
Normalization and Denormalization for a Document-Oriented Data

Shady Hamouda1, Mohammed Anbar2 and Omar Elejla3
1Department of Business Information Technology, Liwa College of Technology, Abu Dhabi 51133, U.A.E.

2National Advanced IPv6 (NAv6) Centre, University Sains Malaysia, USM, Penang 11800, Malaysia
3Department of Computer Science, Al-Aqsa University, Gaza 4051, Palestine

Keywords: Normalization, Embedded, Reference Document, NoSQL, Document-Oriented Database.

Abstract: Recently, the challenge of the increasing volume of data has led to the presentation of the “not only structured
query language (NoSQL) database”. One of the most powerful types of NoSQL databases is the document-
oriented database that supports a flexible schema. Normalization of the data model is one of the important
research issues and there are no standard principles of normalization in the document-oriented database.
Handling relationships based on normalization and denormalization has not been considered in document-
oriented databases despite its importance probably because it is not recommended in creating a collection for
each entity or using a reference document for all because of the need to execute a complex joint operation.
Recently, many researchers have migrated from relational databases to document-oriented databases.
However, their migration methods are facing issues; first is no method to normalize or de-normalize data to
implement the embedded and reference document. Second, migration from a relational database to a
document-oriented database does not consider how to handle various types of relationships based on
normalization and de-normalization. This study proposed a way to deal with migration problems by enhancing
transformation rules to map entity relational schema to document-based data schema based on normalization
and denormalization data. The results of this study show that the dataset size determines whether reference or
embedded documents should be used for migration.

1 INTRODUCTION

With the rise of big data, a relational database has
been unable to fit the dimensions of big data,
especially data velocity and variety (Abourezq &
Idrissi, 2016). According to Younas (2019), storing
and managing big data requires new data models and
technologies. These issues and challenges have led to
the development of a Not only SQL (NoSQL)
database to overcome the limitations of the relational
database, such as designing a schema without strict
constraints (Hashem & Ranc, 2016; Truică, Apostol,
Darmont, & Pedersen, 2021).

As Abdelhedi, Brahim, Atigui, and Zurfluh
(2018) mentioned, a document-oriented database has
proven to be the most adapted solution that supports
a larger volume of data and provides a flexible
schema. Moreover, Younas (2019) found that the
document-oriented database can be suitable for high
development productivity and low maintenance cost
of modern Web 2.0 applications for two main
reasons: First, these applications have a constant

evolution of data schema and benefit from the flexible
schema of the document-oriented database; second,
Web 2.0 applications support data models such as
JSON with tight integration with popular
programming languages such as Python, JavaScript,
and Ruby (Bathla, Rani, & Aggarwal, 2018).

Normalization and de-normalization data in a
document-oriented database differ from those in the
relational database. However, it should provide rules
to implement normalization and de-normalization
data in the document-oriented database. Therefore,
this is one of the most important areas addressed in
the current research, as it is critical to understanding
the process of normalization and de-normalization. At
the same time, it can also affect database performance
and storage space (Mehmood et al., 2017; González-
Aparicio et al., 2017).

Addressing relationships based on embedded and
reference documents in document-oriented databases
must be considered (Mehmood et al., 2017)—
although important, creating a collection for each
entity or using a reference document for all entities is
not recommended because doing so would require the

972
Hamouda, S., Anbar, M. and Elejla, O.
Normalization and Denormalization for a Document-Oriented Data.
DOI: 10.5220/0011868100003393
In Proceedings of the 15th International Conference on Agents and Artificial Intelligence (ICAART 2023) - Volume 3, pages 972-979
ISBN: 978-989-758-623-1; ISSN: 2184-433X
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

performance of complex joint processes. Also,
storing all entities as embedded documents in a single
collection is not useful because it will produce a large
amount of unnecessary and inconsistent data.
Additionally, all data would be uploaded when
updated, thereby reducing performance. Therefore,
document-oriented databases should be designed
using embedded and reference document
technologies to improve synchronization when
updating redundant data (Atzeni et al., 2016). In
addition to that, the study by Imam et al. (2018)
mentioned issues that still need to be addressed to
implement a document-oriented database, such as
how to represent one-to-many relationships in
document-oriented databases, as well as how and
when to use reference documents instead of
embedding documents. However, Oliveira, Oliveira,
and Alturas (2018) found that there are no
investigations to understand the migration process or
the methodology of migrating from a relational
database to a document-oriented database.

