
Coevolving Hexapod Legs to Generate Tripod Gaits

Cameron L. Angliss and Gary B. Parker
Connecticut College, New London, CT, U.S.A.

Keywords: Hexapod, Genetic Algorithm, Neural Network, Multiagent, Coevolve, Learning, Simulation.

Abstract: This research is the first step in new research that is investigating the use of an extensive neural network (NN)
system to control the gait of a hexapod robot by sending specific position signals to each of the leg actuators.
The system is highly distributed with nerve clusters that control each leg and no central controller. The intent
is to create a more biologically-inspired system and one that has the potential to dynamically change its gait
in real-time to accommodate for unforeseen malfunctions. We approach the evolution of this extensive NN
system in a unique way by treating each of the legs as an individual agent and using cooperative coevolution to
evolve the team of heterogeneous leg agents to perform the task, which in this initial phase is walking forward
on a flat surface. When tested using a simulated hexapod robot modeled after an actual robot, this new method
reliably produced a stable tripod gait.

1 INTRODUCTION

Within the field of robotics, legged robots constitute a
significant challenge. Many forms of legged robots
have been considered such as the hexapod, a six-
legged robot. A tripod gait is a stable and efficient
hexapod gait (Lee et al., 1988) in which the front-left,
middle-right, and back-left legs move synchronously
in a stepping motion, and the other three legs move
synchronously with one another and exactly a half-
cycle behind the former three legs. Thus, it is feasible
for one to hard-code the leg motions of a hexapod to
produce its optimal gait. However, hard-coded hexa-
pod gaits are tedious to write, subject to human error,
and less capable of adapting to changes in the robot’s
physical capabilities or its environment. These issues
motivate the use of automation to generate hexapod
gaits.

Work has been done to automate the generation
of hexapod gaits using evolutionary computation. In
most of these works, gaits were learned using a sin-
gle central controller or control program. Exam-
ples include (Gallagher et al., 1996) who used a ge-
netic algorithm (GA) to learn the weights of a neu-
ral network, (Parker and Rawlins, 1996) who used
cyclic genetic algorithms (CGAs) to learn the for-
ward/back and up/down motions of the legs in coor-
dination, (Spencer, 1993) who used genetic program-
ming, (Barfoot et al., 2006) who compare the use of
GAs and reinforcement learning algorithms to evolve

cellular automata for control, (Lewis et al., 1993) who
evolved complex motor pattern generators with a GA,
(Juang et al., 2010) who evolved recurrent neural net-
works using symbiotic species-based particle swarm
optimization, (Earon et al., 2000) who evolve cellular
automata for control using a GA, (Vice et al., 2022)
who used an evolutionary algorithm to evolve param-
eters for a hexapod model that used a Robot Oper-
ating System clock that created a continuous sinu-
soidal wave, and (Belter and Skrzypczyński, 2010)
who applied progressively more biologically-inspired
constraints on the set of possible leg movements of
the hexapod throughout its evolution.

In these works, the entire control system was
evolved as one chromosome and/or the signals sent
to the legs were binary directional commands (move
forward or backward). Our work differs from these
in that there is an individual NN controller evolved
for each leg of the hexapod that outputs specific posi-
tion commands to its servos. There are a total of 16
horizontal and vertical position commands the con-
troller can make. In addition to specifying the limits
of the leg movement, this allows the control system to
vary the rate of leg movement – the front-left leg can
be moving at full speed while the middle-right leg is
moving at half speed. Although more complicated,
this gives the control system additional flexibility for
atypical situations requiring an atypical gait.

Previous works that used nerve clusters to give
hexapod legs specific-position control are of signifi-

Angliss, C. and Parker, G.
Coevolving Hexapod Legs to Generate Tripod Gaits.
DOI: 10.5220/0011896200003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 1063-1071
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

1063

cant relevance to this paper; in these works, hexapod
gaits were learned incrementally in two phases. In the
first phase, an individual leg cycle was learned by ei-
ther using a CGA (Parker, 2001) or by using a GA to
evolve the weights of a neural network (Parker and Li,
2003), both of which yielded output that directed the
desired positions of the servos every 25 milliseconds.
In the second phase, a GA was used to learn the co-
ordination of the hexapod’s legs (Parker, 2001). The
research presented in this paper extends the work of
(Parker and Li, 2003) to full-hexapod control without
necessitating the incremental approach described in
(Parker, 2001). Each leg of the hexapod has one of its
position sensors connected to all the other legs to al-
low for inter-leg communication, and the legs are co-
operatively coevolved so they learn in parallel while
interfacing through neural connections to the posi-
tional sensors of the other legs. This method yields
decentralized hexapod gaits operated by six cooperat-
ing leg controllers, as opposed to the centralized con-
troller found in previous works. Since the control is
not localized in one specific location on the physical
hexapod, we would no longer need to be concerned
with the main control unit being damaged or malfunc-
tioning since the robot no longer relies entirely on any
one single control unit.

