FlexPooling with Simple Auxiliary Classifiers in Deep Networks

Muhammad Ali®?, Omar Alsuwaidi and Salman Khan®®

Department of Computer Vision, Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, U.A.E.

Keywords:

Abstract:

Global Average Pool, Flexpool, Multiscale, Regularized Flexpool, Simple Auxiliary Classifier(SAC).

In Computer Vision, the basic pipeline of most convolutional neural networks (CNNs) consists of multiple
feature extraction processing layers, wherein the input signal is downsampled into a lower resolution in each
subsequent layer. This downsampling process is commonly referred to as pooling, an essential operation
in CNNs. It improves the model’s robustness against variances in transformation, reduces the number of
trainable parameters, increases the receptive field size, and reduces computation time. Since pooling is a lossy
process yet crucial in inferring high-level information from low-level information, we must ensure that each
subsequent layer perpetuates the most prominent information from previous activations to aid the network’s
discriminability. The standard way to apply this process is to use dense pooling (max or average) or strided
convolutional kernels. In this paper, we propose a simple yet effective adaptive pooling method, referred to
as FlexPooling, which generalizes the concept of average pooling by learning a weighted average pooling
over the activations jointly with the rest of the network. Moreover, attaching the CNN with Simple Auxiliary
Classifiers (SAC) further demonstrates the superiority of our method as compared to the standard methods.
Finally, we show that our simple approach consistently outperforms baseline networks on multiple popular

datasets in image classification, giving us around a 1-3% increase in accuracy.

1 INTRODUCTION

In the current Computer Vision community, the vast
majority of image label learning techniques rely on
the hard classification of samples in order to learn
a function mapping between the images and their
corresponding classes. Usually, under a supervised
training setting, class-label learning involves using
cross-entropy and binary cross-entropy loss functions
for multiclass and binary class classification, respec-
tively. The choice for the hypothesis class to learn the
label function mapping is most often parameterized
as a convolutional neural network (CNN) with multi-
ple processing and downsampling layers. CNNs are
very suitable for such a task as they mimic our natural
ability to perceive images by dividing an image into
many small sub-images and processing them locally
for feature extraction, one by one. They also utilize
parameter sharing via learned convolutional kernels
based on the assumption that learning a meaningful
pattern in one part of the image may also be help-
ful in another part of the image, and that is especially
true in the early stages of the CNN, where the features
learned by the convolutional kernels tend to be less

https://orcid.org/0000-0001-9320-2282
@ https://orcid.org/0000-0002-9502-1749

Ali, M., Alsuwaidi, O. and Khan, S.
FlexPooling with Simple Auxiliary Classifiers in Deep Networks.
DOI: 10.5220/0011894400003417

abstract and more generalizable. Moreover, thanks to
their intrinsic design, they can gradually reduce the
dimension of the input, allowing for faster processing,
reduction in the number of parameters, and increased
receptive field size, which in turn allows the model
to learn high-level information from low-level ones.
All these properties have made CNNs very robust and
efficient models when dealing with image processing.
Another building block of almost all convolutional
neural networks (CNNs) is a crucial technique known
as pooling, a process that significantly downscales the
incoming image by preserving a small portion of the
feature map, which resembles the most important pix-
els for the task solution. A usual pipeline of a CNN
is composed of multiple stages, where each stage in-
volves a series of feature extraction (convolutional)
layers, followed by a pooling layer, where the image
gets downscaled further in each consecutive stage.
Pooling allows the CNN model to be invariant to
tiny distortions and further perturbations in the image.
It also dramatically enlarges the receptive field be-
tween intermediate and output nodes while lowering
the computational cost and parameter count, similar
to what a convolutional kernel does but more ampli-
fied (Papineni et al., 2001). Out of the possible pool-
ing methods, Average or mean pooling and Max pool-

497

In Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 4: VISAPP, pages

497-505
ISBN: 978-989-758-634-7; ISSN: 2184-4321

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

ing are the two most frequently used pooling tech-
niques in various CNN architectures like VGG (Karen
Simonyan & Andrew Zisserman, 2018), ResNet (He
et al.,), and GoogLeNet (Szegedy et al., 2015).

