
StegWare: A Novel Malware Model Exploiting Payload Steganography
and Dynamic Compilation

Daniele Albanese1, Rosangela Casolare2, Giovanni Ciaramella1, Giacomo Iadarola1,
Fabio Martinelli1, Francesco Mercaldo1,2, Marco Russodivito2 and Antonella Santone2

1Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
2University of Molise, Campobasso, Italy

{giacomo.iadarola, fabio.martinelli, francesco.mercaldo}@iit.cnr.it,
{rosangela.casolare, francesco.mercaldo, marco.russodivito, antonella.santone}@unimol.it

Keywords: Security, Malware, Android, Reflection, Dynamic Compiling, Dynamic Loading, Steganography.

Abstract: Android is the most widely used mobile operating system in the world. Due to its popularity, has become a
target for attackers who are constantly working to develop aggressive malicious payloads aimed to steal confi-
dential and sensitive data from our mobile devices. Despite the security policies provided by the Android oper-
ating system, malicious applications continue to proliferate on official and third-party markets. Unfortunately,
current anti-malware software is unable to detect the so-called zero-day threats due to its signature-based ap-
proach. For this reason, it is necessary to develop methods aimed to enforce Android security mechanisms.
With this in mind, in this paper we highlight how a series of features available in current high-level program-
ming languages and typically used for totally legitimate purposes, can become a potential source of malicious
payload injection if used in a given sequence. To demonstrate the effectiveness to perpetrate this attack, we de-
sign a new malware model that takes advantage of several Android features inherited from the Java language,
such as reflection, dynamic compilation, and dynamic loading including steganographic techniques to hide the
malicious payload code. We implement the proposed malware model in the Stegware Android application. In
detail, the proposed malware model is based, on the app side, on the compilation and execution of Java code
at runtime and, from the attacker side, on a software architecture capable of making the new malware model
automatic and distributed. We evaluate the effectiveness of the proposed malware model by submitting it to
73 free and commercial antimalware, and by demonstrating its ability to circumvent the security features of
the Android operating systems and the current antimalware detection.

1 INTRODUCTION

Android is nowadays the most diffused operating sys-
tem on mobile devices. As a matter of fact, in a re-
port conducted by StatCounter in October 2022, the
number of devices where Android is running is es-
timated at over 80%1. The usage of this operating
system is not only restricted to mobile devices but is
largely considered in automotive (Mercaldo. et al.,
2022) and IoT fields. Because of its widespread dis-
tribution, attackers are writing increasingly aggres-
sive malicious payloads to obtain sensitive and pri-
vate data saved on our devices. Due to the Android
open source nature, users could obtain mobile appli-
cations from third-party markets rather than the orig-

1https://gs.statcounter.com/os-market-share/mobile/wo
rldwide/

inal Google Play Store, at more competitive, if not
free, costs. Since these alternative markets are not
managed by Google, attackers publish malware on
these platforms misleading users to install on their de-
vices spoofed applications. To limit these phenomena
and to protect users over the years, researchers de-
veloped different security measures to protect users
from possible attacks, for instance, based on machine
learning or model checking(Scott, 2017). From the
operating system side, Google introduced the usage
of sandboxes, permission, and Google Play Protect.
Sandboxes are used to provide a unique identification
code to each program and operate it within a confined
memory area or execute a limited number of system
calls, whereas permissions are employed to govern
the access to information by apps served by users. In
2012 was launched Google Play Protect, i.e., a tool

Albanese, D., Casolare, R., Ciaramella, G., Iadarola, G., Martinelli, F., Mercaldo, F., Russodivito, M. and Santone, A.
StegWare: A Novel Malware Model Exploiting Payload Steganography and Dynamic Compilation.
DOI: 10.5220/0011859000003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 741-748
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

