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Explaining black-box Artificial Intelligence (AI) models is a cornerstone for trustworthy Al and a prerequisite
for its use in safety critical applications such that AI models can reliably assist humans in critical decisions.
However, instead of trying to explain our models post-hoc, we need models which are interpretable-by-design
built on a reasoning process similar to humans that exploits meaningful high-level concepts such as shapes,
texture or object parts. Learning such concepts is often hindered by its need for explicit specification and an-
notation up front. Instead, prototype-based learning approaches such as ProtoPNet claim to discover visually
meaningful prototypes in an unsupervised way. In this work, we propose a set of properties that those proto-
types have to fulfill to enable human analysis, e.g. as part of a reliable model assessment case, and analyse
such existing methods in the light of these properties. Given a ‘Guess who?’ game, we find that these pro-
totypes still have a long way ahead towards definite explanations. We quantitatively validate our findings by
conducting a user study indicating that many of the learnt prototypes are not considered useful towards human
understanding. We discuss about the missing links in the existing methods and present a potential real-world
application motivating the need to progress towards truly human-interpretable prototypes.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have
been shown to be increasingly proficient in solving
more and more complex tasks. Increasing complex-
ity of tasks lead DNNs to churn billions of parame-
ters, vast pools of unstructured data and non-human
understandable internal representations to arrive at
these spectacular results. However, this only adds
to the complexity and opacity of the already black-
box DNNs. This calls for an increasing need to pro-
mote eXplainable Artificial Intelligence (XAI) meth-
ods, for improving interpretability, transparency, and
trustworthiness of AI (Adadi and Berrada, 2018). It is
even more critical to reason and explain the decision-
making process of DNNs, when such decisions are
applied in safety-critical use-cases like self-driving
cars or medical diagnosis (Tjoa and Guan, 2020).
These cases not only demand higher accountability to
figure out why and how if things go wrong but also a
provision to assess, debug and audit in cases of fail-
ures.
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In general, XAI approaches try to map the in-
ternal learnt representations of DNNs into human-
interpretable formats. However, what constitutes a
sufficiently human-understandable interpretation is
still largely subjective of the XAI approach itself,
whether it is post-hoc or inherently interpretable or
seeks local/ global explanations. One novel direc-
tion is associated with learning representations which
can be explicitly tied to human-understandable higher
level concepts, e.g. predicting an image of a bird
red-billed hornbill could depend on the presence of
concepts like red bill. However, this requires ex-
plicit prior knowledge of relevant concepts and re-
lies on correspondingly annotated datasets. Instead,
unsupervised discovery of the relevant parts or pro-
totypes would enable the use of existing large-scale
datasets and open such approaches to more diverse
use-cases. Such prototypes can represent distinct
human-understandable concepts or sub-parts, e.g.
beaks, wings, tails which could together predict a
bird. While learning such representations in an un-
supervised scenario (absence of concept-level annota-
tion) in itself is a challenge, the other difficulty lies in
visualising such implicitly learnt representations un-
derstandable to human eye.

A very prominent line of work based on learning
interpretable prototypes has emerged where the fo-
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cus is to learn representative parts for the downstream
task, by designating the closest image part to a given
learnt representation, as prototypes These methods
help us steer ahead of the challenge of finding repre-
sentative prototypes without explicit concept-level su-
pervision enhancing some interpretability. Nonethe-
less, how useful are these interpretations with respect
to human assessment of the model’s inner workings
and potential insufficiencies?

In this work, we closely investigate the perfor-
mance of selected interpretable prototype-based ap-
proaches in terms of qualitative interpretation using
a network called Prototypical Parts Network (Pro-
toPNet) (Chen et al., 2019) and subsequent variants
(Nauta et al., 2021; Gautam et al., 2021). They are
designed to learn representations of certain parts of
the training image class (profotypes) and then find the
(parts of) test samples similar to the prototypes (“this-
looks-like-that) based on similarity scores. To this
end, our key contributions are:

1. We design common setup of experiments and
accordingly propose requisite Desiderata (Sec-
tion 3.1) towards learning interpretable prototypes
beneficial for the human assessment of a model

2. We analyse existing methods with respect to these
properties for real-world and synthetic datasets
(Section 4.1, 4.3)

3. We provide quantitative results based on a user
study to validate our finding (Section 4.2)

4. Finally, we motivate the application of in-
terpretable prototypes using real-world out-of-
distribution (OOD) detection task (Section 4.4)
and conclude with imminent challenges and po-
tential directions (Section 5).