Despite their popularity and widespread use, av-
erage pooling and max pooling possess serious draw-
backs and model limitations. For one, despite the en-
tire ensemble of parameters in a CNN being trained
jointly from end to end, the average and max pool-
ing layers, by definition, are unlearnable and hence do
not adapt well to seen data during training nor gen-
eralize effectively to unseen data (Gholamalinezhad
and Khosravi, 2020a). Furthermore, since pooling is
a lossy process that discards some information from
the incoming data, we need to ensure that our pooling
process extracts the most prominent and relevant in-
formation for the end task solution. However, average
and max pooling both rely on an a priori assumptions:
the mean of locally neighboring pixels is a good rep-
resentation of the region, and the maximum response
from a group of neighboring pixels is the most rele-
vant representation in that region, respectively. While
these assumptions have some theoretical justification
and can be worked around via learnable convolutional
kernels, they can easily hinder the network’s ability to
learn efficiently and serve as a bottleneck because of
their incompatibility in adapting to activations due to
lack of learnability. More recent CNN designs, like
ResNets, frequently apply convolutions with strides
greater than one as a replacement for pooling layers.
However, strided convolutions come with their own
disadvantages and fail to act as an actual pooling pro-
cess. Conversely to traditional pooling layers, they no
longer treat and pool each feature map independently;
instead, they aggregate all the feature maps channel-
wise to get the resulting output activation. Lacking
the ability to pool each feature map independently
goes against the inherent design of CNNs, where the
generation of each feature map in a stack of feature
maps is the result of a single convolutional kernel that
is independent of other convolutional kernels which
generated the rest of the feature maps in the same
stack. Hence, each feature map represents a unique
distribution of locally extracted features that might be
similar but independent of the rest of the feature maps
in the same stack. That is why it is of utmost impor-
tance to treat and pool each feature map individually
in order to be able to extract and perpetuate the most
meaningful compact representation during the lossy
process of pooling.

However, in recent years and with the advance-
ments of CNN architectures, the most common use
case of downsampling via pooling has been the use
of Global Average Pooling, which holistically aver-

498

ages the feature maps individually across the height
and width dimensions in the last convolutional stage
before feeding the outcome into the projection head
in order to make the class prediction (Ren et al.,
2015). Global average pooling offers multiple advan-
tages over the traditional way of using fully connected
layers. It reduces the number of trainable parameters,
also enforcing correspondences between feature maps
and classes. Therefore, allowing us to interpret the fi-
nal processed feature maps as class confidence maps.
Despite these significant benefits of using global av-
erage pooling over fully connected layers, they still
suffer from the same limitations as the standard av-
erage pooling that were discussed earlier in this pa-
per, mainly incompatibility in adapting to activations
due to lack of learnability, which can hurt the model’s
ability to generalize to unseen data.

In this work, we primarily focus on improving this
vital yet often overlooked process of feature map to
class correspondence via global pooling. We aim to
replace the global average pooling layer by substi-
tuting it with a more robust flexible pooling layer,
named FlexPool, that is trainable jointly with the
network in an end-to-end fashion and is fully dif-
ferentiable. FlexPool aims to learn the best set of
weights in a weighted average for each feature map in
the last stage of convolutions, allowing the model to
learn the appropriate correspondences between fea-
ture maps and categories. Having the ability to learn
a weighted average global pooling over the feature
maps with the rest of the network, FlexPool is an ef-
fortless yet efficient adaptive pooling technique that
generalizes the idea of global average pooling. Ad-
ditionally, attaching the CNN with Simple Auxiliary
Classifier (SAC) heads along different convolutional
stages further demonstrates our method’s superiority
over standard global average pooling.

We demonstrate that substituting FlexPooling as
the global pooling layer of choice improves perfor-
mance on the different datasets using different ResNet
sizes. With the introduction of this simple but effec-
tive technique, we propose using it with any existing
state-of-the-art CNN to get improved results easily. In
order to further explain the concept sequentially, we
organized the rest of the paper as follows; Section 2
reviewed the related work done on pooling layers. In
Section 3, we present our suggested model and dictate
its formulation, explaining the effects of FlexPooling
and its variants. We describe the experiments and
analyze the outcomes of those experiments in detail
in Section 4 using different benchmark datasets and
models. Finally, Section 5 concludes with a summary
of our work.

