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Abstract: We consider the inventory control problem for multi stage Supply Chains (SC) whose dynamics is character-
ized by uncertainties on the perishability factor of stocked goods and on the customer forecast information.
The control problem is to define a replenishment policy keeping the inventory level as close as possible to a
desired value and mitigating the Bullwhip Effect (BE). The solution we propose is based on Distributed Ro-
bust Model Predictive Control (DRMPC) approach. This implies solving a constrained min-max optimization
problem. To drastically reduce the numerical complexity of this problem, the control signal is parametrized
using B-spline functions.

1 INTRODUCTION

MPC techniques for multi stage SC are usually im-
plemented according to three different control archi-
tectures: centralized, decentralized and distributed.
The first two are discussed in (Alessandri et al.,
2011),(Fu et al., 2014),(Fu et al., 2016),(Mestan et al.,
2016),(Perea-Lopez et al., 2003). The main limita-
tions of centralized approach are: numerical com-
plexity, computational cost, reluctance to share infor-
mation. Decentralized approach does not have these
drawbacks but causes a loss of performance because
control agents decide control actions independently
on each other. Thus, the interest has recently focused
on Distributed MPC (DMPC) (Fu et al., 2019),(Fu
et al., 2020),(Kohler et al., 2021).The above men-
tioned papers do not take into account the presence
of deteriorating items in the inventory system. On
the other hand, if the effect of perishable goods is not
taken into consideration, a serious degradation of the
supply chain system is observed. Centralized MPC of
inventory level for perishable goods has been inves-
tigated in (Hipolito et al., 2022; Lejarza and Baldea,
2020). These latter papers assume an exactly known
deteriorating factor. However, this simplifying as-
sumption is not satisfied in the overwhelming part of
practical cases (Chaudary et al., 2018).
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Given the previous literature, the purpose of this
paper is to propose a DRMPC approach for the op-
timal inventory control of a multi stage SC with de-
teriorating items. Extending previous results on sin-
gle stage SC (Ietto and Orsini, 2022), our purpose
is to define a DRMPC policy optimally conciliating
the three following antagonist Control Requirements
(CR) at each stage: CR1) maximize the satisfied de-
mand issued by the neighboring downstream stage,
CR2) minimize the on hand stock level, CR3) miti-
gate the BE.

The first step to face this problem is to define a
suitable predictive information on the end-customer
demand. In this paper we only assume that at any time
instant k ∈ Z+ and over a finite prediction horizon, the
future end-customer demand entering the first stage
of the SC is arbitrarily time varying inside a given
compact set D1,k. Coherently with this assumption
we conciliate CR1 and CR2 defining a desired inven-
tory level that, for the first stage of the SC, is given
by the upper bounding trajectory of D1,k. Then, the
target inventory level of each other upward stage is it-
eratively defined on the basis of the predicted demand
coming from the previous downstream stage. Satis-
fying CR3 is a problem of a paramount importance in
the multi-stage SC management as testified by the im-
pressive amount of relevant literature, (Dejonckeere
et al., 2003),(Giard and Sali, 2013).

We face this problem simultaneously acting on
two Fundamental Features (FF) of BE.
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FF1) irregularity of stock replenishment orders,
FF2) progressive upward amplification of the inter-
vals over which the replenishment orders issued by
each stage take values.

