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Abstract: With the SARS-CoV-2 pandemic outbreak, video conferencing tools experience huge spikes in usage. Gesture
recognition can automatically translate non-verbal gestures into emoji reactions in these tools, making it easier
for participants to express themselves. Nonetheless, certain rare gestures may trigger false alarms, and acquiring
data for these negative classes in a timely manner is challenging. In this work, we develop a low-cost fast-to-
market generation-based approach to effectively reduce the false alarm rate for any identified negative gesture.
The proposed pipeline is comprised of data augmentation via generative adversarial networks, automatic gesture
alignment, and model retraining with synthetic data. We evaluated our approach on a 3D-CNN based real-time
gesture recognition system at a large software company. Experimental results demonstrate that the proposed
approach can effectively reduce false alarm rate while maintaining similar accuracy on positive gestures.

1 INTRODUCTION

Speakers in all cultures gesture when they talk (Goldin-
Meadow and Alibali, 2013). Even congenitally blind
individuals, who have never seen any gesture, move
their hands when they talk, highlighting the universal-
ity and robustness of hand gesture in communication
(Iverson and Goldin-Meadow, 1998; Goldin-Meadow
and Alibali, 2013). Accordingly, automatic hand ges-
ture recognition becomes an important computer vi-
sion research topic with considerable downstream ap-
plications, such as human-computer interaction, sign
language interpretation, touchless interfaces and non-
verbal communication systems (Min et al., 2020; Liu
et al., 2020).

With the SARS-CoV-2 pandemic outbreak, it be-
comes particularly interesting to incorporate hand ges-
ture recognition into video conference software, such
as Microsoft Teams (Microsoft, ), Cisco WebEx (Cisco
Systems, ), Google Meet (Google, ), and Zoom (Zoom,
), to support automatic reactions for enhanced remote
social touch. The model can be hosted either in the
cloud, such as Microsoft Azure (azu, ), Google Cloud
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(goo, ), and Amazon Web Services (aws, ), or on users’
end devices. There are mature production pipelines
to deploy the model candidates in the cloud for better
maintainability. However, from an economic point
of view, hosting models on users’ end devices is be-
coming more and more attractive as compared to the
high cost of hosting models in the cloud where cloud
service providers have to pay for the electric bills of
data centers.

Despite the economic benefit, serving real-time
hand gesture recognition models faces severe chal-
lenges. Firstly, the model must be small enough to
be deployable to majority of the edge devices, which
could be a smartphone, a desktop, or a web browser.
This ensures consistent user experience across differ-
ent edge platforms. Secondly, the model must be
fast enough to achieve real-time response in order to
provide smooth auto-reactions in a video conference.
Thirdly, the model must be accurate enough to avoid
any misfire so as to avoid bringing embarrassment to
the online video meeting.

There are numerous techniques proposed to ad-
dress the aforementioned small model size and low
latency challenges, such as data dependent or indepen-
dent efficient architectures (Zaheer et al., 2020; Tay
et al., 2020), parallel computing (Rajbhandari et al.,
2020), memory optimization (Pudipeddi et al., 2020),
and model compression techniques, such as knowledge
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distillation (Hinton et al., 2015), quantization (Zafrir
et al., 2019), and pruning (Brix et al., 2020).

The high precision requirement, on the other hand,
turns out to be more challenging in practice. Many
prior arts in the field of hand gesture recognition re-
ported high accuracy numbers on various benchmarks.
Nonetheless, in subjective evaluations with a group of
users, we find that model candidates with high accu-
racy scores on benchmarks can have high false alarm
rates for gestures which are not included in the train-
ing data. For example, a model candidate trained for
recognizing “hand raise” and “thumb up” can get con-
fused by “quote sign” and “peace sign”, which are not
included in the training data. Getting sufficient amount
of data for these negative classes is difficult, as the en-
tire process of data preparation, labeling, verification,
and legal review costs extra time and money.

