
MRNN: A Multi-Resolution Neural Network with Duplex Attention for
Deep Ad-Hoc Retrieval

Tolgahan Cakaloglu1,2, Xiaowei Xu2 and Roshith Raghavan3

1Walmart Labs, Dallas, Texas, U.S.A.
2University of Arkansas, Little Rock, Arkansas, U.S.A.

3CVS Health, Boston, Massachussets, U.S.A.

Keywords: Deep Learning, Ad-Hoc Retrieval, Learning Representations, Ranking, Text Matching.

Abstract: The primary goal of ad-hoc retrieval is to find relevant documents satisfying the information need posted by
a natural language query. It requires a good understanding of the query and all the documents in a corpus,
which is difficult because the meaning of natural language texts depends on the context, syntax, and semantics.
Recently deep neural networks have been used to rank search results in response to a query. In this paper, we
devise a multi-resolution neural network (MRNN) to leverage the whole hierarchy of representations for ad-hoc
retrieval. The proposed MRNN model is capable of deriving a representation that integrates representations
of different levels of abstraction from all the layers of the learned hierarchical representation. Moreover, a
duplex attention component is designed to refine the multi-resolution representation so that an optimal context
for matching the query and document can be determined. More specifically the first attention mechanism
determines optimal context from the learned multi-resolution representation for the query and document. The
latter attention mechanism aims to fine-tune the representation so that the query and the relevant document are
closer in proximity. The empirical study shows that MRNN with the duplex attention is significantly superior to
existing models used for ad-hoc retrieval on benchmark datasets including SQuAD, WikiQA, QUASAR, and
TrecQA.

1 INTRODUCTION

Ad-hoc retrieval (Voorhees and Harman, 2005) allows
a user to specify the information need using a natu-
ral language query, which is instrumental for many
applications including question answering and infor-
mation retrieval. Traditional approach uses simple sta-
tistical features such as term frequency and document
frequency to represent the query and the document
(Salton and McGill, 1986). The query and documents
are matched by using some similarity measure like co-
sine similarity. However, this approach is less effective
because the representation doesn’t consider the rich
context of texts.

Recently deep neural networks have been used to
rank search results in response to a query for ad-hoc
retrieval (Palangi et al., 2016) (McDonald et al., 2018).
The fundamental idea of deep learning is that a hierar-
chical representation is learned automatically, where
each layer is a representation that is a high-level ab-
straction of the representation from the previous layer.
The most abstract representation from the last layer

of the hierarchy is then used for the machine learning
task. However, an abstract representation from a single
layer or only a few layers may not be able to capture
the semantic relationship of concepts across different
levels of an ontology. A text may contain concepts
from different levels of the ontology. For example, ”a
banana is a fruit” where ”fruit” is a high level concept
comparing to ”banana”.

In this paper, we present a new Multi-Resolution
Neural Network for ad-hoc retrieval, called MRNN,
which leverages representations across all levels of
abstractions in the learned hierarchical representation.
The learned representation achieves a multi-resolution
effect that can represent concepts and their relation-
ships across all the levels. As illustrated in Figure 1 the
proposed model consists of the following components:

• Multi-Resolution Feature Maps, which transforms
the input query and document into a multi-
resolution representation.

• Duplex Attention, which implements two attention
mechanisms to refine the multi-resolution repre-
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sentation. The first attention mechanism deter-
mines an optimal context based on n-Grams from
the learned multi-resolution representation for the
query and document. The latter attention mecha-
nism aims to fine-tune the representation so that
the query and the relevant document are closer in
proximity.

• Aggregation, which calculates the similarity be-
tween the pair of query and document through
aggregation of the duplex attention as the input to
the loss function.

• Distance Metric Loss, which is a loss function used
to train the model by minimizing the loss.

Figure 1: Overall training flow diagram for the proposed
Multi-Resolution Neural Network with a query Q, a positive
document D+ and a negative document D−.

The main contribution of the paper is as follows:

• We first propose a new deep learning model
MRNN that leverages representations across all
levels of abstraction from the learned hierarchical
representation for ad-hoc retrieval.

• A duplex attention mechanism is designed to re-
fine the multi-resolution so that an optimal match-
ing of the query and document can be achieved.
More specifically, the first mechanism determines
a proper context, and the latter fine-tunes the rep-
resentation by considering the interplay between
the query and document.

• The proposed model significantly outperforms ex-
isting models for ad-hoc retrieval on major bench-
mark datasets.

The rest of the paper is organized as follows. First,
we review recent advances in ad-hoc retrieval in Sec-
tion 2. In Section 3 we describe the details of the
proposed model. An empirical study to compare the
proposed method to the existing approaches is con-
ducted. The experiment and the result are reported in
Section 4 and Section 5 respectively. Finally, we con-
clude the paper with some future research in Section 6.