741



for detecting malware and trojans. But these coun-
termeasures are not enough: as a matter of fact, ac-
cording to a McAfee report issued in 2022 2, cyber-
criminals are always active in trying to defraud mo-
bile users. In addition to the more deceptive phishing
approach, a new way has just been devised to mislead
mobile game cheaters by adding dangerous code to
an existing open-source game hacking tool. Follow-
ing a survey released by financesonline.com 3, there
is a not-specified population between the ages of 6
and 15 who spend time gaming on mobile devices
with the permission of their parents. This element
makes it considerably easier for attackers to hit their
intended target. From these considerations it emerges
the need to develop new ways to protect the personal
and sensitive user’s mobile information, by boosting
researchers, from both industrial and academic sides,
to focus on a new way to perpetrate attacks on the
mobile environment to develop more security fea-
tures by anticipating malware writers. With this in
mind, in this paper, we introduce a novel malware
model able to overcome the security mechanisms pro-
vided by Android operating systems and the free and
commercial antimalware detection approach. In the
proposed model the malicious payload is delivered
through an image where the code is hidden through
steganography. Once the payload source code is re-
trieved is automatically compiled with dynamic com-
pilation, thus loaded into memory through dynamic
loading and invoked at run-time by exploiting reflec-
tion, a mechanism provided by Android and modern
object-oriented programming languages.

Our model relies on the combined exploitation
of three mechanisms native provided by the Android
programming language: dynamic compiling, reflec-
tion, and dynamic loading, to allow a series of source
code snippets to combine into a running application
and execute, to dynamically alter the normal flow of
program execution. Moreover, the source code snip-
pets are hidden into images by exploiting steganog-
raphy (Johnson and Jajodia, 1998). The most pop-
ular steganography technique, which is usually used
with picture and sound carrier files, is known as Least
Significant Bit Substitution (LSBS) or overwriting.
This method consists of overwriting the bit with the
lowest arithmetic value going to modify the original
output slightly enough to be unlikely to be detected
by human senses (Siper et al., 2005). Although the
LSBS technique may turn out to be efficient, modern
steganography applications change the last bit ran-

2https://www.mcafee.com/blogs/mobile-
security/mcafee-2022-consumer-mobile-threat-report/

3https://financesonline.com/mobile-gaming-
demographics/

domly. The latter is performed to obstacle adver-
saries.

We implemented the new attack model we pro-
pose into the StegWare Android malware, to demon-
strate the possibility to perform this kind of attack in
a real-world environment.

The remaining of the paper proceeds as follows:
in Section 2 we present the novel malware model; in
Section 3 we discuss the StegWare implementation;
the StegWare experimental analysis is presented in
Section 4; in Section 5 we report the current state-
of-art literature on the dynamic loading and dynamic
compilation adoption for malicious purposes and, fi-
nally, in the last section conclusions and future re-
search plans are drawn.

2 THE MALWARE MODEL

In this section, we describe the proposed approach be-
hind the proposed novel malware model. In Figure 1
we show the malware architecture, which is explained
in detail below.

In the proposed novel malware model, we con-
sider a scenario where an image is delivered to the
users, for instance through the browser or an instant
messaging application such as WhatsApp or Tele-
gram. Once the image is received and stored into the
Android application, the following steps will be acti-
vated, as shown in Figure 1:

1. Payload Search: to search for malicious images,
a service has been implemented that analyzes all
the multimedia files in the memory of the device,
searching for a specific file with a specific name.
Thus the malware model is continuously and ac-
tively looking for images from different sources;

2. Payload Extraction: once an image is gathered,
the model tries to extract the source code from
the image (whether available). For image de-
coding, an ImageSteganography object is instan-
tiated to which a bitmap image is given as input.
Then, another object is instantiated, but this time
of type TextDecoding, to which the TextDecoding-
Callback parameter is given as input. After these
operations, the decoding task of the TextDecoding
object will be executed on the ImageSteganogra-
phy object and, after the override operation of the
onCompleteTextDecoding method, it will be pos-
sible to see the Java code hidden inside the image
passed as input;

3. Payload Execution: using the output of the pre-
vious step, the malicious Java code hidden inside
the image will be processed by the approach in

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

742



Figure 1: High-level architecture scheme of malware model.