The majority of recent research efforts in video-
based gesture recognition is focused on 3D hand track-
ing (Boukhayma et al., 2019; Ge et al., 2019; Mueller
et al., 2018), skeleton/pose estimation (Iqbal et al.,
2018; Doosti et al., 2020; Liu et al., 2020; Min et al.,
2020), and accuracy improvement (Narayana et al.,
2018; Abavisani et al., 2019; Tang et al., 2019; Chen
et al., 2019). There is a serious lack of research of ef-
fective approaches to reduce false alarm rate for video-
based hand gesture recognition, which is critical to its
success in video conference software.

In this work, we develop a low-cost fast-to-market
generation-based approach to effectively reduce the
false alarm rate of hand gesture recognition for any tar-
get negative class. We propose a pipeline starting from
data augmentation via generative adversarial networks
(GANs), and followed with an alignment algorithm
to further improve the generation results. To address
the false alarm issue, we must take into consideration
a diverse training set, where deep learning models
can learn representative and diverse patterns and gain
generalization ability to achieve good performance in
real world applications or external independent test
sets. Our proposed pipeline learns to take existing
training data and insert negative gestures to produce
useful samples, which preserve visual features from
original training set, and provide enough information
about negative classes. We find that the generated syn-
thetic data helps deep learning models gain abilities
to recognize unseen negative gestures and distinguish
them from pre-defined positive classes, even when
it does not look perfect by human inspection. We
evaluate our augmentation pipeline with the proposed
3D-Convolutional Neural Network (3D-CNN) model
and a pre-trained real-time vision model, MobileNet,
to demonstrate its superiority in terms of false alarm
reduction.

The contributions of this work are as follows:

• We propose a 3D-CNN model for automatic re-
action function for online meeting applications,
where the 3D-CNN model maps video streams to
hand gesture reactions accurately in real-time.

• We propose a data augmentation pipeline to enrich
training set by generating synthetic hand gesture
data, which preserves the original visual features
from real world data and includes unseen hand ges-
tures. With augmented datasets, we improve our
proposed 3D-CNN model and a bench-marking
model in both internal and external test sets.

• We utilize an alignment algorithm to further im-
prove the quality of our generated synthetic data,
and we demonstrate empirically that our pipeline
significantly reduces false alarm rate while achiev-
ing equivalent or higher accuracy performance.

The rest of this paper is organized as follows. In
Section 2, we provide a overview of related work in-
cluding data augmentation and hand gesture recog-
nition. In Section 3, we introduce the proposed 3D-
CNN gesture recognition model, our GAN-based data
augmentation pipeline and an alignment algorithm to
improve generation quality. In Section 4, we describe
the datasets we used in our experiments and training
details. We also include a ablation study to elaborate
the effectiveness of our proposed pipeline. Section 5
provides a discussion and concludes the paper.

2 RELATED WORK

One of the challenges in real-time hand gesture recog-
nition in online meeting environment is the trade-off
between the accuracy and false alarms. Models that are
sensitive to certain pre-defined positive classes usually
are prone to false alarms, meaning that negative ges-
tures also triggers automatic reactions, e.g., a random
hand wave can trigger “raise hand” reaction. As seen
in other deep learning tasks, training or fine-tuning
models with known and unknown negative gestures
contributes to false alarm rate reduction. Data aug-
mentation methods, such as collecting a new dataset
with negative classes, augmenting existing data with
image processing techniques, and generating synthetic
videos based on current dataset, could enrich the nega-
tive class in training data, and hence help reduce false
alarms.

Synthetic Data Generation. Given the limited
budget of collecting/purchasing new datasets, syn-
thetic data generation emerges to be a preferable
choice. Generative models, such as generative adver-
sarial networks (GANs) and variational autoencoders
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Figure 1: 3D-CNN architecture for hand gesture recognition. We take four central consecutive frames from the input video and
preprocess them with our proposed augmentation pipeline (which will be discussed in the following sections). We then use
augmented and preprocessed data to train the 3D-CNN model. The trained model then predicts a class and connect to down
stream software in online meeting applications.

