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Abstract: Recently, the visual attention mechanism has become a promising way to improve the performance of Con-
volutional Neural Networks (CNNs) for many applications. In this paper, we propose a Layer-wise External
Attention mechanism for efficient image anomaly detection. The core idea is the integration of unsupervised
and supervised anomaly detectors via the visual attention mechanism. Our strategy is as follows: (i) prior
knowledge about anomalies is represented as an anomaly map generated by the pre-trained network; (ii) the
anomaly map is translated to an attention map via an external network. (iii) the attention map is then incor-
porated into intermediate layers of the anomaly detection network via visual attention. Notably, the proposed
method can be applied to any CNN model in an end-to-end training manner. We also propose an example
of a network with Layer-wise External Attention called Layer-wise External Attention Network (LEA-Net).
Through extensive experiments using real-world datasets, we demonstrate that Layer-wise External Attention
consistently boosts the anomaly detection performances of an existing CNN model, even on small and unbal-
anced data. Moreover, we show that Layer-wise External Attention works well with Self-Attention Networks.

1 INTRODUCTION

Anomaly detection is a technique used to identify ir-
regular or unusual patterns in datasets. Particularly,
anomaly detection for imaging data is a powerful
and core technology that can be applied to various
kinds of real-world problems, including medical di-
agnosis (Rezvantalab et al., 2018; Cao et al., 2018),
plant healthcare (Ferentinos, 2018), production qual-
ity controls, and disaster detection (Minhas and Zelek,
2019; Natarajan et al., 2019). Recently, many re-
searchers have shown great interest in the establish-
ment of automatic anomaly detection techniques for a
huge image dataset driven by breakthroughs in deep
learning. Based on the various aspects of machine
learning, these anomaly detection techniques can be
roughly classified into three categories: supervised,
semi-supervised, and unsupervised approaches. Al-
though each approach has its advantages and disad-
vantages, the fundamental challenge that should be
overcome is on how we detect anomalies efficiently
based on a limited number of anomalous instances.

A convolutional neural network (CNN) is a com-
monly used artificial network for various computer
vision tasks, including image recognition and image
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segmentation. CNNs have realized state-of-the-art
image anomaly detection in real-world applications
using a huge dataset of labeled images (Hughes and
Salathe, 2016; Minhas and Zelek, 2019). However,
anomaly detectors based on CNN sometimes suffer
from a lack of labeled images and low anomaly in-
stances. Some studies have proposed ideas for over-
coming this point by improving the learning effi-
ciency of CNN. Particularly, one of the previous stud-
ies introduced active learning (Nico Goernitz, 2013),
whereas another employed transfer learning (Minhas
and Zelek, 2019) for that same purpose.

Approaches based on unsupervised learning are
the most popular method for anomaly detection be-
cause they do not require labeled anomalous instances
to train anomaly detectors. The simple strategy of
unsupervised image anomaly detection relies on the
training of reconstruction processes for normal im-
ages using a deep convolutional autoencoder (Hasel-
mann et al., 2018). However, the autoencoder some-
times fails to reconstruct fine structures. Conse-
quently, it outputs immoderate blurry structures. Re-
cently, generative adversarial network (GAN) has
been used for image anomaly detection to address
this problem. AnoGAN (Schlegl et al., 2017) firstly
employed GAN for image anomaly detection. Addi-
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tionally, AnoGAN and its extensions (Zenati et al.,
2018; Akcay et al., 2018) realized minute anomalies
in applications of medical image processing. More re-
cently, AnoGAN was applied to the field of color re-
constructability to realize sensitive detection of color
anomalies (Katafuchi and Tokunaga, 2021). It is
an approximately common procedure in unsupervised
anomaly detection to define the difference between
the original image and the reconstructed image as
Anomaly Score.

Although unsupervised anomaly detectors can
eliminate the labeling cost of anomalous instances for
a training step, there are some drawbacks. First, they
tend to overlook small and minute anomalies because
Anomaly Score is defined based on the distance be-
tween the normal and test images. In other words, the
detection performance of unsupervised anomaly de-
tectors strongly depends on whether a good Anomaly
Score can be designed for each purpose. Second, the
appropriate threshold of the Anomaly Score should be
tuned carefully for successful classification of normal
and anomalous instances. In most practices, this pro-
cess requires painful trial and error.