2 INTERPRETABILITY SO FAR

According to (Péez, 2019), Interpretability means an
Al system’s decision can be explained globally or lo-
cally and the system’s purpose as well as decision
can be understood by a human actor. There exists a
vast pool of XAI literature pertaining to visual tasks
(Nguyen et al., 2019).

Following are some major distinguishing factors
towards choosing type of explanation for a given XAl
approach:

Local vs. Global: Several vision approaches us-
ing DNNs focus on local explanations (Zhang and
Zhu, 2018) limited to specific few samples or high-
lighting specific parts of the image that the DNNs at-
tended to for a given decision (i.e. regions with high-

est attribution), say by generating heatmaps. These
localised analysis methods often involve generating
saliency-based activation maps (Zhou et al., 2016),
local sensitivity based on gradients (Sundararajan
et al., 2017), or relevance back-propagation (Shriku-
mar et al., 2017) such as LRP (Layer-wise Rele-
vance Propagation) (Bach et al., 2015). In contrast,
global explanations provide analysis on the models
as a whole, independent of individual samples e.g.
mapping certain concepts to internal latent represen-
tations. This provides a wider scope for general appli-
cability. For tasks like OOD detection, global expla-
nations are even necessary to detect new OOD sam-
ples.

Post-Hoc vs. Interpretable-by-Design: Most local
explanation methods are also post-hoc interpretations,
which involve taking a pre-trained model and then
identifying relevant features via attribution or trying
to understand the inner workings a posteriori. Since
these explanations are not tied to the inner workings
of the model, they can be unreliable. Thus, we need
inherently interpretable models, i.e. interpretable-by-
design (IBD), such that DNNs are designed in a way
to make internal representations interpretable. IBD
methods have gained much momentum because if
we want our models to be interpretable, we need to
consciously design them so (Rudin, 2019). One re-
cent direction towards IBD models is to map human-
understandable concepts or prototypes into internal
representations, e.g. by embedding an interpretable
layer into the network like in concept bottleneck mod-
els (CBM) (Koh et al., 2020), ProtoPNet models etc.,
or by enforcing single concepts into a model by in-
cluding their outputs in the loss function (Zhang et al.,
2018).

Explicitly Specified vs. Implicitly Derived: When
we want our learnt representations to be human-
understandable, we can tie them to either an explic-
itly specified ‘concept’ from natural human language
or we can learn ‘prototypes’ which are implicitly de-
rived. Prototypes are semantically relevant visual
explanations often represented by the closest train-
ing image, parts of an image, or via decoding ap-
proaches (Li et al., 2018). In concept learning, one
tries to associate known semantic concepts to latent
spaces (Fang et al., 2020).However, the availability
of datasets with annotated concepts or even the prior
knowledge of the expected concepts are quite limited.
In such cases, prototype-based learning using an IBD
method provides an alternative to learn global expla-
nations without the need for concept-specific annota-
tions.
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3 HUMAN-INTERPRETABLE
PROTOTYPES

3.1 Desiderata

When we assume concepts as something explicitly
specified, we basically refer to particular examples
that we can recollect from memory (e.g. bird with
red bill). In case of prototypes, they are often average
representation over several observed examples (Stam-
mer et al., 2022). While the task is to learn indepen-
dent underlying representations as prototype vectors,
a precise visualisation of the prototype vectors in a
human-understandable format is still challenging. In
literature, prototypes have been interchangeably re-
ferred to as representations for a full image or seman-
tically relevant sub-parts of it. In this work, we con-
sider the latter usage for fine-grained interpretability
and subsequently chalk out desired properties towards
learning interpretable prototypes that are beneficial
for human assessment of a model:

1. Human-understandable / Interpretable: The vi-
sualisation of the prototype vectors should corre-
spond to a distinct human-relevant entity. Often,
due to dataset biases, vague interpretations creep
in, like contours of objects or background colours,
which often lack in definite explanation.