Figure 1:

• the payload is scanned to understand if it is a
valid Java class;

• the Java class is processed for building the Ab-
stract Syntax Tree (AST);

• the AST will be mapped using the JavaAssist
API4 to generate the compiled bytecode of the
Java class and it will be written into a .class
file;

• the .class file will be packed into a .dex i.e., a
Dalvik executable (the form of executable code
used in Android applications);

• the .dex file, we can load it into
the Android device memory using the
dalvik.system.DexClassLoader API;

4. Payload Run: when the bytecode is completely
loaded into the Android device RAM, we can use
java.lang.reflect API to instantiate the class
that we have previously compiled;

5. Payload Send: once the code has been extracted
and executed, a call will be made to the backend
which will contain all the data that the payload
was able to extract;

6. Payload Destroy: once executed, we need to
delete all the traces left by the malware to restore
the original application state, making the pro-
posed model stealth; In fact during the dynamic
compiling steps, the model generated a .class
and a .dex into the Android device storage. The

4https://www.javassist.org/

malicious code should be in the application only
within the dynamic loading and execution time
window and then these files must be permanently
deleted from the device.

As discussed the proposed malware model consid-
ers several characteristics inherited from the Android
programming language, by considering also the abil-
ity to generate images that contain hidden code inside
them with the adoption of steganography. This op-
eration is performed through the frontend and using
the steganography, aimed to hide message fragments
within a bit vector.

In detail, we adopted the LSB steganography: this
technique is mainly based on the concept that the ap-
pearance of a high-definition digital image does not
change if the colors are subtly modified. In images,
each pixel is represented by a different color, and by
changing the last bit of each pixel value, the color will
not be significantly changed and the image content
will be preserved despite this manipulation. This op-
eration causes a person to be unable to tell with the
naked eye whether there has been an image manipu-
lation operation.

Considering the use that users make of smart-
phones every day, it becomes very easy to get hold
of images that can be potentially harmful. Suffice it
to say that every day a large number of photos and im-
ages are sent and received via messaging applications
(for instance, Telegram or WhatsApp), in addition to
images that can be downloaded from websites via the
browsers installed on the devices.

StegWare: A Novel Malware Model Exploiting Payload Steganography and Dynamic Compilation

743



3 THE StegWare MALWARE

In this section, we describe the technologies we ex-
ploited to implement the novel malware model into
the Stegware Android application. In particular, we
explain how we built the back end using Node.js,
the front end using React JS, and the not-relational
database we considered i.e., Mongo DB. The source
code we developed for the app 5, dashboard 6, and
back end 7 is freely available for research purposes on
the GitHub platform. In the following, we present the
implementation related to the Stegware application,
the back-end, the front-end, and the non-relational
database we exploited.

3.1 The StegWare Android App

The Android application was developed using the An-
droid native language: it is composed of a unique
Main Activity, shown in Figure 2, where the project’s
logo is reported. Once the app has been loaded into
the victim device, the user needs to accept the per-
missions required, i.e., read and write on the device’s
storage. After the acceptance, the StegWare appli-
cation starts the Communication Service through the
START STICKY modality. The latter allows the Ser-
vice to remain in execution in the background. In a
loop, the Communication Service attempts to detect
harmful pictures during execution. If the image is rec-
ognized, the service decodes it using steganography.
This operation is performed to retrieve the malicious
payload. When the latter is obtained, dynamic compi-
lation, dynamic load, and reflection execution begin.
In the end, an API request to the server is sent.

3.2 Back-End

To develop the back-end our choice fell on Node.js 8,
thanks to its versatility, the large number of libraries,
and the high performance and management obtained
on requests. To start this component we also em-
ployed Docker as container.

The back end aims to handle communication
between the database and the Android application
through the use of the end-point to allow the external
client to invoke the APIs. Deeper, the end-point man-
agement was entrusted to the framework Express 9.
The latter provides some advanced methods for han-
dling HTTP requests and for implementing APIs. In

5https://github.com/dj-d/StegWare-App
6https://github.com/dj-d/StegWare-Dashboard
7https://github.com/dj-d/StegWare-Backend
8https://nodejs.org/en/
9https://expressjs.com/

Figure 2: StegWare Main Activity.

Listing 1 we reported the setup of server Node.js us-
ing Express.

// Dependencies
const http = require(’http’);
const express = require(’express’);
const bodyParser = require(’body-parser’);

// Server port
const PORT = 9999;

// Create a new express application
const app = express();

// Middleware - body-parser config
app.use(bodyParser.json());
app.use(bodyParser,urlencoded({ extended: true

}));

// Create a new HTTP server
const server = http.createServer(app);

// Start server
server.listen(PORT);

Listing 1: Setup ExpressJS framework.