This research involves the initial phase of the
development of this highly distributed NN system,
where each leg has a nerve cluster that receives data
from the position sensors of the other legs and con-
trols that leg’s movement. This is intended to create
a more biologically inspired system that has the po-
tential to adapt the gait due to changes in the capa-
bilities of one or multiple of the hexapod’s legs. The
idea of the leg nerve clusters is loosely modeled after
(Beer, 1990), except that only the output neurons of
any given nerve cluster have a specific function and
the control is more precise. The entire NN system
in our robot requires 2070 bits to represent all of the
values, thresholds, and weights. We use a GA, but the
size of the chromosome makes evolution very difficult
for a single GA. To address this issue, we use cooper-
ative coevolutionary algorithms (CCAs), which were
described in (Potter and Jong, 1994) to handle evolu-
tions requiring large chromosomes. In addition, using
CCAs gives us the opportunity to treat each leg as an
individual agent (similar to (Potter et al., 2001)) ex-
cept that in our work there is a requirement for coop-
erative coevolution of a team of six heterogeneous leg
agents, which is an interesting problem since no two
of the agents have the same controller as they are all in
different positions on the robot. The work done at this
point was all completed in simulation, but the simula-
tion was based on a specific robot, which was already

configured with individual controllers for each leg.
This robot also has a central controller, which was
used in past research, but for this research, it was not
used. In this initial stage of the research, the contri-
bution is to apply cooperative coevolution to a unique
task requiring six individual agents and to show that
our NN system is capable of generating reasonable
gaits for a fully functional robot walking forward on
a flat surface.

The paper is structured as follows: Section 2 dis-
cusses the specific methods used to coevolve hexa-
pod gaits; Section 3 discusses the results that those
techniques yielded; Section 4 makes concluding re-
marks and discusses potential future work; and Sec-
tion 5 provides a mathematical derivation for the yaw
equation used in Section 2.4.

2 SYSTEMS/TECHNIQUES

A detailed overview will now be given demonstrating
how neural networks and genetic algorithms are uti-
lized in this research.

2.1 Physical Hexapod

The hexapod used (Figure 1) to create our model is
a servobot configured with 7 BS2 BASIC Stamps for
control and two servos per leg to provide vertical and
horizontal degrees of freedom. Six of the BASIC
Stamps are in 1-to-1 correspondence with the hexa-
pod’s six legs, and each controller is responsible for
controlling its leg’s motion. The other BASIC Stamp
is meant to coordinate the leg motions into a meaning-
ful hexapod gait; however, that controller is not nec-
essary for this research, as the six legs are learning
to coordinate among themselves without a dedicated
central coordination controller.

Figure 1: Hexapod Modeled in Simulation.

Every 25 milliseconds, an electrical signal is sent
from each BASIC Stamp to its leg’s vertical and hor-
izontal servos, and the pulse width of that signal is
what determines what position it will attempt to reach.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1064

However, just because a servo receives a signal telling
it to go to a position doesn’t mean it’s physically pos-
sible to do so. The servo can only turn so much within
the 25-millisecond span before it receives another sig-
nal, and this depends on what the leg’s initial momen-
tum was before the servo received that signal. For
example, if the leg is moving backward and is almost
fully extended backward, and then receives a direc-
tion to extend all the way forward, it certainly won’t
complete this command in a 25-millisecond span, and
it will do substantially worse in that 25-millisecond
span than if it was initially moving forward instead
of backward since it would already have some mo-
mentum. In Section 3.4, the ideas of momentum and
positional requests are formalized mathematically for
the sake of implementing a simulation.