2 MATERIALS AND METHODS

Among the two most popular pooling techniques (av-
erage and max pooling), max pooling tends to out-
perform average pooling in terms of discriminability
in most CNN architectures and tasks, especially for
features with low activation intensities, as studied by
(Boureau et al., 2010a) when examining the different
pooling techniques. Max pooling seeks to preserve
the most important details because it is crucial for
the network’s ability to discriminate (Boureau et al.,
2010b). However, because only one node is chosen in
each local neighborhood, this can cause the gradient
flow to experience a disruption in its gradient mag-
nitudes in connections branching out from that node
during the backward pass of the CNN. Max pooling
also produces relatively sparse results when down-
scaling images (Gulcehre et al., 2013). Moreover, the
fact that the appropriate choice of pooling relies upon
the CNN structure and dataset distribution is another
drawback of traditional pooling layers, which requires
the practitioner to perform extensive empirical testing
to determine the appropriate pooling technique for the
specific task solution.

Since the two most commonly used methods for
pooling both have their own advantages and limi-
tations, one might suspect that the best way to ex-
tract meaningful information during pooling may fall
somewhere between the two methods of average and
maximum pooling. Previous research on pooling
techniques has focused on using unusual pooling ra-
tios or altering the receptive field size of the pooled
region.

Researchers like (Ionescu et al., 2015) offered
a strategic approach to make it possible to include
deeper networks with higher-order pooling layers.
Performing inter-channel max pooling is advised by
Maxout (Goodfellow et al., 2013), while a fractional
downscaling ratio is used in fractional pooling (Gho-
lamalinezhad and Khosravi, 2020b), which results in
a more steady size reduction. Low-pass filtering was
implemented by (Rippel et al., 2015) to downsample
feature maps in spectral space. As details are primar-
ily concentrated in higher frequencies, this smoothes
the input rather than maintaining them. Researchers
also worked on various receptive field sizes of pooled
pixels(Rippel et al., 2015). Ionescu et al. offer a strat-
egy that makes it possible to include deeper networks
with higher-order pooling layers, As details are pri-
marily focused on higher frequencies, this smoothens
the input rather than maintaining them (Saeedan et al.,
2018) through learnable pooling layers, recent re-
search has sought to maintain the most discrimina-
tive parts of the data/activations and eliminate the re-

FlexPooling with Simple Auxiliary Classifiers in Deep Networks

dundant ones. There have been several attempts to
combine max and average pooling(Gholamalinezhad
and Khosravi, 2020b); nonetheless, none truly suc-
cessfully harnessed the advantages in both (Gholama-
linezhad and Khosravi, 2020b). Other pooling tech-
niques included scaling according to the input size
(He et al., 2014), enabling CNNs to handle a range
of image sizes.

In study (Saeedan et al., 2018), researchers pro-
posed a method to preserve the subtle elements within
an input image that are essential in representing an
accurate visual impression. Its purpose was to retain
the refined details typically lost by the average pool-
ing and have it improved along the network in the
learning path, thereupon helping us to get the relevant
missing information. This approach motivates this
work in attempting to preserve the fine pixel-specific
details and avoid losing any information as much as
possible; thus, we replace the existing standard aver-
age pooling with our novel FlexPooling layer.

3 METHODOLOGY

3.1 FlexPool

FlexPooling, is a revolutionary trainable pooling strat-
egy which is inspired by (Allen et al., 2019) and (Sim-
sek et al., 2021), who found that overparameterized
neural networks converge faster and generalize better
to various datasets. It makes average pooling more
general by learning a weighted average pooling over
the latent feature activations of the network at the
same time. FlexPool improves feature map to class
correspondence by using parameters trained jointly
end-to-end We Replace FlexPooling’s global average
pooling layer with one that is more robust, flexible,
and trainable from beginning to end. In the last step
of convolutions, FlexPool learns the best weights for
a weighted average sum for each feature map. This
helps the model understand how feature maps and cat-
egories are linked. This basic version is described in
Figure 1.