Nowadays, the technique called visual attention
mechanism is attracting much attention in the field of
computer vision (Zhao et al., 2020). Attention Branch
Network (ABN) is a CNN with a branching structure
called Attention Branch (Fukui et al., 2019). maps
produced from the Attention Branch represent visual
explanations. This attention map enables humans to
understand the decision process of CNN. Further, the
authors reported that the attention map contributes to
improving the performances of CNN for several im-
age classification tasks. Afterward, researchers in the
field of computer vision have attempted to build a
technique that finely induces the attention of CNN
to informative regions in images. For the last sev-
eral years, it has been shown that such technique is
promising for improving the performance of CNN for
several computer vision tasks, including image classi-
fication and segmentation (Fukui et al., 2019; Emami
et al., 2020). Inspired by these studies, one may think
of the possibility of introducing the visual attention
mechanism to image anomaly detections. However,
visual attention modules including ABN, rely on Self-
Attention mechanisms (Hu et al., 2020a; Woo et al.,
2018). Accordingly, the attention quality of the mod-
ules strongly depends on the performance of the net-
work itself, which means that existing visual atten-
tion mechanisms could not boost the performance of
anomaly detectors directly.

In this paper, we propose Layer-wise External At-
tention mechanism to boost CNN-based anomaly de-
tectors. As mentioned above, purely unsupervised

anomaly detectors do not utilize anomalous instances
for training. As a result, they tend to overlook small
and minute anomalies, or, conversely, incur high false
positives. Furthermore, purely supervised approaches
suffer from a lack of labeled images, particularly from
a lack of anomalous instances. In this paper, we
tackle these problems by integrating supervised and
unsupervised anomaly detectors via a visual atten-
tion mechanism. Recent progress on visual attention
mechanism strongly implies that there must be a way
to utilize prior knowledge for anomaly detections. We
expect that the anomaly map generated from an unsu-
pervised anomaly detector is useful for boosting su-
pervised anomaly detectors but powerless by itself
for efficient anomaly detections. Moreover, we ex-
pect that such a boosting approach contributes to re-
ducing the developing cost of anomaly detectors, be-
cause we can divert existing image classifiers for im-
age anomaly detections.

Our overall strategy is as follows: (i) Prior knowl-
edge of anomalies is represented as an anomaly map,
which is generated through unsupervised learning of
normal instances; (ii) The anomaly map is then trans-
lated to an attention map by an external network; (iii)
The attention map is then incorporated into intermedi-
ate layers of the Anomaly Detection Network (ADN).
We note that Layer-wise External Attention can be
easily applied to any CNN model in an end-to-end
training manner. For a pilot study, we focused on an
anomaly in colors because color anomalies are com-
paratively easy to represent based on CIEDE color
differences (Katafuchi and Tokunaga, 2021). We
examined the effectiveness of Layer-wise External
Attention for image anomaly detection through ex-
tensive experiments using real-world publicly avail-
able datasets. The results demonstrated that Layer-
wise External Attention consistently boosts the per-
formance of anomaly detectors even on small and un-
balanced data.

Our main contributions are as follows:

• We proposed Layer-wise External Attention
mechanism for efficient image anomaly detec-
tions.

• We proposed an example of a network with Layer-
wise External Attention called LEA-Net.

• We showed that Layer-wise External Attention
successfully boosts the performance of image
anomaly detectors, even for small and imbalanced
training data.

• We showed that the combination of Layer-wise
External Attention and Self-Attention realizes fur-
ther improvement of anomaly detectors.

Layer-wise External Attention for Efficient Deep Anomaly Detection

101



• We provide a Python implementation of LEA-Net
at: https://github.com/Tokunaga-LAB-Group/
Layer-wise External Attention Network.