2.2 Genetic Algorithm Coevolution

A genetic algorithm, first devised by John H. Holland
(Holland, 1992), is a computational tool that evolves
a population of solutions to a given problem over a
number of generations. The solutions to the problem
in question are represented as chromosomes, which
are strings of 0’s and 1’s. The solutions are tested and
given a numeric fitness value based on a user-defined
metric of what counts as good and bad for the solu-
tion. Total fitness is then calculated, which is the sum
of all fitness values of all the solutions in the current
population. The fraction of a solution’s fitness value
over the total fitness of the population represents the
probability of that solution being selected for repro-
duction.

After two solutions are selected, we derive a child
from them. First, the parents’ chromosomes are
crossed over, which means that there’s a 50% chance
that either parent will pass down a given piece of their
chromosome to the child. The chromosomes are seg-
mented into parts so that a given segment wholly con-
tains a given piece of the solution. For example, if
the chromosome from index 5 to index 10 defines a
certain characteristic of the solution, then we refrain
from fracturing that trait, and instead, define index 5
through 10 to be an atomic unit of the chromosome.
Once all of the components of a complete chromo-
some have been passed down from the parents, the
child’s chromosome is then mutated based on a muta-
tion rate M ∈ [0,1], which represents the probability
that a bit of the child’s chromosome will flip from 0
to 1 or vice versa. The resulting child is appended to a
list of children. This process iterates until the number
of children is equal to the parent population, at which
point the child population overwrites the parent pop-
ulation. The child population then creates a new child

population by the same procedure, and this process it-
erates for some number of generations. The intention
is that the solutions will begin to converge toward the
optimal solution.

The structure of the genetic algorithm used in this
work is atypical and takes inspiration from (Potter and
Jong, 1994), (Potter et al., 2001), (Wiegand et al.,
2001). Instead of having each hexapod representa-
tion as an individual in the population being evolved
from generation to generation, we have constructed 6
genetic algorithms coevolving each of the 6 legs of
the hexapod. For example, in one of the genetic al-
gorithms, all members of its population are legs that
identify as the front-right leg of the hexapod.

In the center of the evolution is a reference hexa-
pod. The reference hexapod is composed of one rep-
resentative individual from each of the 6 genetic algo-
rithms, each of which is the highest-performing leg of
their respective populations. Every G generations, the
reference hexapod undergoes an update in which the
best individuals from each population replace the cur-
rent representatives in the reference hexapod. How-
ever, when learning first starts at generation 0, the ref-
erence hexapod is initialized randomly.

To get the fitness of an individual leg in a popu-
lation, the leg to be tested is attached to the reference
hexapod at the position that it identifies as (if it comes
from the forward-left leg population, it would replace
the reference leg’s forward-left leg). The leg’s fitness
is then set equal to the fitness of the resulting hexapod.
Every generation, all P legs from all 6 populations are
evaluated individually in this way. Additionally, once
the reference hexapod has been updated, all legs from
all populations must have their fitnesses evaluated so
that their fitnesses are relative to the newly-updated
reference hexapod.

Figure 2 illustrates the role of the reference hexa-
pod with a flowchart. The arrows from the GA blocks
to the Reference Hexapod block signify that each leg
of the reference hexapod is updated every G gener-
ations by the corresponding GA’s strongest current
leg individual. The arrows from the Reference Hexa-
pod block to the GA blocks signify that the reference
hexapod is used to provide a common basis for test-
ing the legs of all six GAs, in which testing is done by
attaching the leg to be tested at its designated position
on the reference hexapod and evaluating the gait of
the resulting hexapod in a simulation. It can be seen
from Figure 2 that the reference hexapod is an inter-
face through which the six GAs are able to coordinate
with each other.

Additionally, all 6 GAs implement elitism, which
makes the strongest individual of a population survive
to the next generation, as opposed to regular individ-

Coevolving Hexapod Legs to Generate Tripod Gaits

1065

Figure 2: Arrows to the reference hexapod represent that it
is composed of representative legs from each GA; the ar-
rows in the opposite direction show that each GA uses the
Reference Hexapod to test its population.

uals whose lifespan is always exactly one generation.
When another individual surpasses the strongest agent
in the population, they become the new elite mem-
ber of the population, and the prior elite is guaranteed
to die when the next population of offspring is com-
pleted.