The aim of this study is to facilitate the process of
transformation of the relational database schema to a
document-oriented data schema through two
concepts: the first is clarifying the embedded
document (de-normalization) relationships by storing
the sub-document into a super-document collection;
the second is using the reference document to
normalize the relationship by linking the collections
with a foreign key.

2 BACKGROUNDS AND
RELATED WORK

The previous model addresses how to transform a
strong entity by creating a new collection and
transform the relationships of one-to-one by
embedded document without taking into
consideration the size of datasets and not addressing
how to apply the embedded and reference document
for other relationship types such as one-to-many,
many-to-many, and unary relationship. Additionally,
the weak entity has been transformed by using new
collections, while it should belong to the strong entity
as an embedded document to avoid many join
operations between many collections.

Many researchers have proposed methods to
migrate relational databases to the document-oriented
database (Corbellini, Mateos, Zunino, Godoy, &
Schiaffino, 2017; El Alami & Bahaj, 2016; Goyal,
Swaminathan, Pande, & Attar, 2016; Győrödi,
Győrödi, Pecherle, & Olah, 2015; Hanine, Bendarag,

& Boutkhoum, 2016; Imam, Basri, Ahmad, Watada,
& González-Aparicio, 2018; Karnitis & Arnicans,
2015; Mason, 2015; Stanescu, Brezovan, &
Burdescu, 2016, 2017; Yoon, Jeong, Kang, & Lee,
2016). For instance, El Alami and Bahaj (2016);
Hanine et al. (2016); Mason (2015); Stanescu et al.
(2016, 2017) have focused on migrating a relational
database to a document-oriented database based on
the concept of embedded and reference documents.

However, these migration methods are facing
various issues; the first issue is that no specification
can be recognized to define a schema for a document-
oriented database due to the various ways of storage,
management, and implementation in document-
oriented databases (Goyal et al., 2016). The lack of
presenting a schema led to present many challenges
and complex problems in migration because
designing a schema for the document-oriented
database is important for defining the principles and
overcoming the issues of relationship types for
document-oriented databases (Truică, Apostol,
Darmont, & Pedersen, 2021). Also, it may lead to
incorrect or inappropriate schema design, especially
when handling relationships based on normalizing
and de-normalizing data. For instance, the method of
Stanescu et al. (2017), did not properly migrate all the
database properties especially, the multi-values, weak
entity, and relationship types. Some migration result
is an embedded document while they should be
migrated by using an array data type as it contains one
field with many values. In addition, if there is any
table refereed by more than two other tables and has
more than one foreign key. These cases were missing
in the Stanescu et al. (2017) algorithm.

Additionally, there is no technique method to
normalize or de-normalize data to implement the
embedded and reference document for handling the
various types of relationships (Hanine et al., 2016;
Mehmood et al., 2017). According to Mehmood,
Culmone, and Mostarda (2017), normalization
(reference document) and de-normalization
(embedded document) are the two techniques that
must be considered when designing a schema. These
techniques can affect the performance and storage
effectively as the databases grow rapidly. González-
Aparicio et al. (2017) observed that the normalization
of the data model is one of the important research
issues and there are no standard principles of
normalization in the document-oriented database.

The transformation rules of previous work have
mapped the relational database schema to the
document-oriented database directly without
considering any specification (Varga et al., 2016;
Mehmood et al., 2017; Mior et al., 2017; Imam et al.,

Normalization and Denormalization for a Document-Oriented Data

973

2018; Stanescu et al., 2017). For instance, study by
Stanescu et al. (2017) migrated the relational database
to a document-oriented database (MongoDB) based
on the number of foreign keys in each table as well as
the number of tables referring to that table. However,
these studies neither normalized nor de-normalized
data for a document-oriented database and did not
propose a method to explain how to implement
embedded and reference documents to represent the
relationships, even though Mehmood et al. (2017)
mentioned that the quality of the schema can be
assessed through normalized and de-normalized data.

The second issue is the transformation rules that
are needed to normalize and de-normalize data for
handling the relationship types based on embedded
and reference documents (Jouini & Engineering,
2022). This issue has not been considered in
document-oriented databases despite its importance
probably because it is not recommended for creating
a collection for each entity or using a reference
document for all because of the need to execute a
complex joint operation. Furthermore, storing all the
entities as embedded documents in one collection is
not beneficial because it will cause many redundant
and inconsistent data (Atzeni, Bugiotti, Cabibbo, &
Torlone, 2016).