Our methodology consists of two main parts;
firstly, we introduce the concept of the trainable pool-
ing layer, FlexPooling, which aids in the convergence
of our objective function. Secondly, we augment the
CNN implementation with SACs to further demon-
strate the effectiveness of our FlexPooling technique
compared to traditional approaches like global av-
erage pooling. SACs do not require any additional
processing units like dense or convolutional layers;
instead, they immediately take the feature map rep-
resentation (block) at any particular stage, then col-

499

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

lapse it into a flattened vector through a global pool-
ing approach. The detailed description of two ap-
proaches are summarized in Figure 1 and Figure 3,
respectively. First, we present and detail FlexPool-
ing, a novel trainable pooling technique inspired by
the works and findings of (Allen et al., 2019), (Sim-
sek et al., 2021), whom all concluded that overparam-
eterized neural networks achieve easier convergence
and generalize better to different datasets. It serves
as a simple yet effective adaptive pooling method that
generalizes the concept of average pooling by learn-
ing a weighted average pooling over the network’s
latent feature activations jointly with the rest of the
network. FlexPool primarily focuses on improving
the vital yet often overlooked process of feature map
to class correspondence via a global pooling opera-
tion. In FlexPooling, replace the global average pool-
ing layer with a more robust and flexible pooling layer
that is trainable jointly with the rest of the network
in an end-to-end fashion and is fully differentiable.
FlexPool aims to learn the best set of weights in a
weighted average sum for each feature map in the last
stage of convolutions, allowing the model to better
learn the appropriate correspondences between fea-
ture maps and categories. For any given input image
X that is passed through the convolutional operation
for feature extraction, the resulting feature map is a
processed and downsampled version of the input im-
age. As we process deeper through the CNN, the fea-
ture map representation of the input image continues
to shrink along the height and width dimensions (size)
while enlarging along the channel dimension (depth).
During the last stage of processing, a global average
pooling layer is applied to each individual feature map
resulting in a single output for each feature map as a
flattened vector. This global pooling helps the CNN
establish a correspondence between feature maps and
classes as class confidence maps. Finally, the flat-
tened vector is sent to the network’s project head,
which usually consists of a series of non-linearly ac-
tivated dense layers, before being sent to the softmax
function to generate class predictions. This setup is
the most adopted setup when using CNNs. The re-
sulting size of a feature map after being processed by
a convolution operation is given by the following (Ng,
2020):
(N-K+2P) (1)
S
where N is the feature map’s input volume, K is the
convolution’s kernel size, P is the number of padding,
and S represents the stride of the kernel.
In addition to the traditional approach, during the
last stage of processing, we replicate the shape of the
final feature maps to initialize our FlexPooling block

500

such that it matches the final stage’s block shape. The
FlexPooling block consists of trainable parameters,
each initialized to resemble the value of the global
average pooling layer. Hence, every value in the Flex-
Pooling block initially is set to m After-
ward, the dot product is taken between the FlexPool-
ing block and the final stage’s processed block to ob-
tain a weighted block. Finally, we sum across the
size of the weighted block, yielding a weighted av-
erage output for each feature map. The objective is
to have these values be trainable parameters in such
a manner that it aids in the model learning process
during training. However, nothing guarantees that the
FlexPool blocks’ parameters remain as weighted av-
erage values. In fact, due to the stochasticity and the
noise in the training process, it very well might be the
case that some of the parameters can take on negative
values, thus, no longer representing a weighted aver-
age. To tackle this issue, we propose to regularize the
FlexPooling parameters (w/?) by introducing a reg-
ularization term R (FlexPool) in such a way that en-
forces a weighted average when summing the param-
eter values across the size of the FlexPooling block.
This parameter regularization can be accomplished in
a couple of ways. In our experiments, we utilize the
Mean Square Error (MSE) difference to enforce the
desired behavior on the FlexPool parameters:

c /N N 2

R(FlexPool) = Z Z Z w{f‘k —.1 2)
k=1 \i=1j=1

where N is the FlexPool’s volume size, C is the num-

ber of channels in the FlexPool block, and w{ f . is the

weight in the i"" row, j"* column of the k" channel in
the FlexPool block.