3.3 Front-End

To simplify malware management we also built a
dashboard using the React.js framework to help with
malware management. Furthermore, the graphics
component was created with the MaterialUI library,
while using the Axios framework HTTPS request are
managed. Users may view all of the possible pay-
loads that can be sent to an Android smartphone via

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

744



the dashboard. In Listing 2 a payload example is re-
ported. People may also alter the payload using an
editor built with the Monaco React framework, add a
new payload, or delete it, as shown in Figure 3. The
front-end interface also allows users to recover past
assaults and inspect individual attack data, as illus-
trated in Figure 4.

import android.content.Context;
import android.location.Location;
import android.location.LocationManager;
class RuntimeClasse {
public RuntimeClasse() {}
public String run(Context context) {
LocationManager locationManager =

(LocationManager)
context.getSystemService \

\ (Context.LOCATION_SERVICE);
Location location =

locationManager.getLastKnownLocation \
\ ("network");

return location.toString();
}

}

Listing 2: Payload to retrieve last victim’s position.

3.4 Database

As a database, we chose a non-rational database, i.e.,
Mongo DB 10. The reason we chose this form of
the database may be discovered in the data process-
ing structure, which is not defined a priori. Also the
Mongo DB installation happened through a Docker
image.

4 EXPERIMENTAL ANALYSIS

In this section, we demonstrate the ability of the SteW-
are malware to elude the operating system’s security
features and to avoid detection from commercial and
free antimalware. In particular, we propose two dif-
ferent experimental analyses: the first one is a static
analysis i.e., it does not require running the appli-
cation it consists in submitting the StegWare app to
several free and commercial antimalware to under-
stand whether the StegWare malicious behavior is de-
tected. The second experimental analysis considers
the installation of the StegWare prototype on a real-
world environment, to understand whether the An-
droid operating system blocks the malicious payload
execution in some phases (for instance, in the source
code recovering, the dynamic compiling or the dy-
namic loading). Different antimalware will also be

10https://www.mongodb.com/

installed on the device when installing and running
StegWare, in particular, we selected 5 different well-
known antimalware that were installed, one at a time,
when StegWare was installed and run with the mali-
cious payload execution: for this reason we consider
this analysis as a dynamic one because it considers the
StegWare execution. In the following, we explain in
detail how we conducted and the results we obtained
from both the static and dynamic analysis.

4.1 The Static Analysis

To this aim, we submitted the StegWare prototype to
two different webs antimalware aggregators: the first
one is VirusTotal11, while the second one is Jotti12

i.e., two concurrent online scanning systems, which
together use 73 antimalware.

VirusTotal is a free online scanning service that
allows the detection of different types of malware
present in suspicious URLs or files. These are sub-
jected to the simultaneous static analysis of numer-
ous antimalware constantly updated to the latest ver-
sion available. Since 2012, VirusTotal has belonged
to Google, which bought it, improved it, and then in-
tegrated it into the automated control procedures per-
formed before the applications were published on the
Google Play Store. Although this tool allows to speed
up the first part of static analysis, it is always good to
manually inspect the code for any false negatives.
The StegWare APK was checked by VirusTotal on the
date 2021/12/01 and none of the 60 anti-malware re-
ported anomalies.

The Virustotal report is freely available 13.
The second service we used is Jotti, which, in the

same way as VirusTotal, allows us to perform the si-
multaneous analysis of suspicious files between dif-
ferent anti-malware.

The results of the scans are shared to improve the
accuracy of scans. The StegWare APK was checked
by Jotti on the date 2021/12/01 and none of the 13
anti-malware reported any anomalies.

4.2 The Dynamic Analysis

The idea behind this second experimental analysis is
to understand if the Android operating system can in-
tercept (someone of) the StegWare malicious behav-
ior. Moreover, we want to understand whether an-
timalware can block the execution of StegWare mal-
ware.

11https://www.virustotal.com/gui/home/upload
12https://virusscan.jotti.org/it
13https://www.virustotal.com/gui/file/5ff2aac304df0293

a8cbc7e55582acd3e6c20dc7b97986ac2bfa00f415cd8d9e

StegWare: A Novel Malware Model Exploiting Payload Steganography and Dynamic Compilation

745



Figure 3: Dashboard Page - Payload.