(VAEs), have shown to have promising results in var-
ious generation applications, e.g., image generation
(Radford et al., 2015; Karras et al., 2017; Kingma
and Welling, 2013; Rezende et al., 2014). Original
GAN models generate realistic results in an uncon-
ditional fashion (Goodfellow et al., 2014), and later
on, conditional GAN models are shown to have better
and controllable results (Mirza and Osindero, 2014).
Latest advanced GAN models that focusing on image
to image translation, or style transfer have shown to
be one of the best performing synthetic data genera-
tion methods. Pix2Pix (Isola et al., 2017) proposed by
Isola et al. in 2017 is a not application specific image-
to-image translation GAN framework. For instance,
Pix2Pix can generate colorized photos from black and
white images or even from sketches. The paired input-
output is one of the key components behind the success
of Pix2Pix. However, paired data is not always freely
available in most of the application areas. CycleGAN
(Zhu et al., 2017) developed in 2020, breaks the limi-
tation of requiring paired input and successfully learns
various image-to-image translation tasks with unpaired
examples. Although image-to-image translation GAN
works usually can be applicable to various domains, re-
search work on controllable hand gesture generation or
style transfer remains sparse. GestureGAN (Tang et al.,
2020) proposed by Tang et al. is a keypoint/skeleton
guided image-to-image translation framework which
can generate realistic images with designated gestures.
In this work, we exploit GestureGAN for our synthetic
negative gesture augmentation.

Hand Gesture Recognition. Researchers have
used different approaches to solve the hand gesture
recognition task. Most of these approaches operate
under specific constraints or require special hardware
or gloves. In (Poon et al., 2019), Poon et al. proposed
a bimanual hand gesture recognition technique where
they fit independent SVM classifiers on the shape and
color-encoded features. Recently, deep learning meth-
ods based on Recurrent Neural Network (RNN) and

Convolutional Neural Network (CNN) have been ex-
tensively used and achieved remarkable results in hand
gesture recognition. In (Karpathy et al., 2014), Karpa-
thy et al. applied CNNs to extract spatial features
from individual frames and fuse the temporal infor-
mation. They explored different approaches for fus-
ing information over temporal dimension through the
network and concluded that the slow fusion method
can get more global information in both spatial and
temporal dimensions. In (Simonyan and Zisserman,
2014), Simonyan et al. proposed a two-stream Con-
vNet architecture which incorporates spatial and tem-
poral networks. They capture the complementary in-
formation on appearance from still frames and mo-
tion between frames using optical flow. (Wang et al.,
2015; Zhang et al., 2016; 139, 2016) extend the two-
stream networks by integrating improved trajectories,
motion vector and motion history image, respectively.
In (Köpüklü et al., 2018), Köpüklü et al. involve
both the motion data in the optical flow and the RGB
frames. They fuse the information at the data level,
then they adapt the pre-trained inception architecture.
However, these methods require heavy preprocessing
steps which make them unsuitable for real-time hand
gesture detection. In this paper, we propose the use
of a light-weight 3D-CNN to learn both spatial and
temporal features. Then we apply static quantization
to reduce the model size and latency.

3 PROPOSED METHOD

In this work, we propose a 3D-CNN model along with
GAN-based data augmentation pipeline for automatic
reaction function for online meeting applications. The
design of 3D-CNN ensures real-time accurate hand
gesture recognition, and when trained with data aug-
mentation pipeline produced data, it achieves accurate
recognition with low false alarm rates when tested in
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online meeting setup. To further improve the quality
of generated data, we develop an alignment algorithm
to align input images and goal gesture images before
sending these pairs to the GAN model. In this sec-
tion, we first introduce the proposed 3D-CNN model
in Section 3.1, then we describe our GAN-based data
augmentation pipeline and alignment algorithm in Sec-
tion 3.2 and Section 3.3.

3.1 3 D-CNN

We propose the use of 3D-CNNs for hand gesture
recognition to capture both spatial and temporal infor-
mation from video frames. The input of this model is
a sequence of RGB frames captured from the user’s
camera feed. We also employ data augmentation tech-
niques for a more effective training and to reduce po-
tential overfitting. Figure 1 illustrates our approach
which consists of three main phases: video preprocess-
ing, feature learning, and classification.