3.2 FlexPool with SAC

Here our suggested network takes feature maps from
early stages and compress them into linear representa-
tion via FlexPooling, where no convolutional process-
ing is involved,yet we downsample the feature maps
into single pixel representation.

Compared to basic FlexPooling, here we adopt
FlexPooling with the attachment of Simple Auxiliary
Classifiers(SAC) onto the CNN to further observe the
effects of pooling feature maps at different stages on
accuracy. The loss values at each stage of the CNN
are aggregated to obtain a weighted average loss. Par-
ticular weights A1, A2, and A3, provided as hyper-
parameters, are assigned to each loss function that
emerged from each stage of the CNN. We note that
the following condition of the loss weights must hold

ha¥) hy(hy(X) i)

- b >

(X))
O]

FlexPooling with Simple Auxiliary Classifiers in Deep Networks

Eo

—

i- b Convolution

@ Hadamard product

@ Sum across height and width

() Leamabeparameers
on

—p Dense connecti

S

FlexPooling

Figure 1: Proposed Method: After passing the image X through a series convolutional layers in ResNet20 we initialize a
FlexPooling block composed of learnable parameters that matches the shape of the feature maps in the last stage. Those
parameters are initialized to resemble global average pooling layer (the initialized value for each parameter is heightlm)'
Finally, we take the dot product of the two blocks and sum across the height and width dimensions, resulting in the final
flattened layer before the projection head is applied, yielding the class predictions in gray.

Table 1: FlexPooling: Performance comparison on benchmark datasets, including ImageNet, CIFAR10, Fashion-MNIST,
and CIFAR100. ResNet20 is used as the baseline of this experiment, though any model can be used. It is apparent across all
datasets that adopting FlexPool yields optimal results as compared to the standard average pooling. An increased accuracy
trend emerges when moving across the columns of each row in the table, demonstrating the consistency and effectiveness of

FlexPooling.
Dataset Methods AvgPool FlexPool FlexPool + Reg FlexPool + Reg + Dropout
CFAR10 91.63 91.91 91.87 92.32
Fashion-MNIST 91.38 92.35 93.48 93.98
CFAR100 66.18 66.50 66.73 68.30
ImageNet 46.50 47.03 48.11 48.55
00 Where M is the number of classes, /4 is predicted
oy = Fapoo probability observation of class ¢, and y is true label
B FlexPool + Reg . . 3
=% [=LA o | assigned to class c. In our experiments, the weights
il corresponding to the loss functions from each stage
765 were set to A = 0.1, A, = 0.2 and A3 = 0.7. After
o the aggregate loss is computed from weighted cross
Jove entropy losses at different stages, we back propa-
ue gate the loss through the entire network to update
pogd the model parameters, including FlexPool’s parame-
540 ters. We evaluate our approach on various benchmark
i datasets in image classification, to demonstrate its ef-
i - mll fectiveness.
FashionMNIST CIFAR10 CIFAR100 ImageNet

Figure 2: FlexPooling performance on different benchmark
datasets. As given in Table 1, these plots show consistent
improvement in accuracy with the introduction of FlexPool-
ing and its variants.

to achieve stable learning: A; < Ay < A3. The final
weighted average loss is given by:

Loss =ML (hy (x),y) + ML (hy (b (x)),y)

+A3L(hs (ha (1 (x))),y) (3)
where the loss function L used is the categorical cross-
entropy loss(Zhang and Sabuncu, 2018), given by:

L((h (x) 7y)) = ;YO,C log(ho,c) 4)

4 RESULTS AND DISCUSSIONS

We evaluate our proposed classifier with Flex-
Pooling, on several datasets including, Tiny Ima-
geNet(Le and Yang, 2016), CFAR100(Krizhevsky,
2009), and also very small scale datasets in-
cluding CFAR10(Krizhevsky, 2009) and FashionM-
NIST(Xiao et al., 2017) and compare it with stan-
dard classifier using average pooling. We conduct ex-
tensive evaluation study to evaluate the effect of dif-
ferent components on the performance of our model.
We use accuracy as the evaluation metric for perfor-

501

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

hy(h; (X))

Xr-q [~
_ |

0

©

?ﬁ

E
i)

¢
&

I~ Convolution

@ Hadamard product

@ Sum across height and width

(P 1eamableparameers

— Dense connection

Figure 3: FlexPooling with SACs approach. The cross-entropy loss is calculated for each class prediction (in gray) after
every FlexPooling block and is taken as a weighted sum to obtain the final loss. The loss values obtained from different stages
of the CNN aid the network in learning more abstract concepts by boosting the gradient signal throughout the entire network.