Finally, the migration from a relational database
to a document-oriented database does not consider all
the database properties, especially on how to handle
various types of relationships. Because migration
without any specification or methodology to
normalize and de-normalize the various types of
relationships will cause incorrect migration
(Colombo & Ferrari, 2019; El Alami & Bahaj, 2016;
Győrödi et al., 2015; Hanine et al., 2016; Stanescu et
al., 2017).

3 PROPOSED METHOD

To enhance migration process performance, this
study enhances the mapping of ER schema to
Document-oriented data schema by enhancing the
rules of mapping the ER specifications such as weak
entity, hierarchical entity, composite attribute, multi-
valued attribute, derived attribute, attribute
relationship, and constraint. Also, handling the
relationship types (1:1, 1:M, M: M, Unary) using
embedded and reference documents. These
enhancements points are converted to Transformation
Rules (TR.)

3.1 Enhancement of the
Transformation Rules

The rules developed by Stanescu et al. (2017) are
based on checking the number of foreign keys in each
table as well as the number of the table referring to
that table. However, these rules do not cover all
database properties and cannot be applied to a
complex schema. Additionally, the rules do not
consider how to handle the relationship types based
on embedded and reference documents. Therefore,
this study has enhanced TRs based on embedded and
reference documents.

3.2 Embedded and Reference
Documents

This study aims to facilitate the process of
transformation of the relational database schema to a
document-oriented data schema through two
concepts: the first is clarifying the embedded
document (de-normalization) relationships by storing
the sub-document into a super-document collection;
the second is using the reference document to
normalize the relationship by linking the collections
with a foreign key.

One of the challenges that migration methods face
is when the document-oriented database is not
supported in the joint operation. Consequently, most
researchers and specialists look for alternative joint
processes and utilize the embedded document as a
methodology between collections. However, the
embedded document is not suitable for most large
applications. At present, the document-oriented
database (MongoDB) is supporting a joint process.
Thus, it requires a method for choosing between the
embedded and reference documents.

3.2.1 Embedded Document

The embedded document refers to the embedding of
related data (key-value, document, collection) into
the document so it can define the de-normalization
concept by storing all data into one single document,
which leads to duplicate or inconsistent data. The
study represents the relationship between entities by
storing all the data in one collection with related
documents as an embedded document.

The embedded documents (Figure 1) cannot be
used to reduce the joint operation between
collections; at the same time, it can cause duplicated
and inconsistent data. It can also cause bad
performance in the updated document, as it needs to
load all the collections.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

974

Figure 1: Embedded documents.

3.2.2 Reference Document

The reference document refers to the application of
the normalization concept by storing the data in
multiple collections with references between those
collections using the concept of the foreign key to
support a joint operation between the database
collections.

Figure 2: Reference document.

The concept of the reference document (Figure 2)
is similar to that of the relational database, which
means storing the entity in different collections and
making the relationships by using a foreign key. This
concept can be used in the case of reducing the
embedded documents and it can support flexibility in
storing the growing amount of data. However, it is not
preferable to have many collections in the database
because doing so will require a complex joint
operation.

3.3 Proposed Transformation Rules

The ER schema comprises the following components:
entities, attributes, and relationships.

This study is representing the entity by E and a
series of entities as Ei….En (i=1 to n), while the number
of attributes was represented by using Aj….An(j=1 to n),
and R is used to represent the type of relationships:
(1:1), (1:N), and (M: M). Table 1 shows the notations
used to map the ER schema to DOD_S.

The presented TRs describe how to map the ER
schema to the DOD_S. This study proposed six
transformation rules. These rules take the ER schema
as input and map the DOD_S as output.

 Rule 1: For each strong entity
Ei(i=1…n)
 create a new collection Ci(i=1….n) ,
where n= number of collections
Rule 2: For each weak entity E(weak)i
(i=1…n)
Create E(weak) (i=1…n) as embedded
documents belonging to the strong
entity
 ∀ (E(weak)i embedded ⊆Ei)
Rule 3: For each multi-value attribute
A(Multivalue)i
store multi-values as array data type
belonging to the strong entity
 ∀ A(Multivalue)i (i=1…n) []⊆ Ei
Rule 4: For each (1:1) relationship
between two entities (Ei R Ej)
If Ei dataset’s size is less than 16 MB
and no other relationship exists with
another entity
Ei stored as an embedded document into
Ej (Ei embedded ⊆ Ej)
else
apply reference document between Ei
and Ej (Ei reference ⊆ Ej)