The video processing step consists of converting
the input video into RGB frames sequences, we take
four successive frames as input and resize each frame
to:

(w,h) = (
width∗100

height
,100)

The input size is variable to assure the processing of
videos with different aspect ratio (e.g., mobile, desk-
top). The RGB channels of each frame are also normal-
ized. The resizing and normalization reduce the com-
putation cost and training convergence of the model.

Our model consists of six 3D convolution layers
and two fully connected layers followed by an adaptive
average pooling layers to handle frames of different
input sizes. The features extracted are then fed into
a softmax layer for classification which outputs the
probability of each class. To avoid overfitting and en-
hance the model generalization on test data, we apply
dropout after the fully connected layer.

3.2 Augmentation

As shown in Figure 1, before the 3D-CNN takes RGB
frame sequences as input and generates hand gesture
recognition results, an augmentation step is performed
to insert more diversity to data and improve model
performance.

Data Processing. Data processing is an important
part of the training phase. First, we duplicate the data
by applying horizontal flipping to gestures that require
one hand only. This step ensures that the training set is
inclusive of both left and right hands. Furthermore, to
ensure the diversity of our dataset, we apply lighting

augmentation techniques, small translation and rota-
tion. Moreover, to account for people who are far away
from the camera, we apply padding. These image pro-
cessing techniques are shown to be effective in data
augmentation for computer vision tasks. To further
tackle the false alarm issue in gesture recognition, we
generate synthetic hand gesture data by inserting neg-
ative gestures into data with positive gestures. This
brings the data augmentation into the next level and
we will introduce it in the following section.

Synthetic Data Generation. In this work, we ex-
ploit the power of GAN and utilize GestureGAN (Tang
et al., 2020) to generate synthetic data. GestureGAN
is a keypoint/skeleton-guided controllable image to
image translation method which takes pairs of image
and skeleton and generates a image with the target
gesture indicated in the skeleton image. It extends the
idea of conditional GAN and CycleGAN (Zhu et al.,
2017) and achieves outstanding generation results par-
ticularly in hand gesture translation.

Thus, we adopt and extend this controllable image
to image translation to generate video frames contain-
ing the goal negative gestures while preserving the
visual features extracted from source image frames as
shown in Figure 2. Given a seed (source) video with
any positive gesture, our goal is to replace the hand
gesture in the seed video with the designated goal
gesture, by utilizing a controllable image to image
translation model, GestureGAN. For example, input
image I contains finger raise gesture (gin), and the
designated output gesture gout is peace sign, then the
GAN generated image as shown in Figure 2 contains
peace sign and preserves the visual features from I .
The generation process is as follows.

• Step 1. Pre-process the seed video and extract the
central f frames with the original positive gesture,
e.g., f image frames containing finger raise gesture
gin, each of the frames is notated as I . Identify goal
gesture s and generate a skeleton image K of the
goal gesture, e.g., peace sign.

• Step 2. Detect hand gesture positions in the f seed
frames and detect the skeleton position in the goal
gesture image.

• Step 3. Utilize image processing techniques such
as shrink, padding, and crop, to align f seed
frames and the skeleton image K according to
the hand/skeleton relative position.

• Step 4. Use GestureGAN to generate f goal
frames with the goal gesture, e.g., peace sign,
while preserving the visual features of seed frames.

The first step into the generation using GestureGAN
is to pre-process the videos into image frames since
GestureGAN is a image-based model. From our gen-
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Figure 2: Synthetic data generation and alignment. With images containing positive gestures, e.g., finger raise, we generate
synthetic data preserving the visual features from original images and containing designated negative gestures, e.g., peace sign.
We first detect hand gesture in input image I and detect skeleton s in skeleton image K , then based on the position and size of
the detected hand and skeleton, we align the input image to make the hand gesture in it has similar size and position as s. We
denote the processed input image as I ′ and GestureGAN takes the input pair [I ′,K ] and generate an image containing the goal
gesture, peace sign. The generated images are then processed and added into augmented dataset for later model training.

