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Abstract: An anomaly of software refers to a bug or defect or anything that causes the software to deviate from its normal
behavior. Anomalies should be identified properly to make more stable and error-free software systems.
There are various machine learning-based approaches for anomaly detection. For proper anomaly detection,
feature selection is a necessary step that helps to remove noisy and irrelevant features and thus reduces the
dimensionality of the given feature vector. Most of the existing feature selection methods rank the given
features using different selection criteria, such as mutual information (MI) and distance. Furthermore, these,
especially MI-based methods fail to capture feature interaction during the ranking/selection process in case
of larger feature dimensions which degrades the discrimination ability of the selected feature set. Moreover,
it becomes problematic to make a decision about the appropriate number of features from the ranked feature
set to get acceptable performance. To solve these problems, in this paper we propose anomaly detection
for software data (ADSD), which is a feature subset selection method and is able to capture interactive and
relevant feature subsets. Experimental results on 15 benchmark software defect datasets and two bug severity
classification datasets demonstrate the performance of ADSD in comparison to four state-of-the-art methods.

1 INTRODUCTION

Unexpected behaviour (anomaly) in software
hampers software quality and introduces defects into
the system. The defects may appear in different
forms such as syntax errors, wrong program
statements and specification errors which negatively
impact user experience. However, identification of
software defects for addressing the problem needs a
considerable amount of time, effort and cost for the
software development and maintenance team (Erlikh,
2000). Therefore, one of the highest priorities of
software industry is the production of defect-free
software at a lower cost.

Traditional machine learning algorithms such as
support vector machine (SVM), k-nearest neighbour
(kNN) and decision tree (DT) can be applied for
the identification/prediction of defects from the
vast amount of high dimensional data. However,
higher dimensions make the prediction model more
complex, thus requiring additional computation cost
and time. Hence, unnecessary features should be
excluded to improve the classification performance.
For the removal of unnecessary features, feature

selection methods can be used (Jimoh et al., 2018;
Akintola et al., 2018; Agarwal et al., 2014).

The traditional feature selection methods can be
broadly divided into two categories: feature ranking
(Igor, 1994; Peng et al., 2005; Akhter et al., 2021;
Moody and Yang, 1999; Vinh et al., 2016; Yang
and Hu, 2012; Greene et al., 2009a; Urbanowicz R.
J. Olson and H., 2018; Wang et al., 2012; Tarek et al.,
2021) and feature subset selection (Sharmin et al.,
2019; Khan et al., 2019; Ruiz et al., 2012; Sharmin
et al., 2017b; Laradji et al., 2015) methods. Feature
ranking methods produce the rank of provided feature
set on the basis of some performance criteria. In
contrast, feature subset selection approaches select a
subset (S) of features from the original set of features
(F).

The use of feature subset selection methods over
ranking methods are more beneficial due to the
automatic selection of desired number of features
whereas finding the optimal number of features in
ranking methods are problematic. There are various
types of criteria for feature ranking/subset selection,
such as correlation coefficient (Goh et al., 2004;
Jo et al., 2019), mutual information (MI) (Sharmin
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et al., 2019; Lewis, 1992; Peng et al., 2005; Nguyen
Xuan Vinh and Bailey, 2016), pareto optimality (PO)
(Sharmin et al., 2017a) and distance-based (Kira
et al., 1992; Igor, 1994; Greene et al., 2009a; Pisheh
and Vilalta, 2019; Yang and Hu, 2012; Sun, 2007)
methods.

At the beginning, correlation coefficient based
feature selection method was used in software defect
prediction (Laradji et al., 2015). Apart from this,
selection of attribute with log filtering (SAL) is
proposed which is dependent on a specific classifier
and wants to maximize the performance measure
metric value (Sharmin et al., 2015). However, the
methods that are classifier-independent and built on
the intrinsic properties of the features have gained
more popularity (Senawi et al., 2017). Later, BAT
Search meta heuristic algorithm is applied for the
relevant feature selection process and random forest
classifier is applied for the defect prediction (Ibrahim
et al., 2017). However, it starts the feature selection
process from a random point, which might not exhibit
the desired performance.