2.3 Neural Network Architecture

A neural network is a computational decision-making
tool that receives data as input and returns an output,
and is inspired by the neural systems of animals and
humans. Neural networks are universal function ap-
proximators, meaning that if a neural network is al-
lowed to grow unboundedly in its complexity, it can
converge to any real-valued function with arbitrary
precision. In programs, a NN can be represented as
a graph of nodes and edges, where the nodes repre-
sent neurons, and the edges represent connections be-
tween the neurons. A neuron contains a value that is
subject to change every time the neurons in the neural
network fire. When they fire, each neuron accumu-
lates the linear combination of each neuron’s value
that is connected to it by an edge multiplied by the
weights of the edges going from those other neurons
to the neuron in question. That accumulation is then
run through an activation function, and the output of
that activation function replaces that neuron’s current
value. This happens all throughout the neural network
iteratively.

The neural networks used in this paper are not tra-
ditional feed-forward neural networks. All the neu-
rons are fully connected, meaning each neuron has
a weighted connection to every other neuron in the
network, including itself. Also, there are three sen-
sors that send their data selectively to certain neurons
in the neural network through weighted connections.
Two of the neurons are selected to be output neurons,
but the distinction between them and ”hidden” neu-
rons is blurred in our model since the output neurons

are also receiving input from sensors. Also, externally
from a leg’s neural network, other legs’ neural net-
works send their sensor data through weighted con-
nections to that leg’s neurons. Section 3.1 goes into
more detail on how the NN architecture is designed.

The controller for the hexapod is composed of 6
neural networks for each of its 6 legs, each contain-
ing N neurons, where N ≥ 2, since we at least need
the 2 output neurons to produce the next vertical and
horizontal position signals for the leg.

Each leg of the hexapod has 3 sensors. Sup-
pose we are considering leg l of the hexapod, where
1≤ l ≤ 6. Define o to be a function that maps a sensor
to its current output (a value of 0 or 15). This leg fea-
tures a forward sensor, back sensor, and down sensor,
denoted Fl , Bl , and Dl , where

o(Fl) =

{
15, leg is fully forward
0, otherwise

(1)

o(Bl) =

{
15, leg is fully back
0, otherwise

(2)

o(Dl) =

{
15, leg is fully down
0, otherwise

(3)

Let Sl = {Fl ,Bl ,Dl} be the set of all sensors of leg l.
Also, let Dl = {D1,D2 . . . ,D6}− {Dl} be the set of
all the hexapod’s legs’ down sensors except for leg l’s
down sensor.

Let n represent some neuron of a leg, where
1 ≤ n ≤ N. If n ∈ {3,4, . . .N}, the neuron is a hid-
den neuron of the leg’s neural network; otherwise,
n ∈ {1,2} and the neuron is an output neuron. Both
types of neurons will store a value v ∈ {0,1,2, . . .15},
a threshold t ∈ {−511,−510, . . .511}, a threshold s ∈
{−255,−254, . . .255}, and N weights {wm→n | 1 ≤
m ≤ N}. Note that all neurons share connections
with each other. Hidden neurons store an additional
5 sensor weights, ws→n, where s ∈ Dl , whereas out-
put neurons store an additional 3 sensor weights,
ws→n, where s ∈ Sl . All weights w have that w ∈
{−15,−14, . . .15}.

A visual of the neural network architecture is
given in Figure 3. Note that in reality, every leg’s
down sensor sends its output to the hidden neurons
of every other leg’s neural network, but in order to
simplify this, Figure 3 captures all the inputs taken in
by only one of the neural networks.

Formally, for neuron n of leg l, the accumulation
function of n can be defined as

A(l,n) =
N

∑
m=1

vmwm→n +

∑

s∈Sl

o(s)ws→n, n ≤ 2}

∑
s∈Dl

o(s)ws→n, n > 2}

(4)

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1066

Figure 3: Neural Network Architecture (N = 5).

Furthermore, define the activation function that up-
dates the current value of neuron n as

fn(A) = nint
(

15

1− e
t−A

s

)
, (5)

where nint is the ”nearest integer” function, A is the
accumulation of the neuron whose value is being up-
dated, and t and s are the thresholds of neuron n.