2 RELATED WORK

The last few decades has seen increased adoption of
machine learning for information retrieval (IR) tasks.

More recently, deep learning techniques (Lu and
Li, 2013)(Hu et al., 2014)(Palangi et al., 2016)(Guo
et al., 2016)(Hui et al., 2017) have successfully been
applied to IR, or words document relevance ranking
also known as ad-hoc retrieval (Voorhees and Har-
man, 2005). In the ad-hoc retrieval task, the number
of words in documents are generally greater than the
number of words in queries and some might not even
be in natural language form. This prevents aforemen-
tioned methods from other tasks that focus on pairs
of short contents making them unsuitable for the task.
Document ranking methods can be defined under the
two titles: separation-oriented such as (Palangi et al.,
2016) and interaction-oriented such as (McDonald
et al., 2018). In the separation-oriented, a query and
a document representations are generated separately.
At the final step, interactions of these documents are
getting calculated through dot-product whereby the
result indicates relevance. In the interaction-oriented
approach, specific encoding between the query and
document pairs are induced which satisfies the exact
matching as well as similarity matching that constitute
the most important conditions for ad-hoc retrieval.

In the area of machine reading-style question an-
swering (Rajpurkar et al., 2016) (Yang et al., 2015)
(Dhingra et al., 2017) (Wang et al., 2007), the system
needs to find the answer in the given corresponding
document or context. The models have to combine in-
formation retrieval and machine reading. Note that we
do not benchmark the quality of the extraction phase,
therefore we do not study extracting the answer from
the retrieved document, but compare the quality of
retrieval methods, and the feasibility of learning spe-
cialized neural models for retrieval purposes. DrQA
(Chen et al., 2017a) is built on top of two components:
a Document Retriever and a Document Reader. The
Document Retriever is a TF-IDF (Salton and McGill,
1986) retrieval system built upon Wikipedia corpus.
Whereas, ConvRR (Cakaloglu and Xu, 2019) is a con-
volutional residual retrieval network that focuses on
achieving better retrieval performance by employing
a hard triplet mining. WordCnt, WgtWordCnt, PV,
PV+Cnt, and CNN+Cnt are the models derived from
the following study (Yang et al., 2015).Word Count
method counts the number of non-stopwords in the
question that also occur in the answer sentence, and
Weighted Word Count re-weights the counts by the
IDF values of the question words. PV represents the
paragraph vector (Le and Mikolov, 2014) which is the
similarity score between a question vector and doc-
ument vector. CNN+Cnt is built on top of a bigram
CNN (Yu et al., 2014) model with average pooling.
PV+Cnt and CNN+Cnt are trained using a logistic re-
gression classifier. QA-LSTM (Tan et al., 2016) is a
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biLSTM based model where the final representations
of question and document are taken by max or mean
pooling over all the hidden vectors. ABCNN (Yin
et al., 2016) is an attention-based convolution neu-
ral network model that employs an attention feature
matrix to influence convolutions to optimize the task.
RNN-POA (Chen et al., 2017b) is positional attention
based RNN model that incorporates the positional con-
tent of the question words into the documents' attentive
representations. SR2: Simple Ranker-Reader, SR3:
Reinforced Ranker-Reader (Wang et al., 2018b) are
proposed to improve the performance of the machine
reading-style question answering tasks. They utilized
the Apache Lucene-based search engine and a deep
neural network ranker that re-ranks the documents re-
trieved by the search engine incorporated by a machine
reader. The latter model is trained using reinforcement
learning. The results derived from the models show
that the neural network ranker can learn to rank the
documents based on semantic similarity with the ques-
tion. InferSent Ranker (Conneau et al., 2017)(Htut
et al., 2018) is used to produce distributed represen-
tations for question and documents and, then, the in-
put feature representation is built by concatenating
the question representation, document representations,
their difference, and their element-wise product. On
receiving that input feature representation, the sim-
ilarity score is calculated using a feed-forward neu-
ral network. Relation-Networks (RN) Ranker (San-
toro et al., 2017)(Htut et al., 2018), further, calculates
the relevance or local interactions between words in
the question and paragraph. Thus, this model is built
to interpret the relation between question-document
pairs. Tree Edit Model (Heilman and Smith, 2010)
is represented as sequences of tree transformations
involving complex reordering phenomena and demon-
strate a method for modeling pairs of semantically
related contexts. They utilize a tree kernel in a greedy
search routine to extract sequences of edits and use
them in a logistic regression model to classify them.
LSTM (Wang and Nyberg, 2015) uses a stacked bidi-
rectional Long-Short Term Memory (BiLSTM) net-
work to consecutively extract words from question
and answer documents and then outputs their rele-
vance scores. CNN (Severyn and Moschitti, 2015) is
based on a convolutional neural network architecture
for re-ranking pairs of short texts, that learns the opti-
mal representation of document pairs and a similarity
function to relate them. AP-LSTM (Tan et al., 2016)
is developed considering hybrid models that handle
the documents using both convolutional and recurrent
neural networks incorporating attention mechanism
to relate question and answer documents. AP-LSTM,
AP-CNN (dos Santos et al., 2016) are based on two-