This analysis consists of the installation and ex-
ecution of the StegWare malware in a real-world de-
vice while the antimalware daemon and all the anti-
malware heuristics were previously activated. For this
purpose, We install the StegWare malware on a phys-
ical device (i.e., a Samsung Galaxy S9 Plus with An-
droid 10 on board) and we choose several best-ranked
antimalware available for the Android environment.

In particular, we selected the five best antimal-
ware from the ones present in the ranking drawn up
by AV-TEST (an independent organization providing
comparative antimalware tests and reviews)14 in May
2020, which received full marks as regards the level
of protection, performance, and usability.

The tests have been carried out with the following
procedure:

1. the antimalware is installed;

2. the antimalware daemon is installed and enabled;

3. the antimalware heuristics are enabled;

4. the StegWare application is installed and ini-
tialised;

5. the attacker sends a malicious payload;

6. the expected behavior of StegWare is observed;

7. the attacker received the information gathered
from the device;

14https://www.av-test.org/en/

8. whether there is the availability of another mali-
cious payload the procedure goes to step 5;

9. the StegWare applications is uninstalled;

10. the antimalware is uninstalled;

11. a new antimalware is installed and the procedure
goes to step 2.

The following antimalware is considered in the in-
depth analysis: Avira, BitDefender, GData, Kasper-
sky, and McAfee. We recall that the StegWare An-
droid application was installed on the device and we
carried out all the attacks: none of the antimalware
detected anomalies at any stage of the proposed mal-
ware model.

This happens because currently antimalware con-
siders the so-called signature-based mechanism i.e.,
the payload is successfully detected whether its sig-
nature is matching a signature stored in the database
repository. Additionally, several antimalware exploits
some heuristic scanning methods finalized to detect
malware without needing a signature. This is why
most antimalware programs use both signature and
heuristic-based methods in combination, to catch any
malware that may try to evade detection.

5 RELATED WORK

In the literature several works focus on dynamic load-
ing and dynamic compilation, modifying the control

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

746



Figure 4: Dashboard Page - Result.

flow of an application in a mobile environment.
Researchers in (Casolare et al., 2021) propose a

new attack model called 2Faces targeting the Android
platform. This model is based on the combined ex-
ploitation of three native mechanisms provided by the
Android programming language: dynamic compila-
tion, reflection, and dynamic loading allowing a se-
ries of source code snippets to combine into a running
application, to alter dynamically the normal flow of
program execution. The main difference between the
StegWare approach and the one proposed in 2Faces
relies on the adoption of the stenography, in particu-
lar the LSB (i.e., a steganography technique in which
we hide messages inside an image by replacing Least
significant bit of image with the bits of a message to
be hidden), not exploited by the 2Faces malware.

In (Canfora et al., 2015) the authors designed an
Android malware model, called Composition Mal-
ware, which uses dynamic loading and reflection
to execute external Dalvik byte code which is not
present at installation time in the application. The
model we propose can compile the payload source
code at run-time, Composition Malware on the other
hand is aimed to execute a pre-compiled executable
file; therefore it requires that the executable code tran-
sits over the network (in clear) and for this reason,
it could be detected by the network traffic analysis
mechanisms. Differently in the malware model pro-
posed by us, only encrypted source code snippets hid-
den in images transit over the network.

Authors in (Wang et al., 2013) worked on devel-
oping an application for the iOS operating system,
aimed to dynamically load code not initially present
in the application code as reviewed by Apple. Once
installed, the application allows performing various
malicious activities, such as posting tweets, sending
e-mails and SMS, taking photos, and acquiring in-
formation on the identity of the device. The pur-
pose is to demonstrate that it is also possible in Ap-
ple’s operating system to dynamically load executable
code at run-time. The StegWare model, in addition
to dynamic loading, includes code reflection, and dy-
namic compiling with source code hiding employing
steganography.

Researchers in (Prandini and Ramilli, 2012) stud-
ied the adoption of the Return-Oriented Programming
(ROP), by altering the control flow at run-time, to pro-
pose an exploit technique that allows the attacker to
have control of the application without injecting code,
thus executing sequences of machine instructions (i.
e.: gadgets). Usually, each gadget ends in a return in-
struction and is placed in a subroutine of the program,
so it is possible to create a chain of gadgets. The ROP
method needs a malicious payload in the application
upon installation, unlike our malware model. Differ-
ently, we propose a novel Android malware model
that uses a series of features inherited from the An-
droid programming language able to load at the run-
time of the malicious payload, by hiding the malicious
payload by exploiting steganography.