eration experience, we find that raw generation with
random input pairs of image and skeleton, i.e., [I ,K ],
leads to unfavorable results, which is caused by the
mismatch of gesture positions between the input image
and input skeleton. Therefore, we propose to detect
hand gestures (gin) and hand skeletons (s) in the input
pairs (Step 2) and then align the input pairs according
to the gesture-skeleton position (Step 3) before feeding
into the generation model. To make our framework
more easy to transfer, we utilize an open sourced hand
detection package MediaPipe (Lugaresi et al., 2019)
in Step 2. Note that any hand detection model that pro-
duces bounding boxes (bb = [x0,y0,x1,y1], where x0,
y0, x1, y1 represent top left and bottom right landmarks
of the bounding box) for hands is applicable in this
step. We introduce in detail our alignment algorithm in
Section 3.3. Step 4 produces an augmented set, which
we denote as D∗.

3.3 Alignment

In this section, we introduce our alignment algorithm
in detail. Assume we have a input pair, [I ,K ], with
a image containing a original hand gesture gin, and
a skeleton image containing a goal gesture skeleton
s. The alignment algorithm is shown in Algorithm
1. Note that this algorithm utilizes image processing
methods to modify input image I . We can also process
skeleton image K , which we find to provide similar
results in the end for generation. Once we have the
aligned image-skeleton pair [I ′,K ]1, we feed Gesture-
GAN with these processed input pairs and generate
image frames containing similar visual features as I ′
and a new hand gesture gout , which is conditioned on
the goal gesture s.

1We denote the processed output image as I ′ to represent
it is modified base on I .

In alignment, we first use handDetect(·) to pro-
duce the bounding box (bbI ) of the positive hand
gesture in I and use skeletonDetect(·) to predict the
bounding box (bbK ) of the negative skeleton gesture
in K . Note that handDetect(·) can be any hand de-
tection algorithm that produces a bounding box of
the detected hand. In this work, we use MediaPipe
(Lugaresi et al., 2019) as our hand detection model.
We develop a simple skeletonDetect(·) algorithm to
detect the left top and right bottom white pixels in a
skeleton image as bounding box indices. With bbI
and bbK , we calculate the position of gin and s. Note
that in our alignment, we process input image I in-
stead of K , therefore, our calculated width and height
offsets are for I . With width and height offsets, we
align I by image processing techniques, i.e., padding
and cropping, to reshape and resize I in order to make
the hand position in I similar to the skeleton position
in K . We denote our aligned image as I ′ and pass
it to GestureGAN for generation. Because there are
paddings in I ′, the GestureGAN generated data has
similar patterns as well as shown in Figure 2.

4 EXPERIMENT

In this section, we first introduce the datasets we used
for training and test, the training details of two gesture
detection models we considered, and the evaluation
metrics. Then we provide ablation study to justify the
benefit of our alignment algorithm and demonstrate
the results of the proposed data augmentation pipeline.

4.1 Dataset

We train and evaluate our proposed framework on three
benchmark datasets: Jester dataset (Materzynska et al.,
2019), NTU Hand Digit (Ren et al., 2013), and Cre-
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Algorithm 1: Align input image I and input skeleton K
according to the positions of (original) hand gesture
gin and (goal) hand skeleton s.

Input :Image-skeleton pair [I ,K ].
Output :Aligned image-skeleton pair [I ′,K ].

1 Hand and skeleton detection
2 bbI = [x0

I ,y
0
I ,x

1
I ,y

1
I ]← handDetect(I )

3 bbK = [x0
K ,y0

K ,x1
K ,y1

K ]← skeletonDetect(K )

4 end
5 Image-skeleton alignment
6 Size of I = [WI ,HI ]
7 Size of K = [WK ,HK ]

8 Position of gin = [xpos
I ,ypos

I ]←
[(x0

I + x1
I )∗WI /2),(y0

I + y1
I )∗HI /2)]

9 Position of s = [xpos
K ,ypos

K ]←
[(x0

K + x1
K )∗WK /2),(y0

K + y1
K )∗HK /2)]

10 Width offset ∆w = xpos
I − xpos

K
11 Height offset ∆h = ypos

I − ypos
K

12 Process I for alignment:
13 if ∆w > 0 then
14 I ′← Pad I with ∆w on the right hand side

. Pad
15 I ′ = I ′[:,∆w :] . Crop
16 else
17 I ′← Pad I with ∆w on the left hand side .