way attention mechanisms for discriminative model
(CNN, RNN, LSTM) training. AP allows the pool-
ing layer to be aware of the input pair, in a way that
information from the two can impact each other’s rep-
resentations. The model learns a similarity measure
over projected n-Grams of the pair, and generate the
attention representation for each input to lead the pool-
ing. Self-LSTM, Multihop-Sequential-LSTM (Tran
and Niederée, 2018) are developed to find the relation-
ship between question and answer documents captured
by attention. These models generate multiple repre-
sentations that target different parts of the question.
Additionally, they utilize sequential attention mecha-
nism which uses context information for computing
context-aware attention weights. The proposed Multi-
Resolution Neural Network (MRNN) model belongs
to this class of models of ad-hoc retrieval, but further
incorporates the context of boosted interaction signals.

3 PROPOSED APPROACH

3.1 Overview

In this section, we introduce the proposed model called
Multi-Resolution Neural Network as demonstrated in
Figure 1. MRNN leverages the document relevance
ranking and is composed of two major components:
the initial component is responsible for generating
n-Gram feature maps, the latter one matches those
feature chains.

The model begins with a series of word inputs
e1,e2,e3, ....,eh, that can establish a phrase, a sentence,
a paragraph or a document. The model, then, builds
Multi-Resolution Feature Maps through densely con-
nected n-Gram blocks. To conscientiously extract most
useful features for the target retrieval and matching
tasks, a Duplex Attention component is introduced.
The duplex attention component consists of two sub at-
tention components that are called Multi-Resolution n-
Gram Attention and Document Aware Query Attention
respectively. The Multi-Resolution n-Gram Attention
is responsible for reevaluating these Multi-Resolution
feature maps while Document Aware Query Attention
emphasizes matching those features between contex-
tualized document and query to determine if they are
similar or not. The final output is, then, used to im-
prove the matching and retrieval performances.

3.2 Multi-Resolution Feature Maps

The first component called Multi-Resolution Feature
Maps of the proposed model is shown in Figure 2. The
component begins with a series of word inputs that
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are initialized using one of the pre-trained embedding
models. Let, ei ∈ Rw be the w-dimensional embed-
ding vector of i-th word of the input text. Then, a
matrix that is composed of all words of the input text
is represented as follows:

E = [e1,e2, · · · ,eh]h×w (1)

where E ∈ Rh×w be the h×w-dimensional matrix of
the input text and h denotes the number of words in a
given text. Embedded text, then, is fed to first n-Gram
block of the component.

3.2.1 n-Gram Blocks

A n-Gram block is representing five cascaded opera-
tions: a convolution (CONV), a batch normalization
(BN)(Ioffe and Szegedy, 2015), a parametric rectified
linear unit (PReLU)(He et al., 2015), pooling opera-
tions (POOLS), and a scale unit SU. As the input text
is represented with the matrix E, the output represen-
tations of each n-Gram block within the component is
denoted as below:

Gn = [g1
n,g

2
n, · · · ,gh

n]h×s (2)

where s denotes the dimension of the transformed fea-
ture representation, n represents the index of an n-
Gram block, and a total number of n-Gram blocks are
labeled as N. Note that, while upstream n-Gram blocks
are defined to emphasize the blocks that are located
above the current block and close to the input layers of
the network while the downstream blocks are located
below the current block and close to the output layers
of the network. In other words, feature maps derived
from upstream blocks are associated with smaller n-
Grams (unigram, bigram, and etc), on the other hand,
downstream blocks are associated with larger n-Grams
(6-grams, 7-grams, and etc) by reflecting on the feature
maps derived from upstream n-Gram blocks.

Each n-Gram block utilizes fgram(·, ·, ·) function to
generate Gn ∈ Rh×s representations. fgram(·, ·, ·) can
be described as the below:

Gn = fgram(UB,ws,s) (3)

where UB denotes representations generated from up-
stream n-Gram blocks. ws, s represents the window
size and the dimension of the transformed feature rep-
resentation respectively. The definition of UB is con-
ditioned to the index of the current n-Gram block.

UB =

{
E, if n = 1
[G1,G2, · · · ,Gn−1], otherwise

where [G1,G2, · · · ,Gn−1] shows the concatenation
of the transformed representations derived from up-
stream n-Gram blocks (1 ≤ n − 1), in other words,
densely connected upstream n-Gram blocks.