2 RELATED WORK

The proposed method can be categorized as a semi-
supervised approach. Most recently, a simpler ap-
proach was adopted in a task for automatic iden-
tification of thyroid nodule lesions in X-ray com-
puted tomography images (Li et al., 2021). The
technique uses binary segmentation results obtained
from a universal network (U-Net) as inputs for su-
pervised image classifiers. The authors showed that
the binary segmentation as a preprocessing for an
image classification contributes to improve anomaly
detections in a real-world problem. Looking for a
somewhat similar setting, Convolutional Adversar-
ial Variational Autoencoder with Guided Attention
(CAVGA) uses anomaly map in a weakly supervised
setting to localize anomalous regions (Venkatara-
manan et al., 2020). CAVGA achieved state-of-the-art
results through experiments for image anomaly detec-
tions using MVTec AD. These two studies imply that
the introduction of a visual attention map has a great
potential for image anomaly detections.

A visual attention mechanism refers to the pro-
cess of refinement or enhancement of image features
for recognition tasks. The human perceptual sys-
tem tends to preferentially capture information rel-
evant to the current task, rather than processing all
information (Reynolds and Chelazzi, 2004; Chun
et al., 2011). Visual attention mechanisms imitate
the human perceptual mechanism for image classi-
fication (Hu et al., 2020a; Wang et al., 2017; Woo
et al., 2018; Lee et al., 2019; Wang et al., 2020; Yang
et al., 2021). Most image classifiers with visual at-
tention adopt a Self-Attention module that works in
plug-and-play with existing models. In such speci-
fications, the effectiveness of visual attention mech-
anisms depends strongly on the performance of the
main body of the model: this is a limitation of Self-
Attention approaches. ABN (Fukui et al., 2019) over-
came this problem by interactive editing of attention
map. It enabled us to induce focus points of CNN to
more informative regions on images through the cor-
rection of the attention map. Another similar visual
attention mechanism is Attention Transfer, which is
based on knowledge distillation (Zagoruyko and Ko-
modakis, 2017). In the process of knowledge distilla-
tion, a smaller network called the student network re-
ceives prior knowledge from a larger network called
the teacher network (Hinton et al., 2015). The idea
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Figure 1: Overview of anomaly map generation.

of Attention Transfer relies on the assumption that a
teacher network tends to focus on a more informative
area than does a student network.

In this paper, we designed the structure of the net-
work inspired by ABN and Attention Transfer net-
work with several points of improvement. Our de-
signed method does not require any user interaction to
control focus points of CNN. The training of network
with Layer-wise External Attention goes on fully au-
tomatically through a collaboration of two networks:
an external network and an ADN. The external net-
work adjusts strength of attention with the progress of
training to avoid excessive effects of the visual atten-
tion mechanism in the early stage of training. Also,
we note that the effectiveness of Layer-wise External
Attention is not constrained by the teacher network,
unlike in Attention Transfer Network.

3 PROPOSED METHOD

Figure 1 illustrates the overview of anomaly map gen-
eration. Details will be described below.

3.1 Anomaly Map Generation

Here, we focus on anomalies in colors. In the first
step, a grayscale image is firstly obtained the input
color image represented in L∗a∗b∗ color space. Sec-
ondly, the grayscale image is reconverted to a color
image using U-Net (Ronneberger et al., 2015). To
supplement, the color information a∗b∗(chrominance)
is predicted based on L∗ (luminance) information in
the L∗a∗b∗ color space. Thirdly, the predicted a∗b∗

is combined with the L∗ of input color image to
produce the resulting colored image in L∗a∗b∗ color
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space. The U-Net learns in advance the process of
color reconstruction with normal instances only. Fi-
nally, a color anomaly map is generated by calculat-
ing CIEDE2000 (Sharma et al., 2005) color differ-
ence between the reconstructed image and the original
image. For details of the color anomaly generation,
see (Katafuchi and Tokunaga, 2021).

Here, we consider data augmentation, because the
aim of this study is on anomaly detection with com-
paratively a small number of training data. Empir-
ically, the color reconstruction often fails for quite
bright or dark images. Hence, we used Fancy PCA
image augmentation (Krizhevsky et al., 2012) to am-
plify the variation of image luminance.