Table 2: FlexPooling wih SAC’s: Performance comparison on benchmark datasets, including ImageNet, CIFAR10, Fashion-
MNIST, and CIFAR100. ResNet20 is used as the baseline of this experiment, though any model can be used. Significant
improvement is exhibited in all datasets when going from AvgPool to FlexPool. While the best improvement is shown in
ImageNet, a consistent improvement in accuracy is also demonstrated in the other datasets.

Datasets/Methods AvgPool FlexPool FlexPool + Reg FlexPool + Reg + Dropout
CIFAR10 89.31% 91.61% 91.86% 92.03%

Fashion-MNIST 93.55% 93.65% 93.48% 93.84%
CIFAR100 63.79% 64.12% 64.53% 65.57%
ImageNet 4513% 47.55% 48.64% 49.01%

94.0
915 = AvgPool

= FlexPool

= FlexPool + Reg

= FlexPool + Reg + DO

89.0
86.5
840
815
79.0
76.5
74.0
715
69.0
66.5
64.0
615
50.0
56.5
54.0
515
49.0
465
440

FashionMNIST CIFAR10 CIFAR100

ImageNet

Figure 4: FlexPooling with SAC performance on different
benchmark datasets. As given in Table 2, these plots show
further consistent improvement in accuracy with the intro-
duction of FlexPooling and its variants.

mance evaluation of our approach. We conduct ex-
periments in two settings, including with FlexPooling
only, FlexPooling with auxiliary classifiers. In each
setting we evaluate different combinations: FlexPool
only, FlexPool with regularization and FlexPool with
regularization and droput.

502

4.1 Experimental Setup and
Implementation Details

We take the input image of size 32x32 in the case
of tiny ImageNet and pass it through the convolu-
tional blocks of ResNet20 in our case, we may use
any other network. We apply our method in two set-
tings : in the single classifier settings an image X is
pass through different convolutional blocks and we
apply FlexPooling at the end before feeding it to the
linear classifier and compute the relevant cross en-
tropy loss. For the FlexPool using SAC our model
takes the feature maps from early stages prematurely
and compresses them into a linear representation via
FlexPooling, where no convolutional processing is in-
volved, only completely downsampling the feature
maps into singlepixel representation. We repeat this
procedure after each available convolutional blocks
and then take the weighted sum of these which give
us our final loss which we use to train our model. For
our case we designate the weights of the loss as A1, A2
and A3 whose values after cross validation we choose

as 0.1, 0.2 and 0.7 respectively. Learning rate use is
0.1 and we use one cycle learning rate.

4.2 Training Details

For the case of FlexPooling method we train our mod-
els for 100 epochs with batch size 1000 for one A100
GPU. For the case of super classing we train it two
steps, in the first stage we train for 10 epochs and then
in the next step we train it for 100 epochs. We use the
ADAM(Kingma and Lei Ba, 2015) optimizer with an
initial learning rate 0.1. We also use augmentation of
random flipping, scaling to improve the generaliza-
tion ability of our model.

4.3 Main Results

As shown in Table 1, we test our model on several low
scale and medium scale bench mark datasets. Where
Backbone use in our case is ResNet20 we may use any
other backbone. The Avg pool shows the accuracy
we obtain with standard average pooling while Flex-
Pool indicates the accuracy obtained after the Flex-
Pooling. Further, results with regularization as well
as with addition of drop out are also given. We can
see in the Table 1 that we get an overall increase of
1.5 to 2% across all range of datasets when we ap-
ply FlexPooling method in single classifier settings.
Further we also give the results for the case when
we apply FlexPooling with multiscaling i.e we take
varied scale outputs after each convolutional blocks
and use FlexPooling individually after each block and
then average these multiscaled losses to get the final
weighted loss. The results for this approach give us
clear increase of 1 - 3 % increase across the range of
all datasets.