3.2.2 Densely Connected Blocks

Conventional models that are designed by placing con-
volution blocks consecutively, aim to extract hierar-
chical feature representations. Specifically, for text-
oriented task scenarios, convolutions can be evaluated
as to derive n-Gram features over a word sequence. Al-
though traditional connections of convolution blocks
extract hierarchical feature representations, they can
not fulfill the requirements of natural languages for the
following reasons:

• Traditional convolution based networks exploit the
kernels of a constant size where a constant size
window slides across all text to generate feature
representations (Wang et al., 2017). This is called
constant size n-Gram representations and it is not
able to gather flexible size of n-Gram represen-
tations that are needed for better understanding
of the text that depends on context, syntax, and
semantics.

• In order to handle the extraction of flexible size n-
Gram representations, one can employ the kernels
with various window sizes, but another issue is
fired up with such settings: What would be the
right architecture of using different kernel sizes? In
other terms, how much expansion does the network
require for different kernel sizes to produce the
best features? It would be a huge search space for
the greedy search due to an exponential number of
parameter combinations.

• Although the kernels with the variety of window
sizes would still be seen as a better or an advanced
architecture, it actually does not utilize the inter-
play between the representations derived from the
different kernel size, since this type of approach
consists of different independent parallel networks.

Therefore, we propose MRNN for ad-hoc retrieval,
which leverages representations across all levels of
abstractions in the learned hierarchical representation.
The learned representation achieves a multi-resolution
effect that can represent concepts and their relation-
ship across all the levels of deep architecture. In order
to consider all the resolutions (mixture of representa-
tions from adaptive n-Grams such that feature maps
of words or short phrases from the upstream blocks
affect the downstream blocks to compose feature maps
for longer context) of the representations throughout
the proposed network, we first employ dense connec-
tions between each n-Gram blocks inspired by ideas
from computer vision (Huang et al., 2017) and text
classifications (Kim et al., 2018) (Wang et al., 2018a).

fgram(·, ·, ·) has input parameters of upstream block
representations UB, window size ws and, dimen-
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Figure 2: Multi-Resolution Feature Maps Component.

sion of the transformed representations s. Specif-
ically, fgram(·, ·, ·) computes the teachable weights
Wn ∈ Rs×ws×s by using the cascading aforementioned
operations: CONV, BN, PReLU, POOLS, and SU. The
teachable weight tensor Wn is composed of s filters
where each of them has a matrix ∈ Rws×s, convolving
ws contiguous vectors. It is important to emphasize
that in order to transform embedding dimension w to
s, in the case where n = 1 or in other words UB = E,
we employ s filters where each of them has a matrix
∈R(ws=1)×w in the first phase. Additionally to prevent
the output size of the feature maps being different after
each n-Gram block, we use padding and pooling oper-
ations. We, further, apply a scalar unit to the feature
map. That scalar sc is also teachable and it weights the
feature map of the current n-th n-Gram block to decide
how much the current block contributes to the down-
stream n-Gram blocks. Likewise, for the case where
UB = [G1,G2, · · · ,Gn−1] or, in other words, where
n > 1, fgram(·, ·, ·) computes the teachable weights
Wn ∈ R(n−1)×s×ws×s by using the same cascaded op-
erations in the block. After considering all n-Gram
blocks, the multi-resolution feature maps tensor is rep-
resented as follows: G = [G1,G2, · · · ,GN ] ∈ RN×h×s

and G consists of h matrices where each of them is rep-
resenting the feature map matrix Gn from each n-Gram
block.

3.3 Duplex Attention Component

Duplex attention component is one of the most im-
portant components of our proposed network. Since
attention (Vaswani et al., 2017) evolves into an effec-
tive component within the neural network for extract-
ing useful information, which achieves a remarkable
result for many machine learning tasks, we compose
this component with two sub attention components
that are called Multi-Resolution n-Gram Attention and
Document Aware Query Attention respectively. The
multi-resolution feature maps tensors of each query(q)-
document(d) pair are denoted as Gq - Gd. Hence, the
Multi-Resolution n-Gram Attention is responsible for

reevaluating Gq, and Gd feature maps while Docu-
ment Aware Query Attention emphasizes matching
those features between contextualized document and
query to determine if they are similar or not.

3.3.1 Multi-Resolution n-Gram Attention

The multi-resolution feature maps tensor G (Gq or
Gd) contains feature maps from all n-Gram blocks.
More specifically, Gq = [Gq1,Gq2, · · · ,GqN ] ∈
RN×hq×s, and Gd = [Gd1,Gd2, · · · ,GdN ] ∈ RN×hd×s,
the number of words in the query and the document
are denoted as hq and hd respectively. Although the
network has rich features at this step, some of those
features still need to be pruned. In order to prune
them conscientiously for the next component, we intro-
duce a multi-resolution n-Gram attention component
as shown in Figure 3. The multi-resolution n-Gram
attention component has two consecutive functions
called transformer ft(·) and conductor fc(·, ·) respec-
tively. For the sake of simplicity, we explain the func-
tions by taking the multi-resolution feature maps of
the query (Gq) into consideration.