StegWare: A Novel Malware Model Exploiting Payload Steganography and Dynamic Compilation

747



Concluding, nowadays, malware is a topic of re-
search. Milosevic et al. in (Milosevic et al., 2016) re-
port a detailed overview of security incidents involv-
ing IoT devices from a software viewpoint, showing
the most widespread types of malware and exhibiting
different types of side-channel attacks.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we presented a novel malware model
based on a dynamic compilation, dynamic load, and
reflection using steganographic techniques. We de-
velop the proposed malware model in the StegWare
Android application. Moreover, we designed and de-
veloped a software framework that makes this new
type of malicious payload easy to use and distribute.

We conducted two different experimental analy-
ses, to demonstrate that the StegWare application can
perpetrate its malicious behavior undisturbed: in fact,
the Android’s security mechanism does not detect it.
Moreover, we also submitted StegWare to 73 different
free and commercial antimalware who considered it a
legitimate application.

Below we reported many solutions to prevent the
malicious behavior implemented in the StegWare mal-
ware model.

The first one consists of notifying the user of all
the suspicious events that could threaten the security
and privacy of the device owner. A solution at coarse
grain is that the device administrator is informed of
all the information pieces that the device sends to an
external location (a server, another device, a recipi-
ent, and so on). In our example, the malware sends
private and sensitive information: in this case, the de-
vice owner should have received a warning contain-
ing all the information that is gathered. Of course,
as this mechanism could degrade usability, the user
could explicitly specify which kind of information or
actions must be considered private or related to secu-
rity concerns: the user will be informed only when
that information is sent somewhere or those actions
are performed by an app.

In future work, we will experiment with the pos-
sibility to consider audio as a carrier to transmit the
malicious payload source code, by applying steganog-
raphy to an audio file. It will be of interest to un-
derstand whether there is the possibility to deliver the
malicious payload for instance by listening to audio
from streaming.

ACKNOWLEDGEMENT

This work has been partially supported by EU DUCA,
EU CyberSecPro, and EU E-CORRIDOR projects
and PNRR SERICS SPOKE1 DISE, RdS 2022-2024
cybersecurity.

REFERENCES

Canfora, G., Mercaldo, F., Moriano, G., and Visaggio, C. A.
(2015). Composition-malware: building android mal-
ware at run time. In 2015 10th International Confer-
ence on Availability, Reliability and Security, pages
318–326. IEEE.

Casolare, R., Lacava, G., Martinelli, F., Mercaldo, F., Rus-
sodivito, M., and Santone, A. (2021). 2faces: a new
model of malware based on dynamic compiling and
reflection. Journal of Computer Virology and Hack-
ing Techniques, pages 1–16.

Johnson, N. F. and Jajodia, S. (1998). Exploring steganog-
raphy: Seeing the unseen. Computer, 31(2):26–34.

Mercaldo., F., Casolare., R., Ciaramella., G., Iadarola., G.,
Martinelli., F., Ranieri., F., and Santone., A. (2022).
A real-time method for can bus intrusion detection by
means of supervised machine learning. In Proceed-
ings of the 19th International Conference on Security
and Cryptography - SECRYPT,, pages 534–539. IN-
STICC, SciTePress.

Milosevic, J., Sklavos, N., and Koutsikou, K. (2016). Mal-
ware in iot software and hardware.

Prandini, M. and Ramilli, M. (2012). Return-oriented pro-
gramming. IEEE Security & Privacy, 10(6):84–87.

Scott, J. (2017). Signature based malware detection is dead.
Institute for Critical Infrastructure Technology.

Siper, A., Farley, R., and Lombardo, C. (2005). The rise
of steganography. Proceedings of student/faculty re-
search day, CSIS, Pace University.

Wang, T., Lu, K., Lu, L., Chung, S., and Lee, W. (2013).
Jekyll on ios: When benign apps become evil. In 22nd
{USENIX} Security Symposium ({USENIX} Security
13), pages 559–572.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

748