FF1 is addressed defining a replenishment policy
parametrized in terms of smooth functions and defin-
ing a cost functional penalizing excessive differences
between consecutive orders. As for FF2, we prove
that, using our approach, the upward interval ampli-
fication is proportional to the perishability rate. The
interesting corollary is that, in the case of non perish-
able goods, the values of orders issued by all stages
may be contained in the same fixed amplitude inter-
val. Coherently with the assumptions on the uncer-
tainties and with the CR’s , we develop a DRMPC ap-
proach based on a min-max optimization procedure:
the control law is obtained minimizing the worst case
of a quadratic cost functional, which is computed by
maximizing with respect to all the possible perisha-
bility factor values. Another significant novelty of
our approach is the parametrization of the replenish-
ment policy as a polynomial B-spline function. The
main reasons for this choice are: 1) polynomial B-
splines are smooth functions 2) B-splines are admit
a parsimonious parametric representation. given by a
time varying, linear, convex combination of some pa-
rameters named ”control points”. These properties al-
low us to obtain a replenishment order with a smooth
waveform and to transfer any hard constraint on the
control law to its control points. This is very use-
ful to deal with FF2 of BE. Property 2 also allows
us to reformulate the constrained minimization of the
cost functional with respect to the replenishment or-
der signal as a Weighted Constrained Robust Least
Square (WCRLS) estimation problem. that can be
efficiently solved using interior point methods (Lobo
et al., 1998).

2 PRELIMINARIES

2.1 B Splines Functions

A scalar, continuous time, B-spline curve is defined
as a linear combination of polynomial basis functions
and control points, (De-Boor, 1978):

s(t) = Bd(t)c, t ∈ [t̂1, t̂ℓ+d+1]⊆ IR, (1)

where c = [c1, · · · ,cℓ]T and Bd(t) =
[B1,d(t), · · · ,Bℓ,d(t)]. The ci’s are real numbers
representing the control points of s(t), the integer d is
the degree of the B-spline, the (t̂i)ℓ+d+1

i=1 are the non
decreasing knot points and the basis functions Bi,d(t)
are computed by the Cox-de Boor recursion formula.

Remark 1. Eq. (1) shows that, once the degree d
and the knot points t̂i have been fixed, the scalar B
spline function s(t), t ∈ [t̂1, t̂ℓ+d+1], is completely de-
termined by the corresponding vector c of ℓ control
points.

2.2 The RLS Problem

Consider a set of linear equations D f ≈ b, with D ∈
IRr×m, b∈ IRr, m> r, subject to unknown bounded er-
rors: ∥δD∥ ≤ β and ∥δb∥ ≤ ξ (where the matrix norm
is the spectral norm). The RLS estimate f̂ ∈ IRm is
the value of f minimizing

min
f

max
∥δD∥≤β, ∥δb∥≤ξ

∥(D+δD) f − (b+δb)∥, (2)

In ((Lobo et al., 1998), p. 206), it is shown that prob-
lem (2) is equivalent to minimizing the following sum
of Euclidean norms

min
f

∥D f −b∥+β∥ f∥+ξ (3)

Possible linear constraints on f can be taken into ac-
count imposing

f ≤ f ≤ f̄ . (4)

3 THE SYSTEM MODEL

As shown in Fig. 1, we consider an SC network con-
sisting of a cascade of stages (nodes) Si, i = 1, · · · ,n,
characterized by counter-current order and material
streams. Management decisions for each node are
taken periodically at equally distributed time instants
kT where k ∈ Z+ and T is the review period. At the
beginning of each review period [kT, (k + 1)T ) the
operations across the SC network are performed se-
quentially from S1 to Sn. Inside each review period,
each Si executes five actions in the following order:
receives delivery from supplier Si+1, logs the demand
of customer Si−1, measures its on hand stock level,
delivers the goods to meet demand and finally places
an order according to a suitably defined replenishment
policy. Accordingly, five variables are defined: si(k),
di(k), yi(k), hi(k) and ui(k). They represent the ship-
ment of goods from supplier Si+1, the demand from
Si−1, the on hand stock level, the delivery to customer
Si−1 and the replenishment order, respectively. Each
node Si is regulated by an agent Ai that solves a local
RMPC problem based on the following assumptions:
- A1) At any time instant k, and limitedly to an M1-
steps prediction horizon [k+1,k+M1], the unknown
future end-customer demand d1(k+ j), j = 1, · · · ,M1,
fluctuates within a compact set D1,k limited below and
above by two known boundary trajectories: d−