The transformer ft(·) is a function that is formal-
ized as below:

Tq = ft(Gq) (4)
where Tq ∈ RN×hq is a matrix of scalar adjusters.
Since we know that Gqn = [gq1

n,gq2
n, · · · ,gqhq

n ]hq×s

and each gqi
n represents the s dimensional feature rep-

resentation in the i-th location of a query at n-th n-
Gram block. Particularly, for each gqi

n feature repre-
sentation, ft(·) calculates the the scalar adjuster vector
tqi:

tqi = [
s

∑
j=1

gqi
1[ j],

s

∑
j=1

gqi
2[ j], · · · ,

s

∑
j=1

gqi
n[ j]] (5)

where tqi ∈ RN is a N-dimensional vector, thus, Tq =
[tq1, tq2, · · · ,
tqhq ] is a matrix of scalar adjusters. The motivation
behind this procedure is that the sum of all the values
in the s-dimensional vector of gqi

n is positioned by
feature importance.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

470



Figure 3: Multi-Resolution n-Gram Attention.

The scalar adjusters matrix Tq and the multi-
resolution feature map tensor of query Gq are, further,
passed to conductor function fc(·, ·) to conduct the
feature maps from variety of n-Gram scales by calcu-
lating attention weights via the softmax block. fc(·, ·)
is described as:

MRAq = fc(Gq,Tq) (6)

where MRAq ∈ Rhq×s is a matrix of multi-resolution
n gram attention vectors. For each scalar vector tqi,
fc(·, ·), first, calculate the attention weights via soft-
max block represented as:

awi = f (tqi) (7)
where f (·) defines the softmax block that is a percep-
tron of the following cascaded operations: fully con-
nected layers (FC), a parametric rectified linear unit
(PReLU), and a softmax operation (SOFT). aw ∈ RN

is an attention weights vector. Thus, representations
of tqi and awi can be shown as:

tqi = [tqi
1, tq

i
2, · · · , tqi

N ]

awi = [awi
1,awi

2, · · · ,awi
N ]

As next steps, fc(·, ·) computes the final multi-
resolution n gram attention vector using the following
equations:

mraqi =
N

∑
j=1

awi
j ·Gqi

j (8)

where mraqi ∈ Rs is a multi-resolution n gram atten-
tion vector of i-th position of a query. The final output
representations of fc(·, ·) is a multi-resolution n gram
attention matrix MRAq that is evaluated as:

MRAq = [mraq1,mraq2, · · · ,mraqhq ] ∈ Rhq×s

Likewise, MRAd ∈ Rhd×s is the multi-resolution
n-Gram attention matrices for document. Both of ma-
trices, then, are passed to next attention component
called Document Aware Query Attention.

3.3.2 Document Aware Query Attention

In order to compute document aware query encod-
ing using attention mechanism, we present Docu-
ment Aware Query Attention component as illustrated
in Figure 4. The component emphasizes matching
features between the multi-resolution n-Gram atten-
tion matrices of query MRAq ∈ Rhq×s and document
MRAd∈Rhd×s pair. The document aware query atten-
tion component has a function called encoder fe(·, ·).

fe(·, ·) is an encoder function that is formalized as
below:

qa = fe(MRAq,MRAd) (9)
where qa ∈ Rhq is a vector of document aware query
encodings generated via attention weights. We, first,
calculate a dot-product attention weights aw′

j for each
position of MRAd relative to mraqi via the softmax
block as follows:

aw′i = f (mraqi • MRAd) (10)

where f (·) defines the softmax block that is a percep-
tron with the same architecture (FCs, PReLU, SOFT).
Note that, dot-products have a larger spectrum than
the similar similarity functions, promising low en-
tropy attention distributions. aw′i ∈Rhd is an attention
weights vector. Thus, representation aw′i can be shown
as:

aw′i = [aw′i
1 ,aw′i

2 , · · · ,aw′i
hd
]

As a next step, we sum the document aware encodings
of the hd-locations, scaled by their attention weights,
to create an attention-based representation saei of doc-
ument representations MRAd from the query repre-
sentation mraqi formulated as below:

saei =
hd

∑
j=1

aw′i
j ·mrad j (11)

The element-wise distance (euclidean) between the
attention-based document representation saei and
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Figure 4: Document Aware Query Attention.

mraqi is, further, calculated and adopted as document
aware query encoding qei ∈Rhq that can be defined as
a document aware query encoding of i-th position of
a query. The final output representations of encoder
fe(·, ·) is a document aware query encoding attention
vector qe that is evaluated as:

qe = [qe1,qe2, · · · ,qehq ] ∈ Rhq

In other words, if the document includes more posi-
tions of mrad j that are very much alike to the position
of mraqi in the query, the document aware query at-
tention component indicates mostly those positions
and, therefore saei will be close to mraqi.