3.2 Color Anomaly Attention
Network (CAAN)

We describe the detail of Figure 1(b): Anomaly detec-
tion step. In this step, we use two different networks.
One is Color Anomaly Attention Network (CAAN).
This network converts the anomaly map to atten-
tion map by adjusting the complexity, certainty and
sharpness of anomaly map depending on the progress
in training. We refer to this network as External
Network. The other is Anomaly Detection Network
(ADN). ADN outputs the final decision for anomaly
detection. It is desirable that CAAN is a lightweight
and effective model so as to work in plug-and-play
without a massive increase in parameters. Thus,
structures of CAAN were designed based on Mo-
bileNet and ResNet. Table 1 describes the detailed
structures of CAAN. The structure of MobileNet-
based CAAN is the same as that of MobileNetV3-
Small (Howard et al., 2019). The structure of ResNet-
based CAAN is configured by simply stacking resid-
ual blocks (He et al., 2016). We note that these two
models are generic for image classifiers. Therefore,
they can be replaced easily by other networks.

3.3 Anomaly Detection Network (ADN)

The role of ADN is to make the final decision for im-
age anomaly detection by integrating labeled images
and attention map received from CAAN. We adopted
ResNet18 and VGG16 for ADN, both of which are
well-known and widely-used CNN for image classifi-
cations. The number of downsampling points in ADN
should be the same or larger than that of CAAN due
to the reasons described below.

Table 1: Structures of CAAN: MobileNet-based and
ResNet-based networks. The convolution layers are
denoted as {conv2d, ⟨receptive field⟩x⟨receptive field⟩,
⟨number of channels⟩}. ”bneck” denotes bottleneck struc-
ture; see (Howard et al., 2019).

block name
ResNet-based

CAAN

MobileNet-like

CAAN

input (256×256×1 Anomaly map)

block 1 conv2d, 7x7, 64 conv2d, 3x3, 16

Attention Output Point 1

block 2 conv2d, 3x3, 64
conv2d, 3x3, 64

bneck, 3x3, 16

Attention Output Point 2

block 3 conv2d, 3x3, 128
conv2d, 3x3, 128

[bneck, 3x3, 24] × 2

Attention Output Point 3

block 4 conv2d, 3x3, 256
conv2d, 3x3, 256

[bneck, 5x5, 40] × 3
[bneck, 5x5, 48] × 2

Attention Output Point 4

block 5 conv2d, 3x3, 512
conv2d, 3x3, 512

[bneck, 5x5, 96]×3

Attention Output Point 5

block 6
average pool

2-d fc
sigmoid

conv2d, 1x1, 576
average pool

conv2d, 1x1, 1280
conv2d, 1x1, 2

sigmoid

Params 4.491M 3.042M

3.4 The Overall Structure of LEA-Net

In Figure 2 we illustrate the overall structure of LEA-
Net, which is an example of a network with Layer-
wise External Attention. Here, the CAAN has five
feature extraction blocks, and therefore it has five al-
ternatives for outputting an attention map for Layer-
wise External Attention. Accordingly, ADN can have
up to five attention points. In practical, the number of
the attention point should be limited to one for each
anomaly detection for avoiding the performance dete-
rioration of ADN.

In the training process, both CAAN and ADN are
optimized by passing through the gradients of CAAN
and ADN during back propagation. Let xi ∈RH×W×3

be the ith original input image. Let xAtt
i ∈ RH×W be

the ith color anomaly map. Also, let yi ∈ {0,1} be
a corresponding ground-truth label. Further, let LAtt
and LAD be loss functions for CAAN and ADN, re-
spectively. The loss function for the entire classifica-
tion network can be expressed as a sum of the two loss
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Figure 2: Overall structure of LEA-Net.

functions as:

L = LAtt +LAD

= BCE(g(xAtt
i ),yi)+BCE( f (xi),yi) (1)

Here, g(·) and f (·) denote the outputs of CAAN and
ADN, respectively. BCE(·) denotes the binary cross
entropy. We designed the loss function expecting that
CAAN modifies attention maps more effectively dur-
ing training, likewise ABN.