1 (k+ j)
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Figure 1: Distributed control scheme of the n-subsystems SC network.
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Figure 2: (a) Example of a set D1,k, (b) Example of a set Di,k, i > 1.

and d+
1 (k+ j), j = 1, · · · ,M1. The minimum value of

d−
1 (k+ j) and the maximum value of d+

1 (k+ j), j =
1, · · · ,M1, are denoted by d−

1,k and d+
1,k (points a and

b of Figure 2.(a) respectively). The demand forecast-

ing D1,k
△
= [d1(k+1|k), · · · ,d1(k+M1|k)] for agent A1

is assumed to coincide with the central trajectory of
D1,k namely D1,k = [d̄1(k+1), · · · , d̄1(k+M1)]. Fig-
ure 2.(a) shows a typical example of an end-customer
demand d1(k+ j) and of a predicted end-customer de-
mand d̄1(k+ j) over a fixed D1,k.
- A2) At any time instant k, the predicted demand
Di,k = [di(k + 1|k), · · · ,di(k + Mi|k)] for the other
agents Ai, i = 2, · · · ,n, coincides with the pre-
dicted optimal control sequence (i.e. the optimal

predicted replenishment policy Ui−1,k
△
= [ui−1(k +

1|k), · · · ,ui−1(k+Ni−1 −1|k)] transmitted by Ai−1 to
Ai where Mi = Ni−1 − 1. Note that also Di,k belongs
to a given compact set Di,k limited by the imposed
lower and upper values u−i−1,k and u+i−1,k respectively
(as shown in Fig. 2.(b)). How to compute Ui−1,k,
u−i−1,k and u+i−1,k is explained in Section 4.
- A3) The goods shipped from supplier Si+1 arrive
at customer Si with a time delay Li = niT , where
ni ∈ Z+. Goods arrive at customer Si new and de-
teriorate while kept in stock.
- A4) Inside each review period, the perishability rate
of the goods stocked in Si is αi ∈ [α−

i ,α
+
i ]⊂ (0,1).

- A5) The operations of inventory replenishment and
goods delivery are executed simultaneously at the be-
ginning of each review period. Sales are not backo-
rdered.
The above assumptions imply that the stock level dy-
namics of the i-th node is described by the following

uncertain equation

yi(k+1) = ρi(yi(k)+ si(k−Li)−hi(k)) (5)

where:
- yi(k) is the on hand stock level of Si, i.e. the amount
of goods left in stock after satisfying the demand at
the beginning of the k−1 review period;
- si(k−Li) is the goods delivered to the stage Si with
a time delay Li;
- the sum yi(k) + si(k − Li) represents the effective
amount of goods available for sale at the beginning
of k-th review period;
- hi(k) is the demand fulfilled by Si, i = 1, · · · ,n

hi(k)
△
= min{di(k),yi(k)+ si(k−Li)} (6)

where d1(k) is the end-customer demand, di(k) =
ui−1(k), i = 2, · · · ,n, is the demand issued by Si−1;

- ρi
△
= 1−αi ∈ [ρ−

i ,ρ
+
i ] is the uncertain decay factor.

For future developments we now rewrite equation (5)
assuming A6): there exists a k̄ ≥ 0 such that

yi(k)+ si(k−Li)≥ di(k), ∀k ≥ k̄, i = 1, · · · ,n (7)

By (6) and (7) we have hi+1(k) = di+1(k). As
di+1(k) = ui(k) and hi+1(k) = si(k) (see Fig. 1) we
also have si(k−Li) = ui(k−Li). Hence an equivalent
expression of (5) is

yi(k+1) = ρi(yi(k)+ui(k−Li)−hi(k)), ∀k ≥ k̄ (8)

Assumption A6) is justified because, at each stage,
the control sequence is obtained minimizing the max-
imum weighted ℓ2 norm of the distance between the
on-hand stock level and the maximum demand.
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4 PROBLEM SETUP