As a final step, we aggregate these similarities qei

via the aggregate component to define the distance of
query-document pair as follows:

dist =
hq

∑
i=1

qei (12)

where dist ∈R is the final distance descriptor between
the query-document pair.

3.4 Distance Metric Loss Function

In order to train the proposed MRNN to perform well
on retrieval and matching tasks, such that it also gen-
eralizes well on unseen data, we specifically utilized
triplet loss function (Schroff et al., 2015) during the
training period as shown in Figure 1 as distance metric
loss. With this setup, the network is encouraged to
reduce distances between positive pairs so that they
are smaller than negative ones. A particular query Q
would be a query anchor close in proximity to a doc-
ument D+ as the positive pair to the same question
than to any document D− as they are positive pairs
to other questions. The key point of the Ltriplet is to
build the correct triplet structure which should meet

the condition of the following equation:

∥Q,D+∥2 +m <∥Q,D−∥2

For each query, the document D+ is selected as:
argmaxD+∥Q,D+∥2 and likewise the hardest docu-
ment D−: argminD−∥Q,D−∥2 to form a triplet. This
triplet selection strategy is called hard triplets mining.

Let T = (Q,D+,D−) be a triplet input. Given
T, the proposed approach computes the distances be-
tween the positive and negative pairs via the proposed
MRNN.

Ltriplet = [∥Q,D+∥2−∥Q,D−∥2 +m]+ (13)

where m > 0 is a scalar value called margin, and ∥·, ·∥2

represents the distance score between two objects.

4 EXPERIMENTS

4.1 Datasets

In order to evaluate our proposed approach, we con-
ducted extensive experiments on four datasets, includ-
ing SQuAD (Rajpurkar et al., 2016), WikiQA (Yang
et al., 2015), QUASAR (Dhingra et al., 2017), and
TrecQA (Wang et al., 2007).

4.1.1 SQuAD

The Stanford Question Answering Dataset (SQuAD)
(Rajpurkar et al., 2016) is a large reading compre-
hension dataset that is built with 100,000+ questions.
Each of these questions is composed by crowd workers
on a set of Wikipedia documents where the answer to
each question is a segment of text from the correspond-
ing reading passage. In other words, the consolidation
of retrieval and extraction tasks are aimed at measuring
the success of the proposed systems.
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4.1.2 WikiQA

The Wikipedia open-domain Question Answering
(WikiQA) (Yang et al., 2015) dataset is collected using
Bing query logs. For each question, clicked Wikipedia
pages (issued by at least 5 unique users) and used sen-
tences in the summary section of Wikipedia page as
the candidates, is further marked on a crowdsourcing
platform. Note that we excluded questions that have
no candidates. Based on training, dev and test subsets,
1,242 questions are used in the experiment.

4.1.3 QUASAR

The Question Answering by Search And Reading
(QUASAR) is a large-scale dataset consisting of
QUASAR-S and QUASAR-T. Each of these datasets
is built to focus on evaluating systems devised to un-
derstand a natural language query, a large corpus of
texts and to extract an answer to the question from
the corpus. Similar to SQuAD QUASAR is primarily
used to measure the success of the proposed systems
for ad-hoc retrieval and extraction tasks. Specifically,
QUASAR-S comprises 37,012 fill-in-the-gaps ques-
tions that are collected from the popular website Stack
Overflow using entity tags. Since our research is not
to address the fill-in-the-gaps questions, we want to
pay attention to the QUASAR-T dataset that fulfills
the requirements of our focused retrieval task. The
QUASAR-T dataset contains 43,012 open-domain
questions collected from various internet sources. The
candidate documents for each question in this dataset
are retrieved from an Apache Lucene based search
engine built on top of the ClueWeb09 dataset (Callan
et al., 2009).

4.1.4 TrecQA

Text Retrieval Conference Question Answering
(TrecQA)(Wang et al., 2007) is a popular benchmark
dataset for question answering. TrecQA dataset is
based on QA track (8-13) of TREC. The dataset con-
sists of factoid questions, each of which has a single
sentence as a candidate answer. In order to make the
comparison parallel to the previous works, we pur-
sue the same strategy they applied where all questions
with only positive or negative answers are excluded.
In total, we end up having 1,295 questions within all
training, dev and test subsets of TrecQA.