Though the aforementioned methods (Sharmin
et al., 2015; Ibrahim et al., 2017) perform reasonably
well in software defect/bug prediction, it cannot
capture non-linear relationship among the features
and cannot remove the similar (redundant) types of
features. MI based methods addresses these issues
and a method namely bug feature selection (BFSp)
is proposed for bug severity classification (Sharmin
et al., 2017a). Moreover, min-redundancy and
max-dependency (MRMD) is proposed where a new
feature similarity measurement term is introduced for
better approximation of feature ranking (Gao et al.,
2020). However, MI fails to capture feature-feature
interaction in case of larger feature dimensional
data which is necessary for output prediction. The
distance based methods can capture interaction
among the features irrespective of feature dimension
by considering all features in kNN estimation. For
this reason, in this paper, we use distance based
criterion.

Relief (Kira et al., 1992) is a distance-based
method which is also called a statistical approach for
feature selection where the feature is ranked based
on the class separation capability of the feature. It
takes 1NN for the class separation estimation and for
this reason, the decision may be biased. Moreover,
in case of noise, Relief cannot score the features
properly. Later, ReliefF is proposed to address
the aforementioned issues and handle multiple class
data whereas its predecessor Relief was designed
for binary classification (Igor, 1994). Besides this,
ReliefF takes k nearest neighbour instead of 1NN

that leads to a better approximation. Sometimes,
it is required for ReliefF to take instances to meet
the condition of k that are unnecessary for feature
performance measurement.

Later, Spatially Uniform ReliefF (SURF) (Greene
et al., 2009b) is proposed that uses a threshold
distance value for kNN from a random instance.
However, the instances close to the boundary instance
are confusing instances. MultiSURF (Urbanowicz
R. J. Olson and H., 2018) avoids these confusing
instances during ranking through the introduction of
dead-band zone. From the aforementioned distance-
based ranking methods, finding the optimal number
of features is quite difficult by adjusting the selected
feature quantity when the feature dimension grows.
Previously, in (Akhter et al., 2021), they proposed
a distance-based feature subset selection method
namely mRelief which is a modified version of
Relief. However, mRelief has to choose/adjust
the value of k for kNN to measure feature
performance and sometimes it might take/discard
the unnecessary/necessary data points for feature
performance evaluation. To address this, we utilize
the advantage of MultiSURF where the value of k is
avoided by defining a threshold distance from data
points. Moreover, to the best of our knowledge, there
is no feature subset selection method that is grounded
on MultiSURF and has not been applied in software
defect prediction or bug severity classification.

In this paper, we propose a feature selection
method namely anomaly detection for software data
(ADSD) that selects of a subset of features for the
purpose of detecting anomalies (defected code and/or
bug severity) from software data. ADSD provides
a feature subset selection mechanism, instead of
ranking features (that traditional feature selection
methods perform). The performance of ADSD
is measured against four existing state-of-the-art
methods on 18 benchmark datasets, and it is seen that
ADSD performs comparitively better.

2 BACKGROUND

The five methods namely SAL, Relief, ReliefF,
MRMD and SURF are discussed in this section
related to understanding the proposed ADSD and the
performance of ADSD over the existing methods.

2.1 SAL

SAL is a classifier dependent method that focuses
to maximize the balance score. For feature fk, the
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balance score (b[ fk]) defined in Eqn (1).

b[ fk] = 1−
√
(1− pd fk)

2 +(0− p f fk)
2

√
2

(1)

here, in Eqn (1), probability of detection (pd fk) and
probability of false alarm (p f fk) are defined in Eqn
(2) and Eqn (3) respectively.

pd fk =
T P

T P+FN
(2)

p f fk =
FP

FP+T N
(3)

here, TP is true positive, FN is false negative,
FP is false negative and TN is true negative. To
find the feature subset, SAL computes the pair-wise
combinations of features and iteratively optimizes the
combined balance score. Therefore, when the feature
dimension grows finding the all possible feature
combination is very expensive.