To simplify the derivation of the control strategy we
refer to (8) in the ideal case k̄ = 0. Each Ai uses
equation (8) and the predicted optimal control pol-
icy Ui−1,k communicated by Ai−1 to predict the fu-
ture inventory level of the local subsystem Si. This
latter is in turn used to compute Ui,k minimizing the
worst case of a local quadratic cost functional subject
to hard constraints u−i,k and u+i,k. Coordination between
contiguous agents Ai−1 and Ai, is imposed by relat-
ing the respective constraints u−i−1 and u+i−1,k with u−i,k
and u+i,k. Each local RMPC requires each agent Ai to
repeatedly solve a Min-Max Constrained Optimiza-
tion Problem (MMCOP) over a future Ni steps control
horizon, and, according to the receding horizon con-
trol, to only apply the first sample of the computed
predicted optimal control sequence.

4.1 Local MMCOP for Ai

The local MMCOP for any Ai, i = 1, · · · ,n is formally
defined as follows ∀k ∈ Z+

min[ui(k|k),··· ,ui(k+Ni−1|k)] max
ρi∈[ρ−i ,ρ+i ] Ji,k, (9)

u−i,k ≤ ui(k+ j|k)≤ u+i,k, j = 0, · · · ,Ni −1, (10)
where:

Ji,k = ∑
Ni
l=1 eT

i (k+Li + l)qi,lei(k+Li + l)+

∑
Ni−1
l=1 λi,l∆u2

i (k+ l|k) (11)

where ei(k+ Li + l) denotes the future values of the
tracking error given by

ei(k+Li + l)
△
= ri(k+Li + l)− yi(k+Li + l) (12)

with

yi(k+Li + l) = ρ
Li+l
i yi(k)+

Li−1

∑
ℓ=0

ρ
Li+l−ℓ
i ui(k+ ℓ−Li)

+
l−1

∑
ℓ=0

ρ
l−ℓ
i ui(k+ ℓ|k)−

Li+l−1

∑
ℓ=0

ρ
Li+l−ℓ
i hi(k+ ℓ). (13)

ri(k+Li + l)
△
=


d+

1 (k+L1 + l) i = 1

u+i−1,k i = 2, · · · ,n
(14)

and

∆ui(k+ l|k) △
= ui(k+ l|k)−ui(k+ l −1|k) (15)

Remark 2. Some considerations on Ji,k are now in or-
der.
-1) By A1), A2) and (14), it can be seen that M1 ≥
N1 +L1 and Mi = Ni−1 − 1 = Ni +Li, i > 1, namely

Ni−1 = Ni +Li +1.
-2) The time varying target inventory level ri(k) for Si
is defined as follows:

r1(k) = d+
1 (k) and ri(k) = u+i−1,k, i ≥ 2 (16)

For each fixed k and over the corresponding predic-
tion interval [k,k+Mi], i ≥ 2, definition (14) implies
that the values of the target inventory level are frozen
on u+i−1,k. Keeping the on hand stock level as near
as possible to the possible maximum level of the de-
mand forecasting maximizes the amount of fulfilled
demand over each shifted prediction horizon and pre-
vents unnecessarily larger stock levels.
-3) The term ∑

Ni−1
l=1 λi,l∆u2

i (k + l|k) and the way the
hard constraints (10) are defined allow us to deal with
FF1 and FF2 respectively.

4.2 Determining u−i,k and u+i,k

By CR1-CR3, the constraints on ui(k+ j|k) imposed
by (10) are determined on the basis of the two follow-
ing criteria: 1) maximize the amount of demand sat-
isfied by each stage Si, 2) limit the amplitude (defined

as Ai,k) of the interval [u−i,k u+i,k]
△
= Ci,k. We estimate

u−i,k and u+i,k with reference to two possible, limit sit-
uations compatible with (8). Consider the following
scenario:
-di(k + Li + j), j = 0, · · · ,Ni − 1, is a constant sig-
nal with value d̃i,k ∈ [d−