Rule 5: For each (1:N) relationship
between two entities (Ei R Ej)
 if N dataset’s size is less than 16 MB
records then
 N side entity stored as an embedded
document into 1 side entity (Ej(N)
embedded ⊆ Ei(1))
 else
apply reference document between Ei and
Ej (Ei reference ⊆ Ej)
Rule 6: For each (M: M) relationship
between two entities (Ei R Ej)

i. store the primary key and related
key-value of E1 as an embedded
document into E2 as (Ei :{[embedded]} ⊆ Ej).

ii. store the primary key and
related key-value of E2 as an

Normalization and Denormalization for a Document-Oriented Data

975

embedded document into E1 as (Ei
:{[embedded]} ⊆ Ei).
iii. apply embedded document
between Ei and Ej as Ej (Ej
:{[embedded]} ⊆ Ei)
iv. apply reference document
between Ei and Ej as (Ei
reference ⊆ Ej)

Rule 7: For each (unary) relationship
for Ei entity

i. store the primary key of Ei
with a different name as a foreign
key into E1 as (K ⊆ Ei).

The TRs are used to map the ER schema to the

DOD_S. The input of these rules is the ER schema.
The first step is to transform the strong entity by
creating a new collection with all the data for each
strong entity. The second step is to transform
the weak entity by creating an embedded document
for the weak entity and data into the strong
collection. Each multi-value attribute will be stored
as an array data type with all the values belonging to
that entity.

The relationships are transformed as follows:
Relationship (1:1): This relationship is required to
determine the volume of each relationship side. If
the dataset of one side of the relationship includes
small data (i.e., less than tens of thousands/hundreds
of thousands/millions of records) or the data size of
one side does not exceed 16 MB (the maximum size
of the document), then this relationship will
transform into an embedded document that will be
stored in the relevant collection. If there are more
relationships or both cardinalities have large
datasets (i.e., more than tens of thousands/hundreds
of thousands/millions of records) or the data size of
one side exceeds 16 MB, then the relationship must
be represented by using the reference document,
which will be stored in a different collection.

(1: N) relationship: This relationship is required to
determine the volume of the N side. If the N dataset’s
size is more than 16 MB or the N side is large (i.e.,
more than tens of thousands/hundreds of
thousands/millions of records), then this relationship
will be represented through the reference document
by a separate collection with the primary key and
related attributes of both sides. Otherwise, if the N
side is small (the N dataset’s size does not exceed 16
MB or the N side has fewer than tens of
thousands/hundreds of thousands/millions of
records), then it will store the primary key with
related data into a set of embedded documents.

M: M relationship: This type of relationship is
transformed by using both embedded and reference
documents. In the first side of the relationship entity,
an array data type and embedded document are
created, that contains the primary key of the second
entity with other related attributes. At the same time,
on the second side of the relationship entity, an array
data type and embedded document are created, that
contains the primary key of the first entity.

Unary relationship: The attribute of the unary
relationship will be stored in the related document.
Then, all keys with a null value will be removed, as
this form contains a flexible schema, meaning it can
remove or add any key value from the document.

These transformation rules map all ER schema to
DOD_S and can thereby be used as a strategy for the
migration of a relational database to a document-
oriented database.

3.4 Case Study: W3school Schema

The third case study is the schema of the W3school
website (http://www.w3schools.com/).The W3school
schema, presented in Figure 3, can be described as the
PRODUCT has CATEGORIES and SUPPLIERS, and
ORDER has ORDERDETAILS and SHIPPERS to the
CUSTOMER through the EMPLOYEES.

Table 1: Symbols and type of notations.

Model Type Notations Descriptions

ER Schema

Strong entity Ei Ei….n (i=1 to n)
Attribute A Ai….An (i=1 and n number of attributes)
Relationship R Relationships can be one-to-one (1:1), one-to-many

(1:M), or many-to-many (M:M)

TRs

Collection C
Key-value K
Embedded document embedded The embedded model applies between two entities
Reference document reference The reference model applies to two entities
Array [] Array data type

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

976

Figure 3: ER schema for W3schools (Rocha, Vale, Cirilo,
Barbosa, & Mourão, 2015).