2.2 MRMD

MRMD gives more priority in capturing dependency
between the features and class which maximizes the
given optimization defined in Eqn (4).

Jrel = I( fk;c)− 2
|F | ∑

fi∈S
I( fk; fi)+ ∑

fi∈S
I( fk;c| fi) (4)

here, |F | is the number of features, I( fk;c) is
the relevancy between feature ( fk) and class (c),
I( fk; fi) is the redundancy between ( fk) and ( fi); and
I( fk;c| fi) is the complementary information provided
by fi for fk to predict c.

2.3 Relief

Relief, a distance based method captures interaction
among the features while ranking the features and
it utilizes score (s[ fk]) for N number of instances
defined in Eqn (5).

s[ fk] =
N

∑
i=1

∆(Ii,miss(Ii))−∆(Ii,hit(Ii))

N
(5)

Here, Ii is the ith target instance, ∆ is distance of hit
(Hi) and miss (Mi) from Ii.

2.4 ReliefF

In ReliefF, k-nearest neighbor is considered for better
performance (s[ fk]) approximation of feature ( fk)
defined in Eqn (6).

s[ fk] =
N

∑
i=1

∑
cn ̸=yn

P(y)
1−P(c)

∆(Ii,Mi)

N ∗ k
− ∆(Ii,Hi)

N ∗ k
(6)

here, P(y) and P(c) are the probability of hit (same
class data instances of Ii) and miss (different class
data instances of Ii) class respectively. The choice
of the value for k is sometimes troublesome- whether
it can choose/discard unnecessary/necessary nearest
neighbour(s) to meet the condition of k.

2.5 SURF

SURF defines a threshold distance value without
fixing the value of k. The threshold distance (T ) is
determined by Eqn (7).

T =
N

∑
i=1

N

∑
j=1, j ̸=i

∆(Ii, I j)

N ∗N
(7)

T is same for all the instances and it is not practical
that having the same T for all instances would
be appropriate. MultiSURF defines the appropriate
threshold distance value for each data instances that
has been shown in proposed method section. The
previously mentioned methods: Relief, ReliefF and
SURF are feature ranking methods, and deciding the
appropriate number of feature is a major concern to
achieve better classification performance. To address
this issue, we propose a distance-based feature
selection approach for software anomaly detection
(ADSD).

3 PROPOSED METHOD

Our proposed ADSD method encompasses two steps:
ranking of features based on performance and a subset
selection process. In this section, we briefly describe
the steps for ADSD.

3.1 Ranking of Features

Individual feature performance is measured using
the scoring mechanism of MultiSURF. As mentioned
before, MultiSURF takes instances inside a threshold
distance. For calculating threshold distance of ith

data instance (Ii), first, we compute a distance array
Di from the taken instance (Ii) to all the remaining
instances (I j) in Eqn (8).

Di = ∆(Ii, I j) (8)

To avoid the confusing instances, the dead-band
zone is defined from the standard deviation of Di, i.e.,
σ(Di). Finally, the threshold distance Ti of Ii instance
is computed using Eqn (9).

Ti = Di−σ(Di) (9)
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Algorithm 1: Ranking the features.