2. Semantically Disentangled:  Each prototype
should represent distinctly different semantic
units that can be associated with common inter-
pretation via humans.

3. Semantically Transformation Invariant: All pro-
totypes representing one semantic idea should be
uniquely represented irrespective of their variabil-
ity in scale, translation, or rotation angle across
different samples.

4. Relevant to the Learnt Task: The prototypes learnt
should add relevant information towards the task
learnt by the given ML model. It can either be
the whole semantic entity or distinct sub-parts of
it. E.g. for a classification problem for cars, the
prototypes should be parts which are semantically
relevant for identifying a car, like wheels, doors
etc., whereas a pedestrian is not related to a car
directly.

Along with all of the above properties for inter-
pretable prototypes, it is also important to focus on
learning the prototypes with minimum concept-level
supervision. We learn prototypes under the assump-
tion that concept-level supervision is difficult and ex-
pensive to get. In the rest of this work, we focus our
investigation on recent advances in prototype-based
learning methods presented in Section 3.2.
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3.2 Learning and Visualising Prototypes

ProtoPNet (Chen et al., 2019) is an image classifier
network that learns representations for relevant sub-
parts of an image as prototypes.

(i) Learning Prototypes: They are learnt by ap-
pending a prototype layer or a latent space to the
feature extractor. The prototypes are class-specific
(number of prototypes per class is pre-defined) and
learnt by employing a cluster and separation loss on
top of the cross-entropy loss, which encourages se-
mantically similar samples to cluster together. Since
height and width of each prototype is smaller than the
feature layer, each prototype represents a patch cor-
responding to the feature layer in latent space and in
turn some prototypical part of the whole image x. In
this prototype layer, squared L? distances between the
prototype p; and all patches of z, having similar sizes
as pj, are calculated and inverted to obtain similarity
scores S.

(ii) Visualising Prototypes: The similarity scores
together constitute m activation heatmaps g;,; of same
spatial size as z. They indicate where and how
strongly a given prototype is present in z and are re-
duced to a single similarity score using global max
pooling. Based on maximum similarity scores after
comparison with all inputs from a prototype-specific
class, each prototype is projected onto the nearest
z. Since the spatial arrangement is preserved in the
heatmaps, they can be easily upsampled and over-
layed on the full image. The patch corresponding to
the maximum similarity score from the heatmap pro-
jected upon the input image is thus visualised as a pro-
totype.

In this work, we also analyse two successive meth-
ods proposing solutions for following shortcomings
concerning the aspects of learning and visualising
prototypes:

(a) Optimising visualising prototypes by address-
ing the problem of coarse and spatially imprecise up-
sampling: By upsampling the low resolution heatmap
for most relevant regions of interest for both prototype
training and test image, ProtoPNet tries to bring forth
the decision “this relevant prototype from this train-
ing image looks like that feature of that test image”.
However, the effective receptive field in the original
image is much larger. Due to model-agnostic upsam-
pling, the region of interest in the final input image
tends to imprecisely cover a lot more than the rele-
vant pixels. To address this problem, (Gautam et al.,
2021) proposed a method called Prototypical Rele-
vance Propagation (PRP) which builds upon the prin-
ciples of LRP. It aims to attain more accurate fine-
grained model-aware explanations by backpropagat-
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ing the relevances of the prototypes in ProtoPNet.

(b) Improved learning of prototypes without a
fixed number of prototypes per class: Authors of
ProtoPNet advocated equal representation via a fixed
number of prototypes per class leading to a lot of pro-
totypes for further analysis. (Nauta et al., 2021) pro-
pose to incorporate a soft decision tree, called Pro-
toTree, as a hierarchical model looking into a se-
quence of decisions through each node prototype to
arrive at every test sample. ProtoTree, being IBD by
design, allows retraceable decisions mimicking hu-
man reasoning while reducing the number of proto-
types to only 10% of ProtoPNet.