Pad
18 I ′ = I ′[:, : ∆w] . Crop
19 end
20 if ∆h > 0 then
21 I ′← Pad I ′ with ∆h on the bottom . Pad
22 I ′ = I ′[∆h :, :] . Crop
23 else
24 I ′← Pad I ′ with ∆h on the top . Pad
25 I ′ = I ′[: ∆h, :] . Crop
26 end
27 end

ative Senz3D (Memo and Zanuttigh, 2018). Jester
datasets is a diverse hand gesture video dataset which
contains 27 classes. We select three positive gesture
classes, i.e., hand raise, finger raise, and thumb up,
and one negative gesture class, i.e., no gesture, for our
real-world online meeting application scenarios. All
positive gesture should trigger a reaction, e.g., hand
raise and finger raise both trigger “Raise Hand” re-
action, and thumb up triggers “Thumb Up” reaction.
We split Jester dataset into Jester_train and Jester_test
sets for training and test purposes. NTU Hand Digit
dataset has diverse hand gestures including digits from
zero to nine. We take all hand gestures (except digit 1,
digit 5, and thumb up) as no gesture, and utilize digit
2, digit 3, digit 4, and rock roll gesture (with thumb,
index finger, and little finger) as negative goal gestures
for generation purposes. I.e., hand gestures for digit 2,
3, 4, and rock roll gestures are NTU_train, with which

we utilize the skeleton images (K ) of NTU_train set
in data augmentation. The rest gestures are used as
test data (NTU_test). Later on, alignment algorithm
shown in Algorithm 1 takes paired input [I ,K ] and
produces [I ′,K ] to train models. Creative Senz3D
dataset contains ten different gestures, and we use this
dataset as an independent test set to evaluate models
and their augmented variants. Note that in all datasets,
gestures that are not positive gestures are labeled as
negative gesture.

4.2 Training Details

We consider two real-time models, 3D-CNN and Mo-
bileNetv2 (Sandler et al., 2018), for their real-time
advantage to evaluate our augmentation pipeline in on-
line meeting automatic reaction application. For Mo-
bileNetv2, we take the pre-trained version to further
study the effectiveness of the propose augmentation
pipeline. We train all models with Jester_train, which
results in baselines without augmentation and we de-
note them as “ Original Model” in later experimental
result comparisons, and augmented dataset, which con-
tains Jester_train and D∗. We use the positive gesture
finger raise as base in all generations.

For 3D-CNN, we use stochastic gradient descent
(SGD) with an adaptive learning rate. We set the value
of the initial learning rate to 10−2, 10−5 for decay,
and 0.9 for momentum. We train the model for 100
epochs with early stopping. For MobileNetv2, we
take ImageNet (Russakovsky et al., 2015) pre-trained
model from Tensorflow (tf, ) and fine-tune it with the
same setup used in 3D-CNN training.

Usage of GestureGAN. GestureGAN is an image-
based model, so we utilize it to generate image frames
as input to downstream models. The original de-
sign of GestureGAN makes it take a paired input,
[IA,IB,KA,KB], in both training and generation phase,
where IA is the input with a positive gesture, IB is the
output with a negative gesture, KA is the input skeleton
image of IA, and KB is the input skeleton image of IB.
However, in our application we do not need this paired
input since we only require the generation of IB based
on input pair [IA,KB]. Therefore, we replace IA and
KA with blank placeholder images.

Evaluation Metrics. Accuracy, false positive rate,
weighted precision, and weighted f1 score are used to
evaluate the models quantitatively.