Input: Instances I = {I1,I2, · · · , IN} of dataset
D and features, F={ f1, f2, · · · , fm}

Output:Rank of features (R), hit (Hi) and
miss (Mi) instances for all instances

1: Initialize all feature scores s[ fk] := 0
2: for all i=1 to N do
3: hitc← 0 ; missc← 0
4: Compute Ti using Eqn (9)
5: for j=1 to N do
6: if ∆(Ii, I j)< Ti then
7: if y(i)==y(j) then
8: hitc+= 1
9: Append jth instance in Hi

10: else
11: missc+= 1
12: Append jth instance in Mi
13: end if
14: end if
15: for k=1:F do
16: s[ fk] := s[ fk]− ∆( f ,Ii,Hi)

N∗hitc
+ ∆( f ,Ii,Mi)

N∗missc
17: end for
18: end for
19: end for
20: R = sort(s) in descending order
21: return R, H and M

The instances inside Ti are taken to measure the
feature performance (s[ fk]) of fk as shown in Eqn
(10).

s[ fk] := s[ fk]−
∆( fk, Ii,Hi)

N ∗hitc
+

∆( fk, Ii,Mi)

N ∗missc
(10)

here, fk is the kth feature, (Hi,Mi) is the hit and
miss instances of Ii instance inside Ti. And the same
procedure is repeated for all the instances to define
s[ fk]. The detailed process of ranking the features is
given in Algorithm.1.

3.2 Feature Subset Selection

In order to find the feature subset, we first select
the top-rank feature in the selected subset (S) from
the ranked feature set, and the second top feature
is taken as a candidate feature to measure their
joint performance which is measured using combined
score (Sc) defined in Eqn (11).

Sc =
N

∑
i=1

∆(Ii,Mi,Fc)

N ∗missc
− ∆(Ii,Hi,Fc)

N ∗hitc
(11)

here Fc is the combined feature set, Sc is the score
of the combined feature set. The eligible candidate
feature will increase the class separation (Sc) and thus

when the value of Sc is larger than a threshold value
the candidate feature is chosen to the selected subset.
The detailed process of feature subset selection is
provided in Algorithm.2.

Algorithm 2: Feature subset selection.

Input: Instances, I ={I1, I2, · · · , IN} and
features, F={ f1, f2, · · · , fk}, rank(R),
Hits(H) and Misses(M)

Output: Selected subset (S) where S⊆ F
1: S← R(1)
2: for k = 2: F do
3: fc = S∪R(k)
4: for i=1:N do
5: Compute Sc using Eqn (11)
6: end for
7: if Sc > T then
8: S← S∪R(k)
9: T = Sc

10: end if
11: end for
12: return S

4 EXPERIMENTAL RESULTS

In this section, we describe the datasets, methods and
metrics used in our research, present the results of
comparing ADSD with the existing methods.

4.1 Dataset Description

In software defect classification, the datasets available
in NASA MDP repository and PROMISE repository
are used in many research papers (Menzies et al.,
2006; Lessmann et al., 2008). For bug severity
classification, we choose two open source projects
namely, Mozilla and GCC from bugzilla sources
of data1. The details of the datasets, such as
software project type, number of instances, and
number of attributes of the dataset, are given in Table
1. In bug severity classification dataset, we have
used five severity labels of bugs namely Blocker,
Critical, Major, Minor, Trivial in accordance with the
procedure followed by (Zhang et al., 2016; Lamkanfi
et al., 2010; Sharmin et al., 2017a). Moreover, as
these datasets are text dataset, a Term Document
Matrix (TDM) is generated which is the result of a
set of fundamental NLP techniques ( tokenization,
stop word removal, and stemming) as described in
(Sharmin et al., 2017a).

1https://github.com/ProgrammerCJC/SPFR
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Table 1: Dataset Description.