i,k,d
+
i,k] = [u−i−1,k,u

+
i−1,k]. The

two mentioned limit situations are d̃i,k = u−i−1,k and
d̃i,k = u+i−1,k.
- Each control horizon Hi,k is long enough to allow
yi(k + Li + j), j = 1, · · · ,Ni, to practically attain the
steady-state value ỹi,k under the forcing action of a
constant ui(k+ j) = ũi,k, j = 0, · · · ,Ni −1. The prob-
lem we now consider is: for a given constant demand
d̃i,k it is required to find the interval Ci,k where the
corresponding constant control input ũi,k takes values,
such that the resulting constant steady state state out-
put ỹi,k satisfies ỹi,k ≥ d̃i,k, ∀ρi ∈ [ρ−

i ,ρ
+
i ].

Some algebraic calculations (not reported for
brevity) based on z-transform methods and on the fi-
nal value theorem (Kuo, 2007) show that

C1,k
△
= [u−1,k,u

+
1,k] =

1
ρ
−
1
[d−

1,k,d
+
1,k] (17)

Ci,k
△
= [u−i,k,u

+
i,k] =

1
ρ
−
i

[
u−i−1,k,u

+
i−1,k

]
, i = 2, · · · ,n (18)

Recalling that Ai−1,k denotes the amplitude of Ci−1,k,
from (17),(18) we have

A1,k =
1

ρ
−
1
(d+

1,k −d−
1,k),Ai,k =

1
ρ
−
i

Ai−1,k, i = 2 · · ·n (19)
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To quantify the BE at node Si according to FF2 we
define the following measure:

Bi,k =
Ai,k

Ai−1,k
(20)

According to (19)-(20), the proposed DRMPC

scheme implies Bi,k = 1/ρ
−
i

△
= Bi > 1.

The two salient conclusions are: 1) an estimate of
the overall BE (corresponding to FF2 ) which prop-
agates along the SC network, can be computed ”a
priori” and is given by B = 1/(∏n

i=1 ρ
−
i ), 2) our ap-

proach does not entail this kind of BE for ρ
−
i → 1.

5 REFORMULATION OF THE
MMCOP

We reformulate the local MMCOP as a WCRLS es-
timation to drastically reduce the numerical complex-
ity of the algorithm solving the original MMCOP. The
functional Ji,k, defined in (9), is minimized assuming
that the control sequence Ui,k, is given by the sampled
version of a B-spline function. Adapting the notation
in (1) to specify that it is relative to the i-th node and
the k-th fixed time instant we have

ui( j|k) △
= Bi,d( j)ci,k, j = k, · · · ,k+Ni −1, (21)

with Bi,d( j) = [Bi,1,d( j), · · · ,Bi,ℓ,d( j)] and ci,k =
[ci,k,1, · · · ,ci,k,ℓ]

T . The parameter vector ci,k, defining
ui( j|k), is computed as the solution of the WCRLS
estimation problem defined beneath.

As ρi ∈ [ρ−
i ρ

+
i ], an equivalent representation of

ρi is ρi = ρ̄i + δρi, ρ̄i = (ρ−
i +ρ

+
i )/2 where ρ̄i is the

nominal value and δρi is the perturbation with respect
to ρ̄i satisfying |δρi| ≤ (ρ+

i −ρ
−
i )/2. It follows that

ρ
k
i = (ρ̄i +δρi)

k = ρ̄
k
i +∆ρi,k (22)

where ∆ρi,k
△
= (ρ̄i +δρi)

k − ρ̄k
i is the sum of all terms

containing δρi in the explicit expression of (ρ̄i +
δρi)

k. Analogously, by A1), A2), A6) and (6), the
future values hi(k+ ℓ) in (13) can be expressed as

hi(k+ ℓ) = h̄i(k+ ℓ|k)+δhi(k+ ℓ|k) (23)

where h̄i(k+ ℓ|k) = di(k+ ℓ|k). Exploiting (21)-(23)
it can be shown that the future tracking error given by
(12) can be expressed as

ei(k+Li + l|k) = (bi,k,l +δbi,k,l)− (Di,k,l +δDi,k,l)ci,k

where

Di,k,l
△
=

l−1

∑
ℓ=0

ρ̄
l−ℓ
i Bi,d(k+ ℓ) (24)