4 EXPERIMENTAL DISCUSSION

In this section, using different experiments we per-
form analysis of the interpretability of the results from
the prototype-based learning methods presented in
3.2. We first look at image classification tasks, where
we consider real-world datasets and much simplified
synthetic dataset in Sections 4.1, 4.3 respectively in
light of the desiderata in Section 3.1. In Section 4.2,
we provide quantitative statistics of our findings in
4.1 based on user-study. Finally, in Section 4.4, we
present a preliminary application of interpretable pro-
totypes in a real-world OOD detection task.

4.1 This Looks like that? - Analysis

Here, we provide insights on the interpretability of
learnt prototypes ProtoPNet, ProtoTree and PRP. Ex-
perimental setups have been kept identical to the re-
spective original implementations. For PRP, we have
reproduced the code as close as possible to mentioned
algorithms in (Gautam et al., 2021). Datasets used
for fine-grained and generalised image classification
are respectively Caltech UCSD Birds-200-2011 (200
bird classes) (Wah et al., 2011) and ImageNet-30 (30
distinct classes) (Hendrycks et al., 2019). ProtoP-
Net uses ImageNet pre-trained VGG19 models. Pro-
toTree uses ResNet-50 models pre-trained on Natu-
ralist for CUB-200 and ImageNet for ImageNet-30.
Following insights are drawn from the entire test data.
Let’s take a closer look at each method based on the
following properties:

4.1.1 Human-Understandable / Interpretable

ProtoPNet: In Figure 1, we present samples from
models trained on CUB-200 and ImageNet-30 with
75.9% and 97.0% test accuracy. In sub-figures (a), we
show the 3 closest train and test images for a given

prototype from each class. In a broader sense, the
prototypes, given the context where they are located,
bring forth the understanding that this patch in the
test image probably looks like that prototype. Most
prototypes can be successfully matched to somewhat
similar patches in test images. But the ‘standalone’
prototypes themselves are not so human-interpretable
such that they can be distinctly identified as a rele-
vant entity. E.g. for rusty blackbird, the prototype
shows the neck of the bird, however, from the similar-
ity activation maps for closest test images, the highest
similarity varies from eyes, beak to neck region. This
shows that the imprecise upsampling of the similarity
activation maps often leads to spurious identification
of non-relevant parts. Similarly, for red-breasted mer-
ganser, the probable prototype showing the backside
of its head is confused with its beak, head or eyes. For
the snowmobile class of ImageNet-30, the skis pro-
totype is matched inaccurately to wheels, tracks and
even the whole vehicle in test images, thus leading to
inconclusive interpretations.

PRP: We compare similar classes in Figures 1(a)
and 2 for CUB-200 to find potential improvement
using PRP for the imprecise upsampling mentioned
above. For western grebe, PRP reassuringly high-
lights the edges of the upper body as compared to
the imprecise body or tail of the bird shown in Pro-
toPNet. For red-breasted merganser however, PRP
highlights the beaks, while the prototype looks at the
backside of the head, leading to incoherent interpre-
tations. In most samples, PRP tends to focus on the
closest edges that might be salient when matched to
a prototype. Although these explanations are seem-
ingly more precise compared to ProtoPNet, this does
not always enhance the certainty or conviction of the
relevant parts for human interpretation.

ProtoTree: Figure 3 shows samples from models
trained using ProtoTree on CUB-200 and ImageNet-
30 with 82.1% and 91.8% test accuracies. In order to
look at the most relevant prototypes used for decid-
ing on a class, we chose classes from the rightmost
branch of the tree to ensure the traversed node proto-
types were ‘present’ in most cases in the decision path
for these classes, namely western grebe and snowmo-
bile from CUB-200 and ImageNet-30. As pointed out
by the authors, since the prototypes themselves are
not mapped to any particular class, the first prototypes
in the given path are barely relevant for a given class
or the indicated matching parts. Prototype 1 in west-
ern grebe is hardly understandable, similarly the third
prototype looks at the black body of a bird but indi-
vidually the prototype is difficult to comprehend.