Defect Dataset
Dataset Software Type # of feature # of instance
ar1 Embedded Software 30 121
ar3 Embedded Software (DishWasher) 30 63
ar4 Embedded Software (Refrigerator) 30 107
ar5 Embedded Software (Washing Machine) 30 36
cm1 NASA Space Craft Instrument 22 498
jm1 Real-time predictive ground system 22 10885
kc1 Storage Management 22 2109
kc2 Storage Management for ground data 22 522
kc3 Storage management for ground data 39 458
mc1 Storage management for ground data 39 9466
mc2 Video guidance system 39 161
mw1 A zero gravity experiment related to combustion 37 403
pc1 Flight software for earth orbiting satellite 22 1109
pc2 Flight software for earth orbiting satellite 37 1585
pc3 Flight software for earth orbiting satellite 38 1125
pc4 Flight software for earth orbiting satellite 38 1399
pc5 Flight software for earth orbiting satellite 39 17001

Bug Severity Dataset
GCC sum C compiler 2422 2725
Mozilla sum Browser 3072 2701

4.2 Methods & Metrics

To measure the performance, we conduct 10-fold
(class-wise) cross-validation for training and testing.
To measure the performance of ADSD against state-
of-the-art methods using two classifiers: decision tree
(DT) and k− nearest neighbour (kNN), and calculate
three metrics: accuracy, balance (defined in Eqn .1)
and Fscore. Accuracy is a very well-known metric.
Besides this, inspired from previous work (Song et al.,
2010; Menzies et al., 2006) we compute balance
metric. The Fscore metric is used to measure the
model performance that is formed using the selected
feature subset. Therefore, it measures the selected
performance in appropriate class prediction which is
defined in Eqn (12).

Fscore =
T P

T P+ .5∗ (FP+FN)
(12)

4.3 Result Discussion

For evaluating the performance of ADSD, we report
the accuracy, balance and Fscore metric in Table
2 and Table 3 for four methods namely, SAL,
MRMD, MultiSURF and ReliefF over 15 defect and
2 bug severity classification datasets. Summary
of these performance metric is represented using
win/tie/loss which means the number of datasets
for which ADSD performs better/equally-well/worse
than other compared methods. As SAL is a feature
subset selection method that was basically designed
for software defect prediction, we choose SAL.

Further, to show the superiority of the distance-based
method over the MI-based method for capturing
feature interaction in higher dimensions. ReliefF and
MultiSURF are the traditional well-known distance-
based feature ranking methods and therefore to show
the impact of feature subset selection over ranking
method we choose them. The impacts of our proposed
ADSD method compared to the existing methods are
discussed below.
Impact of Using Classifier Independent Method:
Comparing the performance metric values for SAL
and ADSD in Table 2 and Table 3, it is seen that SAL’s
performance is not consistent in terms of balance
and accuracy metric as it is classifier dependent.
It only optimizes the balance metric, and for this
reason, it does not always guarantee an increase in
accuracy and Fscore. However, ADSD method is
classifier independent, and therefore its performance
is not impacted by the change of classifiers. Note
that, SAL is excluded in our analysis of bug severity
classification dataset as it needs a considerable
amount of time due to large feature dimensions.
Impact of Feature Selection: ADSD maximizes
class separability during the feature selection process
which results in higher classification accuracy
compared to the ranking method MultiSURF. In
contrast, the degraded performance of MultiSURF
is due to having the similarly behaved features in
the top-ranked list that do not increase their class
separability as well as classification performance.
To understand the impact of feature selection, the
difference of accuracy of MultiSURF (similar to our
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Table 2: Performance analysis using KNN classifier.
Accuracy Balance Fscore