δDi,k,l
△
=

l−1

∑
ℓ=0

∆ρi,l−ℓBi,d(k+ ℓ) (25)

bi,k,l
△
= ri(k+Li + l)− ρ̄

Li+l
i yi(k)

−
Li−1

∑
ℓ=0

ρ̄
Li+l−ℓ
i ui(k+ ℓ−Li)

+
Li+l−1

∑
ℓ=0

ρ̄
Li+l−ℓ
i di(k+ ℓ|k) (26)

δbi,k,l
△
=−∆ρi,Li+lyi(k)−

Li−1

∑
ℓ=0

∆ρi,Li+l−ℓui(k+ ℓ−Li)

+
Li+l−1

∑
ℓ=0

ρ̄
Li+l−ℓ
i δhi(k+ ℓ|k)+

Li+l−1

∑
ℓ=0

∆ρi,Li+l−ℓhi(k+ ℓ)

Similarly ∆ui(k+ l|k) = bui,k,l −Dui,k,l ci,k with Dui,k,l =

−(Bi,d(k+ l)−Bi,d(k+ l −1)) and bui,k,l = 0.
Defining the following extended error vector

ei,k =



q1/2
i,1 ei(k+Li +1)

...
q1/2

i,N1−1ei(k+Li +Ni −1)

λ
1/2
i,1 ∆ui(k+1|k)

...
λ

1/2
i,Ni−1∆ui(k+Ni −1|k)


and the corresponding extended vectors bi,k, δbi,k and
matrices Di,k, δDi,k (not reported for brevity) allow
us to reformulate the local MMCOP (9)-(11) as the
following local WCRLS estimation problem:

min
ci,k

max
∥δDi,k∥≤βi,k ∥δbi,k∥≤ξi,k

∥ei,k∥2 (27)

where

∥ei,k∥2 = ∥(bi,k +δbi,k)− (Di,k +δDi,k)ci,k∥2 (28)

subject to u−i,k ≤ ci,k,r ≤ u+i,k,r = 1, · · · , ℓ. (29)

It is seen that (28)-(29) define a problem of the
kind (2)-(4). Hence, according to Section 2.2, at any
k the local WCRLS estimation problem (27)-(29) can
be reformulated as

min
ci,k

∥bi,k −Di,k ci,k∥+βi,k∥ci,k∥+ξi,k (30)

where the components of ci,k must satisfy (29).
Remark 3. Note that ξi,k of (30) is independent of ci,k
so that it can be removed from the objective function.
This implies that in (30) only the upper bound βi,k
on ∥δDi,k∥ needs to be determined at each k. More-
over the way the B-spline basis functions are defined
by the Cox de Boor formula (De-Boor, 1978) implies
that Bi,d(τ) = Bi,d(τ+Ni), ∀τ ∈ Hi,k, k ∈ Z+. Hence,

by (25), one has that βi,k
△
= βi, ∀k = 0,1, · · · and more-

over βi is can be determined putting ρi = ρ
+
i .
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Feasibility and stability properties of the proposed
control strategy can be now formally stated in the fol-
lowing theorem (whose proof is omitted for brevity).
Theorem The proposed DRMPC strategy guaran-
tees the feasibility of each local MMCOP, the pos-
itivity of all physical variables ui(k) and yi(k), i =
1, · · · ,n, and their uniform boundedness.