The TRs were applied to the schema shown in
Figure 3, and the output of this schema is shown as
follows:

i) Created new collections for the main strong
entity, which are PRODUCT, ORDER, and
EMPLOYEES.

ii) Mapped the relationship between PRODUCT
and CATEGORY by storing CATEGORIES as
embedded documents in the PRODUCT
collection. Also, mapped the relationship
between PRODUCT and SUPPLIERS by
store SUPPLIERS as embedded documents
in the PRODUCT collection

iii) Mapped the relationship between ORDER and
ORDERDETAILS by creating an embedded
document for ORDERDETAILS in the
ORDER collection. Also, the relationship
between ORDER and SHIPPERS was
mapped to create embedded documents for
SHIPPERS in the ORDER collection.

iv) Mapped the relationship between ORDERS
and CUSTOMERS by creating an embedded
document for CUSTOMERS in the ORDERS
collection.

Figure 4: The DODS for W3schools.

As Figure 4 shows, the ER schema first depicted
in Figure 3 has been mapped in its entirety without
missing any specification. The DODS of Figure 4
contains three collections PRODUCT, ORDER, and
EMPLOYEE, as the PRODUCT collection contains
CATEGORY and SUPPLIERS entities as embedded
documents based on the TRs. Also, the ORDER
collection contains ORDERDETAILS, SHIPPERS,
and CUSTOMERS entities as an embedded document
based on the TRs.

Based on the case study, this study performed two
evaluations. In the first evaluation, dataset 3 has
100,000 orders assigned to the order collection using
the embedded document. The second evaluation used
the reference document by adding the primary key of
customer collection in dataset as a foreign key in
order collection. Then, study addresses the 10 queries
used to test the performance of the embedded and
reference documents through database operations.
The result and the execution time of each query are
presented in the following sections.

The evaluation performed the previous queries
(1–10) on MongoDB (document-oriented database)
using W3school datasets to determine the
performance of embedded and reference documents.

Figure 5 shows the query execution times of the
embedded and reference documents based on the
proposed method that performed queries 1 to 10. The
performance of the reference document was better
than that of the embedded document. Therefore,
applying the embedded and reference documents

Normalization and Denormalization for a Document-Oriented Data

977

Figure 5: Execution time for applied queries of embedded
and reference documents based on dataset.

when migrating the relationship types will depend on
the size of the dataset. If the dataset on the
relationship side is large (i.e., more than tens of
thousands/hundreds of thousands/millions of records,
or exceeding 16 MB), then the reference document
should be selected; otherwise, the embedded
document is preferable.

4 CONCLUSIONS

This study enhances the transformation rules
presented to enhance migration process performance
that covers all database properties. These
transformation rules can be used to map any relational
database schema to a document-oriented database.
Also, it can overcome the issues in handling the
relationships of a complex database and can be used
to implement normalization and de-normalization
data in a document-oriented database.

The results of this study show that the dataset size
determines whether reference or embedded
documents should be used for migration. The
embedded document is used in case of small dataset
(i.e., tens of thousands/hundreds of
thousands/millions of records, or the data size of one
side did not exceed 16 MB, which is the document
size used in MongoDB). By contrast, the reference
document is used when the dataset size is large (i.e.
tens of thousands/hundreds of thousands/millions of
records, or the data size of one side exceeding 16
MB). Reference (normalized) and embedded (de-
normalized) documents are important variables for
the designed schema and migrate a relational database
to a document-oriented database using these
transformation rules.

In future work, this study will extend to assessing
the performance of embedded and reference
documents for a document-oriented data schema
based on the proposed method.

REFERENCES

Abdelhedi, F., Brahim, A. A., Atigui, F., & Zurfluh, G.
(2018). Towards Automatic Generation of NoSQL
Document-Oriented Models. Paper presented at the
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications
(PDPTA).

Abourezq, M., & Idrissi, A. (2016). Database-as-a-service for
big data: An overview. International Journal of
Advanced Computer Science and Applications (IJACSA),
7(1).

Atzeni, P., Bugiotti, F., Cabibbo, L., & Torlone, R. (2016).
Data modeling in the NoSQL world. Computer
Standards & Interfaces.

Bathla, G., Rani, R., & Aggarwal, H. (2018). Comparative
study of NoSQL databases for big data storage.
International Journal of Engineering & Technology,
7(26), 83.

Chouder, M. L., Rizzi, S., & Chalal, R. (2017). Enabling Self-
Service BI on Document Stores. Paper presented at the
EDBT/ICDT Workshops.

Colombo, P., & Ferrari, E. (2019). Access control
technologies for Big Data management systems:
literature review and future trends. Cybersecurity, 2(1),
3.