Thus, the prototypes themselves are not entities
easily understandable to human-eye particularly, even
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(a) Nearest training patches
with similarity-based activation map

Prototype

Western grebe

Red-breasted
merganser

Rusty blackbird

(b)

Western grebe

Red-breasted
merganser

Rusty blackbird

Nearest test patches
with similarity-based activation map

CUB-200

(a) Nearest training patches
Prototype with similarity-based activation map

Snowmobile é& D D

-
(b)

Snowmobile

Nearest test patches
with similarity-based activation map

ImageNet-30

Figure 1: Results for ProtoPNet using CUB-200 (top) and ImageNet-30 (bottom): (a) shows for a prototype from a given class
- the nearest training and test patches (yellow box) with similarity score based activation maps, (b) shows all the 10 prototypes

(yellow box) learnt for the respective classes in (a).

more for fine-grained image datasets like CUB which
require expert knowledge.

4.1.2 Semantically Disentangled

Since ProtoPNet and ProtoTree learn the prototypes
differently, here we analyse whether they successfully
learn distinct prototypes corresponding to distinct se-
mantically relevant parts.

ProtoPNet: In line with the ProtoPNet implemen-
tation, 10 prototypes are learnt per class as shown in
Figure 1(b). We observe that the learnt prototypes
are often redundant, i.e. similar prototypes or pro-
totypes looking at similar parts. E.g. for the west-
ern grebe class- prototypes 4,5,6,9, and 10 show
neck parts, similarly red-breasted merganser shows
repeated neck (1,9) and background prototypes (2, 3),
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even from the same training image. Most repeated
prototypes do not add a different perspective in terms
of looking at different details of a semantic part, e.g.
there are multiple ski parts (prototypes 3,7, and 10)
in snowmobile. Overall, prototypes need to be more
distinct and diverse to ensure complete mutually ex-
clusive representation of the entire class. The redun-
dancy could be due to too many pre-determined pro-
totypes for each class. Thus, we need methods better
suited to fine-tune the optimal number of prototypes
to the given dataset and respective classes.
ProtoTree: In Figure 3, although much lesser
number of prototypes are learnt (10% of ProtoPNet)
avoiding redundancy and fewer background proto-
types, most of them are not class-specific thus quite
semantically disentangled over the whole dataset.
The prototypes are so diverse that it is difficult to se-
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Nearest training images
with similarity-based LRP heatmap

Nearest test images
with similarity-based LRP heatmap

". = N =

Prototype

‘Western grebe

Red-breasted
merganser

Ground truth: Present Present Present

Pres
Western grebe Similarity 0.993 Similarity 0.994 Similarity 0.990 Similarity 1.000

CUB-200
-

~|

Present Present.
Similarity 0.997 Similarity 1.000

ImageNet-30

%* —

N Snowmobile

Absent ’ Present

Similarity 0.072 Similarity 0.999

Figure 3: Results from ProtoTree on CUB-200 (top) and ImageNet-30 (bottom). For each test image, corresponding path

taken in the decision tree towards final prediction is shown. The node prototypes at each decision-making stage are shown in
yellow boxes in their respective source images along with similarity scores to respective matching parts in test images. Absent

Ground truth: Present Present
Snowmobile Similarity 1.000 Similarity 0.997

node prototypes are marked in red.

mantically correlate to the matching parts of class-
specific test images, thus providing limited interpre-
tations towards learning semantics of any particular
class.

4.1.3 Semantically Transformation Invariant

Given a prototype, say - the head of a bird, it is
essential that our methods learn representations for
these prototypes irrespective of variations that appear
for this particular entity across the entire dataset, i.e.
prototypes should be transformation invariant. Since
these methods use L? similarity in the feature space
for matching relevant test image patches, it is impor-
tant to inspect this property using transformed (ro-
tated and cropped) test samples.