Dataset SAL MSURF ReliefF ADSD SAL MSURF ReliefF ADSD SAL MSURF ReliefF ADSD
ar1 91.30(20) 91.31 92.30 92.31(1) 29.25 29.22 29.21 29.29 48.34 48.23 48.54 48.75
ar3 71.43(24) 85.11 85.23 85.71(2) 19.21 29.29 29.29 60.91 41.67 46.15 46.15 78.79
ar4 54.55(23) 71.82 72.33 72.73(2) 31.39 29.29 43.21 64.64 47.62 45.00 61.18 80.70
cm1 78.33(30) 66.67 75.00 77.00(5) 38.16 16.32 31.57 45.16 57.81 40.00 51.71 62.44
jm1 75.83(21) 81.27 81.46 81.67(2) 37.44 32.97 35.29 37.23 57.14 50.88 56.95 57.11
kc1 83.41(20) 84.21 84.22 84.83(3) 45.91 48.78 34.85 36.1 64.50 67.06 63.73 63.43
kc2 88.68(21) 88.68 88.68 88.68(14) 57.43 56.44 57.43 58.51 82.49 81.51 82.59 82.35
kc3 71.43(30) 76.19 85.21 85.71(6) 21.85 25.36 40.97 41.83 41.67 43.24 65.95 66.11
mc1 99.25(36) 99.25 99.25 99.25(2) 49.28 29.29 29.29 29.21 50.99 49.81 49.81 49.78
mc2 71.43(31) 85.71 92.38 92.86(27) 46.62 55.56 57.61 57.57 65.00 85.42 90.51 91.43
mw1 78.48(27) 78.86 77.78 86.78(4) 23.85 41.74 38.76 43.85 44.90 52.97 55.98 44.90
pc1 85.71(32) 89.42 89.42 89.61(9) 25.47 37.11 37.11 37.43 46.15 57.22 57.22 57.15
pc2 98.11(30) 97.48 96.86 96.86(1) 62.90 28.40 27.96 29.29 48.52 49.36 49.20 49.68
pc3 81.42(33) 84.24 85.32 85.84(1) 32.61 32.11 32.11 45.71 52.78 51.71 51.71 64.75
pc5 96.88(37) 96.88 96.46 97.24(2) 64.20 59.29 44.16 48.84 64.43 72.43 65.24 66.38

win/tie/loss 11/2/3 12/2/1 12/3/0 - 10/0/5 12/0/3 13/0/2 - 9/1/5 10/0/5 10/0/5 -

Table 3: Performance analysis using DT classifier.
Accuracy Balance Fscore

Dataset SAL MSURF ReliefF ADSD SAL MSURF ReliefF ADSD SAL MSURF ReliefF ADSD
ar1 91.21(20) 84.62 92.23 92.31(1) 29.23 23.85 29.25 29.29 48.00 45.83 48.00 48.00
ar3 85.71(24) 85.71 85.71 100.0(2) 29.29 29.29 29.29 100.0 46.15 46.15 46.15 100.0
ar4 90.91(23) 81.82 72.73 100.0(2) 67.61 29.29 43.21 100.0 77.08 45.00 61.18 100.0
cm1 83.33(30) 77.78 72.22 86.11(5) 47.84 33.61 29.29 38.33 52.44 53.55 46.27 55.67
jm1 76.77(21) 80.15 80.24 81.67(1) 41.32 34.87 29.29 29.29 40.42 53.72 44.95 44.95
kc1 84.36(20) 82.94 85.78 85.89(3) 50.88 44.03 42.33 40.48 62.38 62.94 61.94 60.04
kc2 82.79(21) 80.57 79.25 83.02(14) 58.49 71.07 38.26 53.35 75.48 75.15 57.29 71.14
kc3 80.95(30) 80.95 76.19 85.71(6) 41.83 41.83 25.36 46.97 61.11 61.11 43.24 65.95
mc1 99.46(36) 99.25 99.25 99.83(1) 49.49 29.29 29.29 29.14 40.09 49.81 49.81 49.76
mc2 57.14(31) 71.43 71.43 71.43(27) 32.34 43.43 43.43 47.32 53.33 57.58 57.58 68.89
mw1 85.19(27) 81.48 88.89 92.59(4) 45.04 41.74 52.20 52.86 62.50 58.97 72.38 73.00
pc1 88.31(32) 89.61 89.61 89.61(9) 27.33 28.29 37.1 37.19 46.9 47.26 57.22 57.24
pc2 98.74(30) 98.11 98.22 98.74(1) 29.29 28.84 29.29 29.24 49.68 49.52 49.68 49.68
pc3 85.84(33) 87.41 87.22 87.61(1) 47.57 41.82 41.82 41.82 60.23 61.60 61.60 61.60
pc5 97.00(37) 96.77 97.12 97.47(2) 60.68 56.64 46.69 52.51 66.47 66.82 66.60 67.84