6 NUMERICAL RESULTS

In this section, we perform simulated experiments on
the application of the proposed RDMPC to the man-
agement of an uncertain SC composed of n = 3 stages
Si, i = 1, · · · ,3, (retailer-distributor-factory). We as-
sume that the equations describing the stock level
dynamics of each Si are characterized by the same
perishability factor αi, time delay Li and initial state
yi(0). The model parameters of each Si are reported
in Table 1. At each k, the unknown future end-
customer demand d1(k), belongs to a known compact
set D1,k, with M1 = 24. Figure 3 shows the actual
end-customer demand enclosed in the contiguous po-
sitioning of all the D1,k’s. The dashed red trajectory
is the predicted end-customer demand d1(k+ l|k). We
use B-spline functions of degree d = 3 with ℓ= 6 con-
trol points over each control horizon Hi,k. The other
tuning parameters of the local MMCOP for any Ai,
i = 1,2,3 are reported in Table 2.

0 50 100 150 200 250
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30
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60

Figure 3: The end-customer demand d1(k) and the two
boundary trajectories d+

1 (k) and d−
1 (k).

We evaluate the effectiveness of the proposed
method by defining performance indicators that take
into account the ability to satisfy the demand at
each stage, to limit the inventory level and to re-
duce the BE. The first performance indicator, that we
define, measures the normalized amount of Unsatis-
fied Demand at each stage and is given by UD i

△
=

1
∑

Ts
k=0 di(k)

∑
Ts
k=0 |di(k)−hi(k)| ∈ [0 1], i = 1,2,3, where

Ts is the length of the simulation. The second per-
formance indicator is the total sum of the Inventory
Stock in the SC after satisfying the demand at each
k = 0, · · · ,Ts. In accordance with (5), it is given

by I S △
= ∑

n
i=1 ∑

Ts
k=0 yi(k). As for the BE, we de-

fine a second performance indicator according to FF1:
BE∆u,i = ∑

Ts−1
k=0 |ui(k+ 1)− ui(k)|, i = 1, · · · ,n. It

measures ”a posteriori” the smoothness property of
each replenishment order ui(k), i = 1, · · · ,n. The sim-
ulation has been performed choosing ρi = 0.885, i =
1,2,3 and it has been stopped at time k = 200 (namely
Ts = 200). The generated orders ui(k), i = 1,2,3 are
displayed on the left hand side of figure 4. This fig-
ure shows the ordering signal issued by each stage Si,
i = 1,2,3 with the respective time-varying lower and
upper bounds. The resulting inventory level yi(k) and
the time varying desired inventory level ri(k) for each
Si, i = 1,2,3 are reported on the left hand side of fig-
ure 5. The imposed and fulfilled demands di(k) and
hi(k) respectively at each Si are displayed on the left
hand side of figure 6.

A comparison has been performed with the
DTCM proposed in (Ignaciuk, 2013) where equations
(34),(35) have ben adapted to the case of an n-stage
SC with n= 3, uncertain decay factors ρi ∈ [0.86, 0.9]
and known time delays Li = 4, i = 1,2,3 obtaining

ui(k) = sat[ωi(k)] = sat[yre f ,i −PIPi(k)] (31)

where PIPi(k) = ρ
Li
i yi(k) + ∑

k−1
j=0 ρ

k− j
i si( j) −

∑
k−Li−1
j=0 ρ

k− j
i si( j) and the saturation function

sat(ωi)
△
= {ωi if ωi ∈ [0,umax,i]; 0 if ωi <

0; umax,i if ωi > umax,i}. According to (45),(46) in
(Ignaciuk, 2013), umax,i and yre f ,i are inferiorly lim-
ited as: umax,i > dmax,i and yre f ,i > dmax,i ∑

Li
j=0 ρ

j
i .