The number of queries in each dataset including
their subsets is listed in Table 1.

Table 1: Datasets Statistics: Number of queries in each train,
validation, and test subsets.

DATASET TRAIN VALID. TEST TOTAL

SQUAD 87,599 10,570 HIDDEN 98,169+
WIKIQA 873 126 243 1,242
QUASAR-T 37,012 3,000 3,000 43,012
TRECQA 1,162 65 68 1,295

4.2 Performance Measure

The matching and retrieval tasks aim to improve the
recall@k, the Mean Reciprocal Rank (MRR) and
Mean Average Precision (MAP). The recall@k score
is calculated by selecting the correct pair among all
candidates. Basically, recall@k is defined as the num-
ber of correct documents as listed within top-k returns
out all possible documents. Likewise, MRR and MAP
metrics are also commonly used in information re-
trieval and question answering researches (Manning
et al., 2008).

4.3 Implementation

4.3.1 Input

We adopt the multi-resolution word embedding
(Cakaloglu and Xu, 2019) (Cakaloglu et al., 2022)
using Bert(Devlin et al., 2018), ELMo(Peters et al.,
2018), FastText(Mikolov et al., 2018) for each ques-
tion and document in datasets. We configure the multi-
resolution word embedding stated in (Cakaloglu and
Xu, 2019): fmixture(·, ·, ·, ·) and fensemble(·, ·) configura-
tions are shown in Table 2 and Table 3 respectively.

Table 2: fmixture(·, ·, ·) configuration of the multi-resolution
word embedding.

E wid f m fmix OUT

BERT 0 [ 1
4 , 1

4 , 1
4 , 1

4 ,..,0] conc. X1

ELMO 1 [0, 0, 1] sum X2

FASTTEXT 1 [1] sum X3

Table 3: fensemble(·) configuration of the multi-resolution
word embedding.

X’ u fensemble

{X1 , X2 , X3} [ 1
3 , 1

3 , 1
3 ] concat.

4.3.2 MRNN Training Configuration

The proposed MRNN is implemented with Tensorflow
1.8+ by (Abadi et al., 2015) and trained on NVIDIA
Tesla K40c GPUs. Specifically, the network is trained
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using ADAM optimizer (Kingma and Ba, 2014) with
a batch size of 512. The learning rate is set to 10−4.
Additionally, the weight decay is set to 10−3 to tackle
over-fitting. The triplet loss is, then, chosen as an
objective function with different margins for each of
the datasets. (m = 1: SQuAD, m = 0.8: QUASAR-
T, m = 0.5: {WikiQA ,TrecQA}). We configured 6
n-Gram blocks (N = 6) for SQuAD and QUASAR-T
datasets, and 4 n-Gram blocks (N = 4) for WikiQA
and TrecQA datasets. Last but not least, window size
and transformed feature representation dimension are
set to ws = 3, s = 1024 respectively.

5 RESULTS

We compare our approach with different models pro-
posed by other researchers for each dataset using their
evaluation measures and test subsets.

5.1 SQuAD

The recall@5 result is calculated for SQuAD in or-
der to compare with the document retrieval compo-
nent of the multi-layer recurrent neural network (Chen
et al., 2017a) (DrQA) and the convolutional resid-
ual retrieval network (ConvRR) (Cakaloglu and Xu,
2019)(Cakaloglu et al., 2018). The comparisons are
shown in Table 4.

5.2 WikiQA

WordCnt, WgtWordCnt, and CNN-Cnt are the models
derived from the following initial study (Yang et al.,
2015). On top of the baseline models, the Paragraph
Vector (PV) and PV + Cnt models (tau Yih et al., 2013)
are taken into consideration. We, further, consider
even more advanced models: QA-LSTM (Tan et al.,
2016), Self-LSTM, Multihop-Sequential-LSTM (Tran
and Niederée, 2018), ABCNN (Yin et al., 2016), Rank
MP-CNN (Rao et al., 2016), RNN-POA (Chen et al.,
2017b). In order to compare the proposed model with
the aforementioned models for the WikiQA dataset,
we calculate the Mean Reciprocal Rank (MRR) and
Mean Average Precision (MAP) metrics and all the
results are presented in Table 5.

5.3 QUASAR

BM25 (Robertson and Zaragoza, 2009)(Htut et al.,
2018), SR2: Simple Ranker-Reader, SR3: Reinforced
Ranker-Reader (Wang et al., 2018b), InferSent Ranker
(Conneau et al., 2017)(Htut et al., 2018), convolutional
residual retrieval network (ConvRR) (Cakaloglu and

Xu, 2019), and Relation-Networks (RN) Ranker (San-
toro et al., 2017)(Htut et al., 2018) are the models
that are evaluated using the recall@1, recall@3, and
recall@5. The comparisons are listed in Table 6.