4.3 Ablation Study

In this section, we first study the effectiveness of our
proposed alignment algorithm and inspect whether the
performance of 3D-CNN is affected by the quality
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of GAN generated data. To do this, we compare the
generation quality of GestureGAN with and without
the alignment algorithm. Next, we evaluate the benefit
of different goal gestures by comparing “Peace sign”,
“OK sign”, “4 fingers”, and “Rock roll sign”.

How Does Alignment Affect Model Perfor-
mance? The proposed alignment algorithm is in-
tended to improve the generation quality of Gesture-
GAN and further help with hand detection model train-
ing. We will elaborate the benefit of alignment by
comparing the performance of 3D-CNNs trained with
D∗ and D .

We take “Peace sign” augmented 3D-CNNs and
demonstrate the advantages of alignment by compar-
ing 3D-CNNs trained with D∗ (with alignment) and D
(without alignment). From the results shown in Table 1,
we see that model trained with D∗ achieves higher re-
sults most of the time. Especially in NTU_test, it
reduces FPR by 18.44% compared to model trained
with D . In the external Senz3D test set, model trained
with D∗ beats model trained with D in terms of all
evaluation metrics we considered. These results elabo-
rate the advantage of alignment in improving the hand
detection model’s performance. Because in real-world
applications, we put final detection performance at
a higher priority, alignment algorithm although adds
some workload in the offline data pre-processing stage,
we are convinced by its benefits brought to the online
detection stage.

Different Goal Gesture Improves Model In Dif-
ferent Ways. We find in our experiments that different
hand gesture has different effect in improving the mod-
els. In this section, we show the results empirically.

In this ablation study, we use four goal gestures
separately in augmentation to enhance the 3D-CNN
model, and we find different gesture improves models
in different ways. Experimental results of accuracy,
precision, false positive rate (FPR), and f1-score, of
original and augmented 3D-CNN are shown in Ta-
ble 2. We test our models with three datasets, where
Jester_test and NTU_test provides general test results
and an external Senz3D dataset helps evaluate the gen-

Table 1: Experimental results of “Peace sign” augmented
3D-CNN. D∗ and D denote that the augmented models
are trained with and without alignment. This comparison
evaluates the contribution of the alignment algorithm and
we can that the models benefit from alignment and achieves
higher performance most of the time.

Test Train Accuracy FPR Precision F1 Score

Jester_test D∗ 94.18% 3.31% 94.65% 94.27%
D 93.84% 3.01% 94.48% 93.96%

NTU_test D∗ 55.41% 2.98% 41.36% 41.32%
D 49.66% 21.42% 63.24% 43.67%

Senz3D D∗ 44.13% 60.06% 50.95% 42.38%
D 38.26% 67.99% 45.47% 36.30%

eralization ability of our augmented models. The re-
sults demonstrate that all four goal gestures improve
the model, and “OK Sign” provides the best results
compared to other gestures. It reduces FPR to 0% in
NTU_test and improves FPR by 32.93% in the external
Senz3D dataset, which indicates that the augmented
model not only performs well with seen gestures, but
also provides great performance when working with
unseen gestures.

4.4 Results on Pre-Trained Model

MobineNetv2 is known to be fast and effective in
computer vision applications, in this work, we test
our augmentation pipeline on MobileNetv2 and com-
pare with 3D-CNN variations. Because MobineNetv2
is an image-based model, we take four consecutive
frames as input and each frame is processed by a
MobineNetv2 block independently. The results of
pre-trained and fine-tuned MobileNetv2 are shown in
Table 3. “OK sign”, “4 fingers”, and “Rock roll sign”-
based augmentations all improve MobineNetv2 and
achieve better performance in Jester_test, NTU_test,
and Senz3D. However, comparing to 3D-CNN vari-
ants, MobineNetv2 variants although achieve better
results under Jester_test, they all suffer from weak
generalization ability, i.e., augmented MobineNetv2
variants have relative higher FPR in NTU_test and
Senz3D. Overall, our proposed augmentation pipeline
provides improvements in terms of all evaluation met-
rics under all datasets we tested with, while differ-
ent goal gesture provides different improvements and
both un-pre-trained model (3D-CNN) and pre-trained
model (MobileNetv2) can benefit from our pipeline.