The topology of the SC network shown in figure 1 is
such that: dmax,1 = maxk d1(k) and dmax,i = umax,i−1,
i = 2,3. The modified DTCM (31) has been applied
choosing: ρi = ρ̄i = 0.88, i = 1,2,3, dmax,1 = 40,
umax,1 = 45 > dmax,1, umax,2 = 50 > dmax,2 = 45,
umax,3 = 55 > dmax,3 = 50, yre f ,1 = 160 > 157,
yre f ,2 = 180 > 177 and yre f ,3 = 200 > 196.
The orders ui(k) generated (with ρi = ρ̄i = 0.88) and
the resulting on hand stock level yi(k) (generated
with ρi = 0.885) are reported on the right hand side
of figures 4 and 5 respectively.
The performance evaluation of both methods is
performed on the basis of the performance indicators
previously defined. The results are summarized in
table 3. Both methods fully satisfy the end-customer
demand d1(k) (as numerically quantified by the
performance indicator UD1 reported in table 3)
but the DRMPC approach requires a very smaller
warehouse occupancy with respect to DTCM. This
is visually evidenced by figure 5 and numerically
quantified by I S (see table 3). The reduction of
warehouse occupancy is a consequence of tracking a
time varying inventory level ri(k) which is adapted
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Table 1: Parameters of each node Si, i = 1,2,3.

time delay perishability factor decay factor initial state
Li = 4 αi ∈ [α−

i ,α
+
i ] = [0.1,0.14] ρi = 1−αi ∈ [ρ−

i ,ρ
+
i ] = [0.86,0.9] yi(0) = 0

Table 2: Tuning parameters of the local MMCOP for any Ai, i = 1,2,3.

length of each Hi,k scalar weights in (11) the scalars βi,k
△
= βi in (30)

N1 = M1 −L1 Ni
△
= Ni−1 − (Li +1) i > 1 qi,l λi,l

N1 = 20 N2 = 15 N3 = 10 e−0.1 (l−1) e−1 (l−1) β1 = 1.88 β2 = 1.38 β3 = 0.89
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Figure 4: Comparison (DRMPC)-(DTCM): the ordering signal ui(k) issued by each Si.
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Figure 5: Comparison (DRMPC)-(DTCM): the desired inventory level ri(k) and the on hand stock level yi(k) of each Si.
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Figure 6: Comparison (DRMPC)-(DTCM): the imposed demand di(k) and the fulfilled demand hi(k) at each Si.

Table 3: The performance evaluation of the DRMPC and DTCM strategies.

UD1 UD2 UD3 I S BE∆u,1 BE∆u,2 BE∆u,3
DRMPC 0 0.0089 0.004 2.1894×104 74.3 92 106.8
DTCM 0 0.0526 0.0201 3.4895×104 232.4 152 108.7

at any k on the basis of the current demand di(k).
On the contrary DTCM defines a constant desired

inventory level yre f ,i for each Si, which is ”a priori”
computed using a conservative formula requiring the
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”a priori” knowledge of the maximum value dmax,1 of
the end-customer demand over an indefinitely long
future time interval. Moreover, as dmax,1 is never
exactly known, it is often over-estimated.

The diagrams displayed in figure 4 and the entries
of columns 5-7 of table 3 show that the DRMPC pol-
icy provides a smoother control signal with respect
to the DTCM strategy. Moreover figure 4 evidences
how the interval containing each replenishment order
ui(k) is tighter in the DRMPC strategy. Our approach
is able to limit the amplitude of such intervals and
consequently to strictly control the FF2 of BE.

7 CONCLUSIONS

The main novelties we propose in this paper are: 1)
the supply chain dynamics is characterized by per-
ishable goods with uncertain decay factor, 2) the
proposed DRMPC approach provides a B-splines
parametrization of the replenishment order. The
B-splines parametrization allows us to reformulate
the min-max optimization problem implied by the
DRMPC as a simpler WCRLS estimation problem.
The method we propose also allows us to define a
time-varying inventory level conciliating the opposite
control requirements CR1 and CR2. CR3 is addressed
penalizing the difference between control moves and
also parametrizing the control moves as polynomial
B-spline functions. The numerical test confirms the
validity of the approach: it is actually able to reduce
the inventory level without affecting customer service
quality and without incurring an excessive control ef-
fort.
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