4.4 Ablation Study

To further analyze the ability of our proposed method,
we conduct extensive ablation studies on the several
datasets to explore the effects of our components. We
use the official training and validation split and accu-
mulate the evaluation results over the whole training
set. The ablation study results are shown in Table 1,
Table 2 and Table 3. Our baseline model use aver-
age pooling, whereas we introduce the FlexPool and
FlexPool with SAC, replacing standard average pool-
ing to see the effects. Below we discuss the different
ablation studies we perform during the course of our
experiments to validate our method.

FlexPooling with Simple Auxiliary Classifiers in Deep Networks

4.4.1 Effect of FlexPooling

Initially we apply the FlexPooling after the final con-
volutional block before feeding the features maps to
the final projection layer. Results in Table 1 confirm
that FlexPooling improves the performance of our
model for all datsets discussed. We get the highest
increase for the case of ImageNet benchmark which
give us almost 0.5% increase without any regulariza-
tion and dropout. We then apply regularization for im-
proving the generalization and we see further 1% in-

crease which give us 48.11 accuracy compared
to the average pooling which give us 46.5 accuracy.
We see that adding 25 % dropout increases the ac-
curacy to 48.55. Similarly for the case of CFAR100
we get increase of 0.3 % without regularization to
1.8% increase with regularization and dropout. We
see similar trends for the case of other datasets given
in Table 1.

For these settings we get the best results for the
case of Tiny ImageNet which improves the result
by almost 2 %. The FlexPool with regularization
and using drop out of 0.25 outperforms in accuracy
as it is able to learn jointly with entrire network,
thus enhance its ability to exract more meaningful
feature map representations that help with model’s
generalizability and discriminability.

4.4.2 Effect of FlexPooling Using SAC

We further extend our idea of FlexPooling such that
instead of applying it at the end of last convolutional
block before the linear projection layer, we take the
outputs at different depths of model and apply the
FlexPooling at these depths and then we use Cross
Entropy loss (CEL) to contribute in the total loss
which is comprised of average of weighted sum of
all these losses.
Table 2 confirms the improved accuracy obtain by
multiscale FlexPooling while using simple auxiliary
classifiers(SAC). Here network takes feature maps
from early stages and compress them into linear rep-
resentation via FlexPooling, where no convolutional
processing is involved,yet we downsample the feature
maps into single pixel representation. also sustain the
increase but it give us overall increase of 0.75 % to
2.3% increase over the range of all the datasets.
Results in Table 2 confirm that adding FlexPool-
ing stages helps improve the performance of our
model in different ranges. We get the best increase
for the case of Tiny ImageNet dataset which give us
almost 2.3% increase without any regularization and
dropout. We then apply regularization for improv-
ing the generalization and we see further 1.10% in-

503

VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications

crease which give us 48.64 accuracy compared to the
average pooling which give us 46.5 accuracy. We see
that adding 0.25 % dropout and regularization weights
give us nearly 3.5% improvement. Similarly for the
case of CFAR100 we get increase of 0.75 % with-
out regularization to 1.1% increase with regulariza-
tion and dropout. We see similar trends for the case
of other datasets given in Table 1. For these settings
we get the best results for the case of Tiny ImageNet
which improves the result by almost 3.5 %. The con-
sistent improvement across various datasets show the
stability of the method.