3.5 Attention Mechanism

Let us denote the attention map at point p ∈
{1,2,3,4,5} by Mp ∈ RHp×Wp . The lower half of
Figure 2 illustrates the concept of Layer-wise Exter-
nal Attention. Let gp(xAtt

i ) ∈ RHp×Wp×Cp be the fea-
ture tensor at attention point p in CAAN for input im-
age xAtt

i . Then, Mp is generated by

Mp = σ(φ(gp(xAtt
i ))), (2)

where φ(·) denotes channel-wise average pooling on
the extracted features. σ(·) denotes a sigmoid func-
tion. By a channel-wise average pooling on the ex-
tracted features, we obtain the single-channel fea-
ture map φ(gp(xAtt

i )) ∈ RHp×Wp . Here, we adopted
channel-wise average pooling rather than a 1×1 con-
volution layer, expecting the same effect reported
by (Woo et al., 2018). A sigmoid layer σ(·) nor-
malizes the feature map φ(gp(xAtt

i )) within a range

of [0,1]. It was reported that the normalization of
the attention map is effective to highlight informa-
tive regions (Wang et al., 2017). Additionally, the sig-
moid function prevents attention maps and ADN fea-
tures from the reversal of importance by multiplying
negative values. Then, we obtain the attention map
Mp(xAtt

i ) ∈ RHp×Wp .
The role of the attention mechanism is to highlight

the informative regions on feature maps, rather than
erasing other regions (Wang et al., 2017). To reduce
the risk of an informative region erased by attention
maps, we incorporate the attention map into ADN as
follows:

f̂p(xi) = (1⊕Mp)⊗ fp(xi), (3)

where ⊕ denotes element-wise sum, ⊗ denotes
element-wise product, and f̂p(·) is the updated fea-
ture tensor at point p in ADN after the Layer-wise
External Attention.

The attention strategy described in Eq. 3 is also in-
tended to avoid the Dying Relu Problem (Lu, 2020).
The problem is that many parameters with negative
values become zero when they are used in the Relu
function, which will cause the vanishing gradient
problem. In most cases, CAAN and ADN have sig-
nificantly different feature maps. Additionally, as the
layers get deeper, the feature maps tend to be sparser.
If such sparse features are simply multiplied at atten-
tion points, the performance of ADN will degrade se-
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riously. This is another reason why we adopt the at-
tention strategy in Eq. 3 rather than simply multiply-
ing the attention map.

4 EXPERIMENTS

We evaluate the performance of Layer-wise External
Attention using several datasets for image anomaly
detections. Our experiments consist of three main
parts. First, we verify the effect of Layer-wise Exter-
nal Attention for boosting the performance of exist-
ing image classifiers using several real-world datasets.
Second, we examine the performance of Layer-wise
External Attention in more imbalanced settings. Fur-
ther, we attempt to visualize intermediate outputs at
attention points before and after the Layer-wise Ex-
ternal Attention to understand intuitively the effects
of our attention mechanism. Finally, we evaluated
whether Layer-wise External Attention is effective for
Self-Attention models.

4.1 Data Sets

Figure 3 shows the datasets used in this study. We
performed the experiment for image anomaly detec-
tion using the following datasets: DR2 (Pires et al.,
2016), PlantVillage (Hughes and Salathe, 2016),
MVTec (Bergmann et al., 2019), and Cloud (ashok,
2020). DR2 contains 435 publicly available retina
images with size of 857 pixels. Furthermore, it con-
sists of normal (negative) and diabetic retinopathy
(positive) instances. PlantVillage contains images of
healthy and diseased leaves of several plants. Among
these, we used Potato dataset. MVTec AD contains
defect-free and anomalous images of various objects
and texture categories. Regarding MVTec AD, we
used Leather and Tile, whose anomalies are strongly
reflected in color. Cloud dataset contains images
without clouds (negative) and with clouds (positive).
The lowest panels in Figure 3 represents the anomaly
maps. We observed that anomalous regions in the
Positive images were failed to reconstruct and high-
lighted in the color anomaly maps. Before the exper-
iments, all images were resized to 256× 256 pixels.
In order to evaluate the performance on such a practi-
cal dataset, we randomly extracted images from each
dataset to construct small and imbalanced datasets.
Table 2 lists the details of the datasets.

4.1.1 Experimental Setup

We briefly describe the experimental setup used for
the training. Parameters of U-Net were optimized by

Table 2: Small and imbalanced experimental datasets re-
constructed by random sampling.

