors rather than focusing on im-
proving the data consistency, consequently, some vi-
olations may not be repaired correctly.

Table 1: Comparing the repair accuracy of CSP-DC and
Baran.

E System P R F1

1% CSP-DC 1.0 1.0 1.0
Baran 0.83 0.83 0.83

10% CSP-DC 1.0 1.0 1.0
Baran 0.92 0.92 0.92

We study effectiveness and run-time results of the
CSPBasedRepair algorithm (CSP-BR) when using
our proposed variables ordering technique compared
to its performances when using: a random selection
or the MRV (Minimum Remaining Value) heuristic
as well as filtering strategies : Forward checking (FC)
and two optimized versions of Arc-consistency: AC3
and AC4. As MRV performs better in a sequential ex-
ecution, all algorithms were executed in a sequential
manner for a fair comparison. Note that the heuris-
tic and filtering strategies are used with the CSPBase-
dRepair and after the domains and neighbors prun-
ing. The reported time represents the repair search
time without the problems’ Initialization (which took
at most 5 seconds).
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(a) MRV and FC impact on the runtime. (b) AC3 and AC4 impact on the runtime.

Figure 7: Variables ordering and Filtering strategies impact on the run-time.

Table 2, reports the F1 score, the number of back-
tracks (BT), and the run-time results. We used 10k
records and injected 1% errors from its domain. Re-
sults show that CSPBasedRepair not only performs
as well as when using MRV and filtering strategies
but also is at least 3 times faster. Thanks to our good
variable ordering, the purpose of avoiding dead ends
was better achieved by our solution (0 backtracks)
compared to filtering strategies and MRV which back-
tracked 217 times.

Table 2: Impact of heuristics and filtering algorithms on the
number of backtracks and the run-time.

CSP-BR Rand MRV FC AC4 AC3
F1 1.0 1.0 1.0 1.0 1.0 1.0
BT 0 39 217 39 34 39
T 3.7 10.1 12.0 10.3 884 4747

To assess the impact of the dataset size on the run-
time and the complexity of the problem, we injected
1% domain errors and varied the size of the hospi-
tal dataset from 4k to 10k. We didn’t go beyond 10k
because MRV, AC3 and AC4 were taking too long
and did not terminate repairing 20k records within 24
hours. For a better visualization of the curves, we re-
port the run-time of AC3 and AC4 in a separate figure
(Figure 7b).
Figure 7a shows that our sequential version is also
fast, the larger the dataset is, the larger the gap be-
tween curves becomes. Indeed, when the dataset size
is small (4k and 6k), we notice that the repair time
when using MRV and FC is almost the same com-
pared to CSPBasedRepair when using our variables
ordering strategy. However, once dealing with larger
datasets, their run-time increases considerably. The
same phenomena is noticed with the random variables
selection.
Filtering the domains aims to reduce the research
space and converge rapidly toward the solution. Un-
fortunately, their complexity significantly affected the

run-time, especially AC3 and AC4 (Figure 7b). This
is due to the fact that for each variable’s value, con-
straints are verified in order to eliminate values that
don’t satisfy at least one of them. As our problem is
composed of a high number of variables with large
domains, the complexity of the problem increases
when using such a filtering strategy.
Since our solution is parallelizable, we reported the
parallel run-time Figure 7a. We notice that when
the dataset is small the parallel version of CSP-
BasedRepair was slower than most of configurations.
However, as the size of the dataset increases, it out-
performs all the competing baselines and the run-
time difference becomes significant when reaching
10k records. We also notice that the use of parallel
execution allowed us to have a linear curve in contrast
to the sequential one.

6 RELATED WORK

Existing constraint-based data cleaning approaches
have been focusing on finding updates that minimally
change original data and satisfy a set of ICs (Xu Chu
et al., 2013), (Geerts et al., 2013), (Dallachiesa et al.,
2013), (Khayyat et al., 2015), etc. However, the min-
imal repair doesn’t guarantee the accuracy of repairs
nor the consistency of data especially, when unveri-
fied fixes are applied (Fan et al., 2012). To overcome
these problems, we automatically repair only easy re-
pair cases. We also prefer to use one of the exist-
ing repair algorithms that exploits external data like
master data and knowledge bases to return relevant
fixes (Chu et al., 2015), (Yakout et al., 2011), (Geerts
et al., 2013). In order to improve the repair quality,
users have been involved in the cleaning process to
choose a solution among multiple ones (Yakout et al.,
2011), to propose repairs for marked cells (Geerts
et al., 2013), to give feedbacks on proposed modifica-
tions (Yakout et al., 2011) or for crowdsourcing (Chu
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et al., 2015). In our work, the user is involved to clean
only dirty data, without any automatically generated
repairs. The user intervention in this case, guarantees
the consistency of data as it resolves all the remaining
violations with no proposed possible fixes.
AI techniques have been widely used for data clean-
ing (Rekatsinas et al., 2017), (Konda et al., 2016),
(Yakout et al., 2011), (Krishnan et al., 2017),
(Volkovs et al., 2014). Some of them, use machine
learning to generate automatic repairs (Yakout et al.,
2011), (Mayfield et al., 2010) and/or leverage users
feedback using active/reinforcement learning (Yakout
et al., 2011), (Berti-Equille, 2019), (Gokhale et al.,
2014).Others learn from probabilities extracted from
data to predict repairs (Rekatsinas et al., 2017), (Yak-
out et al., 2011). In our work we exploit AI techniques
by formulating our problem as a CSP. We leverage
possible repairs returned automatically by a repair al-
gorithm to choose values that guarantee data consis-
tency.

7 CONCLUSION

In this work, we proposed a new data cleaning solu-
tion which makes use of the strength of CSP formu-
lation to ensure data consistency and accuracy in a
fully automatic way, while also allowing human in-
tervention when necessary. For high quality repairs,
we used QDflows as it leverages knowledge bases to
perform automatic repairs when possible, or generate
possible repairs otherwise. To ensure the consistency
in this step, we enable user intervention to manually
repair violations with no possible fixes. We also allow
multiple cleaning iterations to repair new eventual vi-
olations. In order to handle ambiguous repair cases,
we annotate the involved cells and collect their possi-
ble repairs generated previously, a CSP solving algo-
rithm is then used for a holistic repair. For optimizing
the repair search, we propose a new variable selection
technique that allows us to reach the solution quickly
and avoid dead ends. Our experiments show promis-
ing results in improving repair accuracy and data con-
sistency, achieving a F1 score higher than 99% while
minimizing human efforts (less than 0.1% for 10% er-
ror rate). They also show that our optimizations and
the proposed variable ordering technique improve the
efficiency of the backtracking search by more than
99.9% and allow it to repair data in a linear time.
Future works may focus on: proposing a new data
cleaning approach that provides automatic and con-
sistent repairs before using the CSPBasedRepair, han-
dling larger datasets by using a Big Data processing
tool, and automatically discover quality rules from

dirty data when they are not available.
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