2.4 Simulation

As stated previously, a genetic algorithm must have a
means of determining the fitness of a given solution
in a population. This is accomplished via a simula-
tion optimized for realism, efficiency, and simplicity.
First, we must test the hexapod for I iterations, where
I is some positive integer. This will give us a list of
coordinate positions over the I iterations of movement
for all 6 legs of the hexapod. We will then determine
the fitness of the hexapod based on these coordinate
lists by calculating the hexapod’s path on a 2D flat
ground. The fitness is determined by how many mil-
limeters the hexapod is able to move in the forward
direction, where forward is defined to be the initial
heading of the hexapod at the beginning of its test.

In secton 3.1, it is explained that momentum di-
rectly effects how much distance a servo of a leg of
the hexapod can move when provided with a pulse
width corresponding to a requested position. Momen-
tum will now be formalized for the sake of testing the
fitness of a hexapod agent.

A simple version of momentum was implemented
into the simulation for each leg of the hexapod, and
which determines the distance that a leg can travel
during one iteration of the simulation. A leg has inde-
pendent components of momenum px and py in the
x and y directions respectively, each of which can
be any integer in the range [−3,3]. Positive px de-
notes backward motion of the leg relative to the hexa-
pod, while negative px denotes forward motion; sim-
ilarly, positive py denotes upward motion relative to
the hexapod, and negative py denotes downward mo-
tion. If the leg is moving backward and receives a
signal to move further back, its momentum will in-
crease unless it is already at maximum momentum, in
which case the momentum will remain unchanged. If
the leg is moving backward and receives a signal to
move forward, its momentum will change to −1. The
same logic of the two previous cases follows if the leg
was initially moving forward. The only way a leg can
have a momentum of 0 is if the leg receives a signal
to move to the position that it is already at.

The resulting position of a leg after receiving an
electrical signal from the controller to move to re-
quested positions xreq and yreq are bounded by xmax
and ymax respectively, which are defined as

∆xmax =
⌊

10∗2|px|−3
⌋

(6)

and
∆ymax =

⌊
5∗2|py|−3

⌋
, (7)

where ∆xmax and ∆ymax denote the maximum distance
that can be traveled in the direction of px and py re-
spectively. The coefficients of 10 and 5 are experi-
mentally what are found to be the maximum speed of
the hexapod’s legs in the x and y directions respec-
tively in units of mm

25ms =
1
25 m/s. In other words, the

hexapod’s legs can go at a maximum speed of approx-
imately 0.4 m/s horizontally and 0.2 m/s vertically.

Suppose the hexapod is in the nth iteration of its
testing. For each leg, the accumulation of each of
its neurons are calculated using either Aout(l,n) or
Ahid(l,n) and the new values for each neuron are cal-
culated using f (A, t) (refer to Section 3.3 for details).
The output neurons’ new values correspond to xreq
and yreq, which are passed to the momentum algo-
rithm to calculate the leg’s momentum at iteration n.
The leg’s new position can then be calculated using
the position algorithm. Finally, all the sensors in Sl
are updated according to the leg’s new position.

Initially, each leg has x = 0, y = 0, px = 0, and
py = 0. For some positive number of iterations I, each
leg will follow the above procedure and return 6 lists
of I+1 positions of format (x,y) - one list per each of
the 6 legs of the hexapod. There is one more position

Coevolving Hexapod Legs to Generate Tripod Gaits

1067

than the number of iterations since the initial position
of a leg is recorded before the testing begins.

When only considering the motion of an individ-
ual leg, the forward motion at iteration n is defined by
the following formula:

dn =
xn − xn−1

1+ yn
. (8)

This distance is only 0 if the horizontal motion of the
leg is 0 at iteration n. Therefore, even if the leg is
off of the ground (if y ̸= 0), it can still thrust itself
forward. The thrust becomes stronger if the leg is
on the ground, but this encourages the leg to lift its
leg high off the ground when repositioning after it’s
pushed all the way back, almost as though it needs
to lift its knees high because it’s walking over a thick
carpet.

For a full hexapod, the fitness evaluation is much
more complex and challenging, since the hexapod can
turn, traverse a 2D plane rather than just a 1D line,
become unstable, and has many moving parts. Such a
fitness evaluation is detailed as follows.

One can define a function f that will take in the
vertical height of a leg and give it a score of how much
of an effect its horizontal motion should have on the
hexapod’s motion. The function f is defined as

f (h) =

{
1

h+a −a, 0 ≤ h ≤ 5
0, otherwise

(9)

where

a =

√
29−5

2
. (10)

This function is of the shape y = 1
x , but intersects the

points (0,5) and (5,0). Thus, a leg will have a maxi-
mum effect on the hexapod’s motion if h = 0 mm, and
will have no effect on the motion of the hexapod at all
if h ≥ 5 mm. This gives a similar effect as with the
individual leg, where the higher a leg lifts, the less it
will affect the motion of the hexapod, which encour-
ages the hexapod to lift its legs to a moderate height
when stepping forward.