Corbellini, A., Mateos, C., Zunino, A., Godoy, D., &
Schiaffino, S. (2017). Persisting big-data: The NoSQL
landscape. Information Systems, 63, 1-23.

El Alami, A., & Bahaj, M. (2016). Migration of a relational
databases to NoSQL: The way forward. Paper presented
at the Multimedia Computing and Systems (ICMCS),
2016 5th International Conference on.

Goyal, A., Swaminathan, A., Pande, R., & Attar, V. (2016).
Cross platform (RDBMS to NoSQL) database validation
tool using bloom filter. Paper presented at the Recent
Trends in Information Technology (ICRTIT), 2016
International Conference on.

Hanine, M., Bendarag, A., & Boutkhoum, O. (2016). Data
Migration Methodology from Relational to NoSQL
Databases. World Academy of Science, Engineering and
Technology, International Journal of Computer,
Electrical, Automation, Control and Information
Engineering, 9(12), 2369-2373.

Hashem, H., & Ranc, D. (2016). Evaluating NoSQL
document oriented data model. Paper presented at the
Future Internet of Things and Cloud Workshops
(FiCloudW), IEEE International Conference on.

Imam, A. A., Basri, S., Ahmad, R., Watada, J., & González-
Aparicio, M. T. (2018). Automatic schema suggestion
model for NoSQL document-stores databases. Journal of
Big Data, 5(1), 46.

Jouini, K. J. J. o. I. S., & Engineering. (2022). Aggregates
Selection in Replicated Document-Oriented Databases.
38(2).

Kanade, A., Gopal, A., & Kanade, S. (2014). A study of
normalization and embedding in MongoDB. Paper
presented at the Advance Computing Conference
(IACC), 2014 IEEE International.

ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence

978

Karnitis, G., & Arnicans, G. (2015). Migration of Relational
Database to Document-Oriented Database: Structure
Denormalization and Data Transformation. Paper
presented at the Computational Intelligence,
Communication Systems and Networks (CICSyN), 2015
7th International Conference on.

Kim, H.-J., Ko, E.-J., Jeon, Y.-H., & Lee, K.-H. (2018).
Techniques and guidelines for effective migration from
RDBMS to NoSQL. The Journal of Supercomputing, 1-
15.

Mason, R. T. (2015). NoSQL databases and data modeling
techniques for a document-oriented NoSQL database'.
Paper presented at the Proceedings of Informing Science
& IT Education Conference (InSITE).

Mehmood, N. Q., Culmone, R., & Mostarda, L. (2017).
Modeling temporal aspects of sensor data for MongoDB
NoSQL database. Journal of Big Data, 4(1), 8.

Mior, M., Salem, K., Aboulnaga, A., & Liu, R. (2017).
NoSE: Schema design for NoSQL applications. IEEE
Transactions on Knowledge and Data Engineering,
29(10), 2275-2289.

Oliveira, F., Oliveira, A., & Alturas, B. (2018). Migration of
relational databases to NoSQL-methods of analysis.
Mediterranean Journal of Social Sciences, 9(2), 227-
235.

Rocha, L., Vale, F., Cirilo, E., Barbosa, D., & Mourão, F.
(2015). A Framework for Migrating Relational Datasets
to NoSQL1. Procedia Computer Science, 51, 2593-2602.

Stanescu, L., Brezovan, M., & Burdescu, D. D. (2016).
Automatic mapping of MySQL databases to NoSQL
MongoDB. Paper presented at the Computer Science and
Information Systems (FedCSIS), 2016 Federated
Conference on.

Stanescu, L., Brezovan, M., & Burdescu, D. D. (2017). An
Algorithm For Mapping The Relational Databases To
MongoDB--A Case Study. International Journal of
Computer Science & Applications, 14(1).

Truică, C.-O., Apostol, E.-S., Darmont, J., & Pedersen, T. B.
J. B. D. R. (2021). The Forgotten Document-Oriented
Database Management Systems: An Overview and
Benchmark of Native XML DODBMSes in Comparison
with JSON DODBMSes. 25, 100205.

Yoon, J., Jeong, D., Kang, C.-h., & Lee, S. (2016). Forensic
investigation framework for the document store NoSQL
DBMS: MongoDB as a case study. Digital Investigation,
17, 53-65.

Younas, M. (2019). Research challenges of big data. In:
Springer.

Normalization and Denormalization for a Document-Oriented Data

979