ProtoPNet: In Figure 4, we show how well pro-
totypes are recognised given a transformed version of
the test image. We show the top 3 prototypes given
a test image and respective patches they activate in
terms of maximum similarity score. We see that given
a cropped head of western grebe, 2 out of the top 3

closest prototypes belong to different classes. Simi-
larly, given a rotated version of this same test image
by 25°, one of the closest prototypes is a background
prototype from a different class.

ProtoTree: Repeating above experiments with
ProtoTree, we note that the node prototypes and the
path in the tree for the transformed test images did
not change, indicating ProtoTree to be more robust to
image transformations than ProtoPNet. Thus, we do
not show these results to save space and avoid redun-
dancy. Since ProtoTree and ProtoPNet use a different
set of augmentations during training, we also trained
a ProtoPNet with the augmentations applied in Pro-
toTree (different crops etc.), but this did not improve
the performance of ProtoPNet against transforma-
tions. Possibly, ProtoTree learns much fewer proto-
types and thus larger semantic distances between pro-
totypes, making it robust to smaller semantic transfor-
mations. However, this needs further investigation.
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Test image Nearest prototypes

Original

Crop

Rotate 25°

Corresponding similarity-based
activation maps in the test image

Figure 4: ProtoPNet results corresponding to transformations (crop, rotate 25°) for a sample test image (western grebe)
showing the nearest 3 prototypes and their respective region of activations in the given test image. Yellow boxes show the
prototypes and images in red box show prototypes taken from a different class than western grebe.

4.1.4 Relevant to the Learnt Task

Considering the classification task as a ‘Guess who?’
game where by looking at the learnt prototypes, can
we guess the collective class they belong to?

ProtoPNet: As observed earlier, the 10 proto-
types for each class shown in 1(b) are often redun-
dant and do not always represent all the distinct parts
of their respective classes. Nonetheless, some proto-
types do provide hints towards the respective classes
to make an informed guess like the white neck pro-
totype for western grebe hints at a bird with a white
neck, or the prototypes showing a black neck, head or
wings for rusty blackbird indicate at least a black bird.
However, whether they sufficiently represent their re-
spective class remains doubtful, particularly for fine-
grained dataset. For more generalised datasets like
ImageNet-30, the prototypes themselves are quite di-
verse and easier to recognise, often including the en-
tire object in question, e.g. snowmobile prototypes
(1,8) showing the whole vehicle. There are several
instances of background prototypes (2,4,5 in snow-
mobile) which might provide some context to recog-
nise a given class, but in general add to redundancy.
Lastly, it is up to the interpreter to make sense out of
these disjoint bits of information.

ProtoTree: ProtoTree itself does not provide
class-specific prototypes, thus all the node prototypes
in a given path which are marked as ‘present’ (see
Figure 3) are often not relevant directly to the class in
question except for the last few prototypes, e.g. the
bird’s eye or the neck for western grebe. Looking at
the prototypes of the snowmobile class, one would al-
most guess it as an airplane class except for the last
prototype with snow. Thus, while prototypes from
ProtoPNet provide some reliable hints as compared
to ProtoTree, both methods perform insufficiently in
a ‘Guess who?’ game.
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4.2 Quantitative Results Based on User
Study

To further validate our observations in Section 4.1, we
collected statistics based on human assessment of pro-
totypes of natural images (10 classes of ImageNet-30)
to avoid the need of expert knowledge for fine-grained
datasets. The study comprised of 2 experiments with
15 users: (1) given prototypes, users were required
to identify the class (‘Guess who?’ game) from the
option of 10 classes and (2) given each prototype
and respective class, users were asked to determine
- ‘Whether the given prototype was useful for iden-
tifying the class?” and *Whether the concept shown
in prototype is somehow repeating and redundant?’.
Users had to choose either ‘Yes/ No’. For the lat-
ter question, often irrelevant prototypes were marked
non-redundant, i.e. ‘No’. Figure 5 summarises the re-
sults from all experiments, which could be interpreted
as follows based on the questions asked to the users:

‘Guess Who?’ - Average class prediction accuracy
for ProtoPNet was much higher (98%) as compared
to ProtoTree (55%). This is as expected as ProtoP-
Net prototypes could easily be guessed from given ten
classes as common sub-parts of natural images. How-
ever, for ProtoTree, many of the prototypes do not be-
long to the class and the initial prototypes on a given
branch of a tree are often general and irrelevant to the
class.Thus, these prototypes were often not semanti-
cally relevant or human understandable and thus, dif-
ficult to identify leading to poor prediction accuracy
for ProtoTree.