The legs’ effectfulness scores are normalized such
that the scores of the left legs will add to 1, and the
scores of the right legs will add to 1 (unless all the
scores are 0, in which case they will remain 0). The
normalized scores can be calculated using functions
CL and CR defined as

CL(hi) =
f (hi)

f (h1)+ f (h3)+ f (h5)
(11)

and

CR(h j) =
f (h j)

f (h2)+ f (h4)+ f (h6)
(12)

where i ∈ {1,3,5} and j ∈ {2,4,6}, and if the denom-
inator of either equation 11 or 12 is 0, we set their
values to 0. Let v1,v2 . . . ,v6 be the velocities of legs
1,2 . . . ,6 relative to the hexapod at the current itera-
tion; then the thrust of the left and right sides of the
hexapod is defined to be

∆xL =CL(h1)v1 +CL(h3)v3 +CL(h5)v5, (13)

∆xR =CR(h2)v2 +CR(h4)v4 +CR(h6)v6. (14)
This is a weighted average of left and right leg move-
ments relative to their effectfulness. The resulting for-
ward movement of the hexapod, ∆r, is calculated as

∆r =
∆xL +∆xR

2
. (15)

The yaw of the hexapod in degrees can be calculated
as

∆θ =
∆xR −∆xL

w
(16)

where w is the width of the hexapod and all variables
are in identical units (see appendix for derivation).
Left turns are defined to be positive degree turns and
right turns are negative.

One can account for the stability of the hexapod
to increase the realism of the simulation. Let P be
the polygon whose vertices are the tips of the hexa-
pod’s legs that are touching the ground, and let n be
the number of vertices of P. Define the hexapod to be
statically stable if its center of mass hovers above the
interior of P. Additionally, the hexapod will be par-
tially stable if its center of mass lies on the perimeter
of P. Finally, the hexapod will be unstable if its cen-
ter of mass lies outside of P entirely. If the hexapod
is statically stable, then

∆r := ∆r. (17)

However, if the hexapod is partially stable, then

∆r :=
n+6

16
∆r. (18)

Furthermore, if the hexapod is unstable, then

∆r :=
n

16
∆r. (19)

It can be seen that unstable will always have a worse
penalty than partially stable, which will always have
a worse pentalty than statically stable.

By applying these functions to the hexapod for ev-
ery iteration of its recorded movements from its test-
ing, one can get a list of ∆r’s and ∆θ’s, which can be
converted to a list of (x,y) coordinates of the hexa-
pod on a floor traversing 2D space. The fitness of a
hexapod is defined to be its final x value in the path it
takes, where the hexapod begins its path at the point
(0, 0) facing in the +x direction.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1068

Figure 4: Run 1 (the strongest run). Top left shows learning curve raw data (MaxFits, BestFits, AvgFits, and RefFits are all
defined in the text of Section 3). Top right shows data smoothed. Bottom left shows leg motions for all six legs with the solid
lines being horizontal movement (0 is full forward) and dashed lines vertical movement (0 is on the ground). Bottom right
shows the track over the ground (a horizontal line represents straight).

3 RESULTS

The results presented constitute 5 independent runs of
the genetic algorithm, where the population size is set
to 100, the number of neurons per neural network to 5,
the number of generations between reference hexapod
updates to 20, the number of iterations per hexapod
test to 100, the mutation rate to 10−3, and the initial
seeds for random number generation to 1 for the first
run, 2 for the second, and so on.

Data from the highest-performing run is displayed
in Figure 4, which features four individual figures: the
first is the original raw data of the entire evolution,
the second is that raw data smoothed out using spline
smoothing (Wahba, 1990) with λ = 10−3, the third is
the visualization of all six leg movements of the best
hexapod during its test, and the fourth is an overhead
view of the path of the best hexapod during its test.