win/tie/loss 14/1/0 13/2/0 13/2/0 - 7/0/8 9/1/5 10/2/3 - 11/2/2 10/1/4 9/4/2 -

ranking process) and ADSD for mw1 dataset is shown
in Fig.1 considering both DT and kNN classifier.
ADSD selects 4 features out of 37 and it’s accuracy
is better from the MultiSURF in both kNN and DT
classifiers. Analyzing Fig.1, we can see that the
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Figure 1: Comparison of MultiSURF and ADSD in terms
of accuracy for mw1 dataset.

maximum accuracy is 92% (marked using a circle)
achieved by ADSD with 4 selected feature using DT
classifier. Though we increase the number of features
for MultiSURF, it could not exceed the accuracy

achieved by ADSD. Therefore, it is important to
select an independent and interactive feature subset
rather than increasing the number of features.
Impact of Selected Features Quality: The quality
of the selected features is easily understandable from
their clustering capability. In this regard, we use the
tSNE visualization technique to see the quality of
selected features. From Fig.2, we see that, ADSD has
better clustering capability than the others, though it
is not optimal.
Impact of Distance-Based Method: To understand
the impact of distance-based method over MI-based
method, we evaluate the performance of MRMD
with three distance based methods namely ReliefF,
MultiSURF and our proposed ADSD in large feature
dimensional dataset such as bug severity classification
performance reported in Table 4. Analyzing Table
4, we can see that the classification performance of
MRMD (MI-based) method is lower compared to
ADSD, ReliefF and MultiSURF (MSURF). MRMD
fails to accurately approximate the interaction among
the features during feature ranking, resulting in
degraded performance.
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(a) Original (b) SAL

(c) MultiSURF (d) ADSD

Figure 2: Clustering ability of ADSD and compared methods visualized by the tSNE plot.

Table 4: Bug severity result.
Bug severity result

Dataset MRMD ReliefF MultiSURF ADSD
trainGCC sum 57.03 59.12 58.39 59.49(576)
trainMozilla sum 44.45 45.16 45.5 46.95(870)
win/loss 2/0 2/0 2/0 0

5 THREATS TO VALIDITY

This section discusses the potential threats that may
degrade the acceptability of ADSD.

5.1 Internal validity

As the choice of classifiers has an impact on
performance, to evaluate the performance of ADSD,
we only use SVM and DT classifiers to estimate the
accuracy, balance, and F-score performance metric.
Therefore, change in classifiers might differ from the
reported performance of ADSD and other compared
methods.

5.2 External Validity

The datasets used for the experimentation are widely
used in existing software defect and bug severity

classification research work. However, we cannot
provide guarantee that ADSD will be fitted to other
software defect/bug data in case of the presence of
noise in data. Sometimes, we may have to relax the
feature selection threshold value to get the desired
performance in new software bug/defect data.

5.3 Construct Validity

In this proposal, we use Fscore measure to evaluate the
performance of the model and there are other metrics
like AUC and g-measure which could be considered
for this evaluation.

6 CONCLUSION

In this paper, we a feature selection method namely
Anomaly Detection for Software Data (ADSD).
To get a reliable conclusion, we compared the
performance of conventional approaches with ADSD
on 15 benchmark software defect datasets and
two bug severity classification datasets using three
metrics- accuracy, balance and Fscore. The combined
feature performance maximization property of ADSD
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helped to achieve the highest accuracy among its
contenders. However, the presence of outliers and
imbalance problems in data might result in the
degraded performance of ADSD. Moreover, when the
number of samples grows very high ADSD cannot
deal with it due to the huge computational complexity
of kNN. To address this, we can take advantage of the
sampling method which will be addressed in future.
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