Prototype usefulness - Only 27% prototypes of
ProtoPNet and 20% of ProtoTree, were found totally
useful (100%) for identifying the class. This leaves a
lot of future scope to generate semantically relevant
and yet diverse prototypes that represents the given
class sufficiently for confident human interpretation.
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Figure 5: Quantitative results from user study conducted on prototypes from ImageNet-30 classes.

Prototype non-redundancy - Since we had ob-
served a lot of redundant or repeating prototypes
in cases of fine grained datasets like CUB-200,
hence this experiment was conducted. However, as
we noted earlier that for natural images, the pro-
totypes are much more diverse and non-redundant.
Hence, for this experiment, it leaves an ambiguity
whether the prototypes were actually non-repeating or
whether they were found irrelevant/meaningless and
thus marked as non-redundant (15% for ProtoPNet
and 20.6% for ProtoTree).

Using the above statistics, we could further con-
firm the need for better methods that can generate
truly human-interpretable prototypes that are seman-
tically relevant, disentangled as well as sufficient to
identify a given class.

4.3 Analysis on Synthetic Data

In previous sections, we observed that it is diffi-
cult to obtain human-interpretable prototypes with the
wide range of complexities associated with real-world
datasets, like the optimum number of prototypes re-
quired to define a class, varying semantics, cluttered
background, overlapping concepts, etc. Thus, we cre-
ated synthetic datasets (3D-Shapes) in a controlled
setting where each shape can be related a prototypical
concept and re-evaluated the performance of above
methods. The 3D-Shapes datasets consist of com-
binations of rendered 3D shapes in varying arrange-
ments(Johnson et al., 2017).

Dataset with overlapping concepts (Vi): This
dataset consists of 3 classes with 3 non-exclusive
shapes each, resembling the original fine-grained
classification setting, where Class: cube, sphere,
cone; Class 1: sphere, cylinder, icosphere; Class 2:
cone, torus, icosphere. Exemplary results for Pro-
toPNet and ProtoTree are given in Figure 6. Ideally,

Prototype

Prototype

Prototype

Class O

Class 1

Class 2

(b) ProtoTree

Figure 6: Results using synthetic 3D-Shapes dataset (V1)
showing in (a) prototypes from each class using ProtoP-
Net and (b) the node prototypes along with decision tree
(depth=2) using ProtoTree. Yellow boxes show the proto-

types.

each shape in a class should correspond to a proto-
type. Like in Section 4.1 for ProtoPNet, we observe
redundant repeating prototypes even in this simplified
setting. Also all the prototypes of one class focus
on the background, however they still contribute to
a high test accuracy. The learnt prototypes are not se-
mantically relevant in a way humans would classify
3D shapes. Often they focus on semantically mixed
patches like parts of both cube and cone in class 0.
Similarly, in ProtoTree the decision paths using the
highlighted prototypes do not follow human logic, as

885



VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

e.g. the path to class 2 is reached via 2 absent pro-
totypes (partial icosphere, sphere), whereas the ico-
sphere should belong to class 2. Instead it arrives
at class 2 by eliminating images from class 1 and
0.Thus, the prototypes are not semantically relevant
for classification nor matching to the class.