For the raw and smoothed evolution graphs, for
a given generation of the graph, MaxFits represents
the highest fitness seen up to that generation, BestFits
is the highest fitness over all six current populations,
AvgFits is the average fitness over all six current pop-
ulations, and RefFits represents the reference hexapod

fitness. The smoothed evolution graph is provided to
see the general trend of the data since the raw data is
jagged and hard to read, but the raw data is impor-
tant as well since it provides unbiased data from the
evolution.

The third figure representing the leg motions of
the best hexapod of the GA run is packed with infor-
mation. If a line is solid it represents horizontal leg
motion, and if it is dashed it represents vertical leg
motion. A position of zero indicates a fully forward
leg position for solid lines or a fully down leg position
for dashed lines. The solid and dashed red lines repre-
sent the horizontal and vertical motion respectively of
the front left leg. The orange lines represent the front
right leg, green represents the middle left leg, blue
represents the middle right leg, purple represents the
back left leg, and black represents the back right leg.
The colors are conveniently in rainbow order as one
goes from the front to the back of the hexapod read-
ing legs from left to right. A tripod gait should have
the front left, middle right, and back left legs in sync,
and the front right, middle left, and back right all in
sync and doing the opposite of the first three. Thus,
one should hope to see red, blue, and purple in sync,

Coevolving Hexapod Legs to Generate Tripod Gaits

1069

Figure 5: Leg Motions From Runs 2, 3, 4, and 5. For each graph, solid lines are horizontal movement (0 is full forward) and
dashed lines are vertical movement (0 is on the ground).

and orange, green, and black desynchronized from the
first three and perfectly synced with one another. This
is exactly what can be seen in the leg motion graph of
Figure 4, although it may be somewhat hard to tell
since the gait was so optimized that the lines overlap
a lot, making it hard to tell which legs are in sync with
which. See Figure 5 if you aren’t convinced that the
same legs are always getting in sync with each other
to generate a tripod gait. Also, one would hope to see
that the dashed line of some color will only lift from
the zero position when the solid line of that color is
moving toward the zero position (so the leg is moving
forward). This is because if the gait is effective, the
leg should lift off the ground when it is moving for-
ward, and when the leg gets fully forward, it should
touch down to the ground, and the leg should then
proceed to move backward while remaining on the
ground. All of this behavior is exhibited in the leg
motions in Figure 4.

Finally, the fourth graph in Figure 4 represents the
path of the best hexapod during its test. Since the
fitness of the hexapod is completely determined by
how far forward (the +x direction in Figure 4) it is
able to travel during its testing time, it is encouraging
to see that the hexapod’s path is straight forward with
only a slight right drift.

Figure 5 shows the leg motions of the strongest

hexapod from the 4 other GA runs. We can see using
a similar analysis to that provided for Figure 4 that all
runs achieved a strong tripod gait.

4 CONCLUSIONS

In this research, we have presented the initial work
in the development of locomotion control for a hexa-
pod robot that involves learning the values, thresh-
olds, and weights for an extensive NN system that
has nerve clusters at each leg. The nerve clusters are
made up of five neurons that are fully connected. Two
of the neurons send specific position commands to ei-
ther the up/down or back/forward servomotor of the
leg, but the remaining three neurons have no desig-
nated function. The leg controllers receive position
information from all of the other legs, but there is no
central controller. The individual leg controllers are
treated as individual agents and are coevolved to work
as a team to successfully and consistently produce a
tripod gait. To the knowledge of the authors, this is
the first time that this has been done. In addition to
this method allowing a GA to learn the weights for
a large number of neural connections, this problem
presents an interesting task for a team of six hetero-
geneous agents to evolve to cooperate in producing

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

1070

a reasonable gait. When comparing these results to
those of other works such as (Barfoot et al., 2006),
(Belter and Skrzypczyński, 2010), (Parker, 2001), and
(Parker and Rawlins, 1996), it is clear that the tech-
niques presented in this paper achieve comparable
success, as a tripod gait is consistently learned using
the same set of hyperparameters.

In future work, we intend to test the system on
the actual hexapod after adding the needed leg posi-
tion sensors and wiring connections for sensor infor-
mation between the leg controllers. In addition, we
plan to test the system by coevolving the hexapod’s
leg controllers to robustly compensate for defective,
broken, or entirely missing legs and/or controllers. It
is anticipated that such adaptive capabilities are pos-
sible with the neural network architecture presented
in this paper.