S CONCLUSIONS

In this paper, we present FlexPooling approach with
and without simple auxiliary classifier(SAC). Flex-
Pooling with SAC is a straightforward but efficient
adaptive pooling technique that learns weighted av-
erage pooling over activations together with the rest
of the network, thus generalizing the idea of aver-
age pooling with consistent improved performance.
In our approach, we make sure that each successive
layer repeats the most salient information from the
prior activations because pooling is a lossy opera-
tion but essential in separating high-level informa-
tion from low-level information. This improves the
network’s discriminability. Secondly for FlexPooling
with SAC our suggested network takes feature maps
from early stages and compress them into linear rep-
resentation via FlexPooling, where no convolutional
processing is involved, yet we downsample the fea-
ture maps into single pixel representation. The loss
values obtained from early stages of the CNN aid the
network in learning more abstract concepts by boost-
ing the gradient signal throughout the entire network.
Our approach learns jointly with the entire network
end to end, enhancing its ability to adapt and ex-
tract more meaningful feature, map representations
that help with the model’s discriminability and gener-
alizability We validate this claim by extensive exper-
iments in single-classifiers as well as multi-classifier
settings. We obtain the stable, increasing accuracy
trend in both settings from the average pool to flex
pool. We show further improvement in accuracy
when each of above mentioned settings are tested with
three different ablation studies, including FlexPool,
FlexPool with regularization and FlexPool with regu-
larization and dropout. Overall, FlexPool with(SAC)
settings attain higher accuracies on average compared
to a single classifier thanks to improved gradient sig-
nal throughout the CNN. Finally, we demonstrate that
our technique consistently outperforms baseline net-

504

works in image classification across a variety of pop-
ular datasets, resulting in accuracy gains of 1-3%.

REFERENCES

Allen, Z., Zeyuan, L., Yuanzhi, L., and Yingyu (2019).
Learning and generalization in overparameterized
neural networks, going beyond two layers. in ad-
vances in neural information processing systems.

Boureau, Y.-L., Ponce, J., Fr, J. P., and Lecun, Y. (2010a).
A Theoretical Analysis of Feature Pooling in Visual
Recognition.

Boureau, Y.-L., Ponce, J., and LeCun, Y. (2010b). A the-
oretical analysis of feature pooling in visual recogni-
tion. In Proceedings of the 27th International Confer-
ence on International Conference on Machine Learn-
ing, ICML’10, page 111-118, Madison, WI, USA.
Omnipress.

Gholamalinezhad, H. and Khosravi, H. (2020a). Pooling
methods in deep neural networks, a review. arXiv
preprint arXiv:2009.07485.

Gholamalinezhad, H. and Khosravi, H. (2020b). Pooling
Methods in Deep Neural Networks, a Review.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville,
A., and Bengio, Y. (2013). Maxout Networks. 30th In-
ternational Conference on Machine Learning, ICML
2013, (PART 3):2356-2364.

Gulcehre, C., Cho, K., Pascanu, R., and Bengio, Y. (2013).
Learned-Norm Pooling for Deep Feedforward and Re-
current Neural Networks.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Vi-
sual Recognition. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 8691
LNCS(PART 3):346-361.

Ionescu, C., Vantzos, O., and Sminchisescu, C. (2015).
Training deep networks with structured lay-
ers by matrix backpropagation. arXiv preprint
arXiv:1509.07838.

Karen Simonyan & Andrew Zisserman (2018). very deep
convolutional networks for large-scale image recogni-
tion. American Journal of Health-System Pharmacy,
75(6):398-406.

Kingma, D. P. and Lei Ba, J. (2015). Adam: A method for
stochastic optimization. /CLR.

Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. arXiv.

Le, Y. and Yang, X. (2016). Tiny imagenet visual recogni-
tion challenge. arXiv.

Ng, A. (2020). Cs 230 - convolutional neural networks
cheatsheet. Stanford CS230.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2001).
BLEU. Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02,
page 311.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. undefined, 39(6):1137—
1149.

Rippel, O., Snoek, J., and Adams, R. P. (2015). Spectral
Representations for Convolutional Neural Networks.
Advances in Neural Information Processing Systems,
28.

Saeedan, F., Weber, N., Goesele, M., and Roth, S. (2018).
Detail-preserving pooling in deep networks. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9108-9116.

Simsek, Berfin, G., Francois, J., Arthur, S., Francesco,
H., Clément, G., Wulfram, B., and Johanni (2021).
Geometry of the loss landscape in overparameterized
neural networks: Symmetries and invariances. /CML.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P, Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 07-
12-June-2015:1-9.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv.

Zhang, Z. and Sabuncu, M. R. (2018). Generalized cross
entropy loss for training deep neural networks with
noisy labels. Advances in neural information process-
ing systems.

FlexPooling with Simple Auxiliary Classifiers in Deep Networks

505