Dataset with non-overlapping concepts (V): This
dataset is designed to be even simpler with 3 classes
composed of 2 shapes each which are mutually ex-
clusive with other classes, given as- Class 0: cube,
sphere; Class 1 : cylinder, cone ; Class 2 : torus,
icosphere. For each class, we expect that two dis-
tinct prototypes corresponding to each shape should
be learnt. For ProtoPNet, we observe that both pro-
totypes for each class are similar (redundant) which
is relevant to the classification task as there is no in-
centive to learn the other shape; however, for prac-
tical use-cases we expect it to learn distinct and di-
verse prototypes. With limited number of concepts,
no more background prototypes are observed, though
the learnt prototypes often focus on mixed patches
and are not semantically human-understandable. In
ProtoTree, the decision tree mostly follows a logical
structure es expected by a human. However, some
prototypes are still not human-understandable as they
do not match to the corresponding indicated parts, for
e.g. the prototype with partial edges of the cube some-
how finds the sphere in the test image as the corre-
sponding matching part. For limited page limit, we
do not provide these figures.

Ideally, recognising a class based on interpretable
prototypes as prior evidence would help us make
more informed classification decisions particularly
for safety-critical use-cases.

4.4 Application for Real-World Tasks

Taking cue from the above mentioned properties,
where we assume ideally prototypes are human-
interpretable and semantically disentangled, one po-
tential real-world application could be to distinguish
OOD samples from samples belonging to ID classes.
It is assumed that OOD samples would have very dif-
ferent prototypes as compared to ID. A simple ap-
proach would be to distinguish test ID and OOD sam-
ples based on their L? distances to the nearest proto-
types. We train a ProtoPNet on 150 (out of 200) bird
classes from the CUB-200 dataset as ID training data.
The remaining 50 bird classes serve as ‘Near OOD’
data. As the prototypes from this OOD data are still
from the birds dataset, they are expected to be seman-
tically similar to ID prototypes. SVHN (Netzer et al.,
2011), a dataset consisting of housing numbers, is
taken as ‘Far OOD’ data. The Area Under ROC curve
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Figure 7: Histogram showing distribution of L? distances
to closest prototypes for Near vs Far OOD samples for a
model trained on first 150 classes of CUB-200 dataset.

(AUROC) provides an evaluation metric for OOD de-
tection and the results are shown in Figure 7. We
observe a lot of OOD samples having closely over-
lapping L? distances in ‘Near OOD’ setting, which is
concurrent with the fact that OOD prototypes are very
similar to ID prototypes and thus performs poorly in
terms of AUROC (69.1%). In ‘Far OOD’ setting,
SVHN samples are distinctly separated in terms of L?
distances from training prototypes, which leads to an
AUROC of 95.8% in terms of OOD detection. We
remark that this approach might not be an absolute
representative of the separation of ID and OOD pro-
totypes in the feature space.

S CONCLUSIONS AND FUTURE
WORK

In this work, we have assessed the interpretability
of the prototypes learnt from various prototype-based
IBD methods in terms of visual relevance to humans.
To that end, we first defined a set of desired prop-
erties of the prototypes as a basis for our analysis
of three different approaches: ProtoPNet, ProtoTree
and Prototypical Relevance Propagation (PRP). We
found ProtoPNet generates somewhat relevant proto-
types but suffers from a lot of redundancy and a lack
of semantically distinct prototypes. ProtoTree pro-
duces semantically diverse prototypes which are less
redundant but mostly not relevant. PRP addresses the
imprecise upsampling of ProtoPNet but does not con-
clusively contribute to better interpretability. Overall,
standalone prototypes individually (without matching
location context) are mostly not human-interpretable
and there is still a long way to go.

Potential future work should focus more on im-
proving the quality of the learnt prototypes in terms
of valuable human-understandable interpretations as
well as explore techniques to diversify the prototypes
to avoid redundancy. One way to improve quality
of explanations as well as improve trustworthiness
in high-stake decisions would be to utilise human
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feedback during the learning phase to identify useful
prototypes as a potential next step. This could also
strengthen the need to demonstrate and validate which
properties are actually required for interpretability
and for effective internal assessment of models. As
observed already, given relevant prototypes, OOD de-
tection could largely benefit from interpretable proto-
types which calls for finding better techniques, partic-
ularly in ‘Near OOD’ regime.
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