Additionally, it may also be possible to eliminate
the reference hexapod from the GA model. The GA
would then choose six individuals randomly from the
six GA’s populations and form a hexapod out of them,
and their fitnesses would all be equivalent to their per-
formance as a collective hexapod. This would happen
for all the individual legs in all six populations, and
there would thus be no need for a reference hexapod,
as individuals are grouping up and getting fitted dy-
namically. Such a technique would bring the results
of this paper from the coevolution of leg populations
to fully emergent hexapod gait learning. Such an evo-
lution would likely take more generations to complete
but would be an interesting result if it were achieved.

ACKNOWLEDGEMENTS

Professor Kohli of the Connecticut College Statistics
Department

REFERENCES

Barfoot, T. D., Earon, E. J., and D’Eleuterio, G. M.
(2006). Experiments in learning distributed control
for a hexapod robot. Robotics and Autonomous Sys-
tems, 54(10):864–872.

Beer, R. D. (1990). Intelligence as adaptive behavior:
An experiment in computational neuroethology. Aca-
demic Press.

Belter, D. and Skrzypczyński, P. (2010). A biologically in-
spired approach to feasible gait learning for a hexapod
robot.

Earon, E. J., Barfoot, T. D., and D’Eleuterio, G. M. (2000).
From the sea to the sidewalk: the evolution of hexa-
pod walking gaits by a genetic algorithm. In Inter-

national Conference on Evolvable Systems, pages 51–
60. Springer.

Gallagher, J. C., Beer, R. D., Espenschied, K. S., and Quinn,
R. D. (1996). Application of evolved locomotion con-
trollers to a hexapod robot. Robotics and Autonomous
Systems, 19(1):95–103.

Holland, J. H. (1992). Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. MIT press.

Juang, C.-F., Chang, Y.-C., and Hsiao, C.-M. (2010). Evolv-
ing gaits of a hexapod robot by recurrent neural net-
works with symbiotic species-based particle swarm
optimization. IEEE Transactions on Industrial Elec-
tronics, 58(7):3110–3119.

Lee, T.-T., Liao, C.-M., and Chen, T.-K. (1988). On the sta-
bility properties of hexapod tripod gait. IEEE Journal
on Robotics and Automation, 4(4):427–434.

Lewis, M. A., Fagg, A. H., and Bekey, G. A. (1993). Ge-
netic algorithms for gait synthesis in a hexapod robot.
In Recent trends in mobile robots, pages 317–331.
World Scientific.

Parker, G. B. (2001). The incremental evolution of gaits
for hexapod robots. In Proceedings of the 3rd An-
nual Conference on Genetic and Evolutionary Com-
putation, pages 1114–1121.

Parker, G. B. and Li, Z. (2003). Evolving neural net-
works for hexapod leg controllers. In Proceed-
ings 2003 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003)(Cat. No.
03CH37453), volume 2, pages 1376–1381. IEEE.

Parker, G. B. and Rawlins, G. J. (1996). Cyclic ge-
netic algorithms for the locomotion of hexapod robots.
In Proceedings of the World Automation Congress
(WAC’96), volume 3, pages 617–622.

Potter, M. A. and Jong, K. A. D. (1994). A cooperative
coevolutionary approach to function optimization. In
International conference on parallel problem solving
from nature, pages 249–257. Springer.

Potter, M. A., Meeden, L. A., Schultz, A. C., et al. (2001).
Heterogeneity in the coevolved behaviors of mobile
robots: The emergence of specialists. In International
joint conference on artificial intelligence, volume 17,
pages 1337–1343. Citeseer.

Spencer, G. F. (1993). Automatic generation of programs
for crawling and walking. In Proceedings of the
5th International Conference on Genetic Algorithms,
page 654.

Vice, J., Sukthankar, G., and Douglas, P. K. (2022). Lever-
aging evolutionary algorithms for feasible hexapod
locomotion across uneven terrain. arXiv preprint
arXiv:2203.15948.

Wahba, G. (1990). Spline models for observational data.
SIAM.

Wiegand, R. P., Liles, W. C., De Jong, K. A., et al. (2001).
An empirical analysis of collaboration methods in
cooperative coevolutionary algorithms. In Proceed-
ings of the genetic and evolutionary computation con-
ference (GECCO), volume 2611, pages 1235–1245.
Morgan Kaufmann San Francisco.

Coevolving Hexapod Legs to Generate Tripod Gaits

1071