5.4 TrecQA

We compute the Mean Reciprocal Rank (MRR) and
Mean Average Precision (MAP) metrics for the pro-
posed model as well as following models: Tree Edit
Model (Heilman and Smith, 2010), LSTM (Wang and
Nyberg, 2015), CNN (Severyn and Moschitti, 2015),
AP-LSTM (Tan et al., 2016), AP-CNN (dos Santos
et al., 2016), RNN-POA (Chen et al., 2017b), and
Self-LSTM, Multihop-Sequential-LSTM (Tran and
Niederée, 2018). The results are stated in Table 7.

5.5 Evaluation

The result on all benchmark datasets shows that the
proposed MRNN clearly outperforms existing mod-
els. Relation-Networks Ranker is the only model
that achieved a slightly better result for recall@3
and recall@5 on QUASAR-T dataset. The pro-
posed MRNN model however outperforms Relation-
Networks Ranker on recall@1.

Table 4: Performances on SQUAD. recall@k retrieved doc-
uments using the baseline models and the proposed model.

MODEL @5

CONVRR 75.6
DRQA DOCUMENT-RETRIEVAL 77.8

MRNN 80.4

Table 5: Performances on WikiQA. The baseline models and
the proposed model are listed based on the results derived
from MAP and MRR metrics.

MODEL MAP MRR

WORDCOUNT 0.4891 0.4924
WGTWORDCNT 0.5099 0.5132
PV 0.511 0.516
PV + CNT 0.599 0.609
CNN + CNT 0.652 0.6652
QA-LSTM 0.654 0.665
AP-LSTM 0.670 0.684
AP-CNN 0.689 0.696
SELF-LSTM 0.693 0.704
ABCNN 0.692 0.71
RANK MP-CNN 0.701 0.718
RNN-POA 0.721 0.731
MULTIHOP-SEQUENTIAL-LSTM 0.722 0.738

MRNN 0.731 0.745
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Figure 5: For the sample query and document extracted from SQuAD, the visualization of their attention weights that are fired
in the sub attention components of Duplex Attention.

Table 6: Performances on QUASAR-T. recall@k retrieved
documents using the baseline models and the proposed
model.

MODEL @1 @3 @5

BM25 19.7 36.3 44.3
SR2: SIMPLE R-R 28.8 46.4 54.9
INFERSENT RANKER 36.1 52.8 56.7
SR3: REINFORCED R-R 40.3 51.3 54.5
CONVRR 50.67 63.1 67.4
RELATION-NETWORKS R 51.4 68.2 70.3

MRNN 52.8 67.7 69.9

Table 7: Performances on TrecQA. The baseline models and
the proposed model are listed based on the results derived
from MAP and MRR metrics.

MODEL MAP MRR

TREE EDIT MODEL 0.609 0.692
LSTM 0.713 0.791
CNN 0.746 0.808
AP-LSTM 0.753 0.830
AP-CNN 0.753 0.851
SELF-LSTM 0.759 0.830
RNN-POA 0.781 0.851
MULTIHOP-SEQUENTIAL-LSTM 0.813 0.893

MRNN 0.822 0.898

5.6 Visualization and Analysis

The attention visualizations of the duplex attention
component for the sample query and correspond-
ing document extracted from the SQuAD dataset are
shown in Figure 5. When window-size is set to 3
(ws = 3), and the number of n-Gram blocks is set to
6 (N = 6), then each row of Figure 5, a) and b) indi-
cate an attention weight distribution over gqi

n as well
as gdi

n and i is the position of each words in the ma-
trices of the query and document. Hence, Gqn and
Gdn corresponds to feature maps of (2n-1)-gram, e.g.,
Gq1: 1-gram, Gq2:3-gram, ... etc. The proposed
MRNN puts more emphasizes on some segments of
the query and the parts of the document as in the multi-

resolution n-Gram attention. In the document aware
query attention, MRNN gives more attention to addi-
tional segments of the question and also some other
parts of the document that have crucial interactions, as
shown in Figure 5, c).

6 CONCLUSION

Ad-hoc retrieval is an important task for question an-
swering and information retrieval. This paper pro-
poses a new multi-resolution neural network for ad-
hoc retrieval, which is the first model that leverages the
strength of representations of different abstract levels
in the learned hierarchical representation. The pro-
posed model incorporated with a new duplex attention
mechanism can significantly improve the performance
of ad-hoc retrieval as demonstrated by the superior
results in comparison to other existing methods on ma-
jor benchmark datasets. More specifically our study
shows that MRNN with the duplex attention improves
gain on existing model performances over different
evaluation metrics and benchmark datasets by a range
of 0.5% to 1.5% .In the future, we want to apply the
proposed model to other areas including pattern recog-
nition and computer vision.
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