5 CONCLUSIONS

Serving real-time hand gesture recognition models
faces several challenges in video conference software,
such as real-time recognition, accurate prediction with
low false alarm rate. Achieving these goal all together
needs a serious amount of work in model developing
and data collecting in a commercial setup. In this work,
we develop a low-cost fast-to-market hand gesture
recognition model to achieve real-time accurate pre-
diction and propose a generation-based data augmen-
tation pipeline to reduce false alarm rates without cost-
ing extra dollars in data collection. We demonstrate
empirically that the models trained with augmented
dataset achieve better results 95% of the time, and the
false alarm rates reduce significantly. It is known that
GAN-generated data sometimes does not look perfect
via human inspection. In our experiments, we find
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Table 2: Comparison of 3D-CNN and its variants trained with augmented datasets with four different negative gestures. Original
model is 3D-CNN trained without data augmentation pipeline and it is the baseline we compare with. 3D-CNN variants trained
with augmented data in general achieves better results, especially in NTU test set and Senz3D dataset. “OK sign” among all
four negative gestures provides relatively better results in augmentation. 3D-CNN model trained with “OK sign” augmented
data results in extremely low FPR in both NTU test set and Senz3D dataset.

Jester Test Set NTU Hand Digit Test Set Creative Senz3D Dataset
3D-CNN Accuracy FPR Precision F1 Score Accuracy FPR Precision F1 Score Accuracy FPR Precision F1 Score

Original Model 94.08% 2.81% 94.70% 94.20% 45.61% 29.76% 35.74% 40.00% 55.26% 39.33% 54.91% 53.32%
Peace Sign 94.18% 3.31% 94.65% 94.27% 55.41% 2.98% 41.36% 41.32% 44.13% 60.06% 50.95% 42.38%
OK Sign 94.02% 3.71% 94.45% 94.11% 56.76% 0.00% 32.21% 41.10% 70.04% 6.40% 58.66% 62.50%
4 Fingers 94.10% 4.01% 94.59% 94.21% 55.41% 2.98% 35.66% 41.11% 65.59% 15.55% 57.24% 60.89%

Rock Roll Sign 93.91% 2.91% 94.51% 94.03% 56.76% 0.60% 38.43% 41.76% 65.79% 16.46% 57.47% 61.25%

Table 3: Comparison of MobileNetv2 and its variants trained with augmented datasets with four different negative gestures.
MobileNetv2 in these experiments are pre-trained with ImageNet and fine-tuned with our hand gesture dataset. From the
results we can see that variants trained with augmented data achieves better results in all three test sets we considered. For
pre-trained MobileNetv2, no single negative gesture emerges to be a clear winner, “OK sign”, “4 fingers”, and “Rock roll sign”
all appeared to be beneficial.

Jester Test Set NTU Hand Digit Test Set Creative Senz3D Dataset
MobileNetv2 Accuracy FPR Precision F1 Score Accuracy FPR Precision F1 Score Accuracy FPR Precision F1 Score

Original Model 95.80% 0.70% 96.24% 95.88% 43.58% 56.55% 52.14% 46.35% 45.95% 58.84% 51.83% 43.72%
Peace Sign 95.78% 1.60% 96.12% 95.84% 30.07% 74.40% 45.46% 32.51% 55.47% 40.85% 54.76% 53.08%
OK Sign 95.53% 1.50% 95.95% 95.61% 48.99% 33.33% 54.88% 50.17% 52.23% 41.16% 53.62% 50.97%
4 Fingers 96.14% 0.30% 96.54% 96.21% 34.80% 51.79% 43.27% 33.29% 38.87% 67.68% 48.33% 36.97%

Rock Roll Sign 96.05% 1.20% 96.43% 96.12% 31.76% 60.12% 56.93% 35.20% 60.32% 34.15% 66.94% 58.87%

that models can still benefit from those imperfect data
and learn useful features to gain generalization ability.
Therefore, our future work could start from studying
which visual features are most significant and effective
for hand gesture detection models to eliminate false
alarms while maintaining high accuracy.
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