Dataset Positive Negative P to N
Ratio Total

Retina 98 337 0.291 435
Potato 50 152 0.329 202
Cloud 100 300 0.333 400

Leather 92 277 0.332 369
Tile 84 263 0.319 347

Adam optimizer with a learning rate of 0.0001. Mo-
mentums were set to β1 = 0.9 and β2 = 0.999. To
update the parameters, the total number of iterations
was set to 500 epochs, and the batch size was set to
16. To reduce the computational time, early stopping
was used.

In the anomaly detection experiment, we per-
formed stratified five-fold cross-validation on each
dataset without data augmentation. The parameters of
ResNet18 and VGG16 were both optimized by Adam
optimizer with a learning rate of 0.001 and 0.00001,
respectively. To update the parameters, the total num-
ber of iterations was set to 100 epochs, and the batch
size was 16. All computations were performed on a
GeForce RTX 2028 Ti GPU based on a system run-
ning Python 3.6.9 and CUDA 10.0.130.

4.1.2 Performance in Anomaly Detection

In Layer-wise External Attention, the attention map
is incorporated into the intermediate layers of ADN
via CAAN. To evaluate the effectiveness of our at-
tention mechanism, we compared the performance
of image-level anomaly detection in several settings:
(i) baseline models (ResNetl8, RestNet50, VGG16
and VGG19), (ii) ADN that receives anomaly map
as inputs (Anomaly Map input), (iii) ADN that re-
ceives 4-channel images consisting of RGB images
and anomaly maps as inputs (4ch input), (iv) ADN
that receives attention maps generated from RGB im-
ages and anomaly maps according to Eq. 3 as in-
puts (Attentioned input), and (v) ADN with Layer-
wise External Attention at the attention point without
CAAN (Direct Attention). Table 3 shows the aver-
age of F1 scores with a standard deviation in each ex-
periment. The best and second-best performances are
emphasized by bold type. The values given in paren-
theses indicate the attention point of the best F1 score.
As mentioned above, then Layer-wise External Atten-
tion was applied at only one point in each experiment,
although the ADN has five attention points. For F1
scores of models with the Layer-wise External Atten-
tion, we described the result of the best attention point
score.
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Figure 3: Examples of datasets. For each dataset, the original and colored image and the anomaly map calculated from the
two images are shown for Positive and Negative.

The results in Table 3 show that the Layer-
wised External Attention consistently increased the
F1 scores. In most of the cases, we can see that CAAN
improved the performances of ADN. For the Potato
dataset, the F1 score increased by 0.304. Besides, the
performance was comparatively low in cases where
the anomaly map was directory incorporated into
ADN. Interestingly, we must mention here that the
most effective attention point disagrees depending on
the models and datasets.

4.2 Performance in More Imbalanced
Data

We performed the detection test for more imbalanced
data. Four datasets from DR2 (Retina) and PlantVil-
lage (Potato) were constructed by changing the pro-
portion of the number of anomalous instances to that
of all instances. Then, the performance of LEA-Net
was compared to that of ResNet18 and VGG16 with-
out the Layer-wise External Attention. The settings
of LEA-Net were as follows: (i) ResNet18-based
ADN with MobileNet-based CAAN, (ii) ResNet18-
based ADN with ResNet-based CAAN, (iii) VGG16-
based ADN with MobileNet-based CAAN, and (iv)
VGG16-based ADN with ResNet-based CAAN.

Figure 4 describes the resulting F1 scores for each
imbalanced dataset. The upper two panels show the
results for DR2 (Retina), while the lower two panels
show those for PlantVillage (Potato). All F1 scores
were averaged over the five-fold cross-validation. The
horizontal axes indicate a proportion of the number
of anomalous instances to that of all instances. It
can be seen that F1 scores of the ResNet18-based
ADN with CAAN were significantly improved by
the layer-wised external attention throughout all im-
balanced settings. Also, F1 scores of VGG16-based
ADN with CAAN for PlantVillage (Potato) were suc-
cessfully improved in settings of 24.8% and 12.4%.
However, for F1 scores of VGG16-based ADN with

CAAN for DR2 (Retina), recorded no improvement
in all settings.
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Figure 4: Performances on several imbalanced settings.

4.3 Visualization of Attention Effects

Here, we attempted to visualize how the Layer-wise
External Attention induces the intermediate outputs
of ADN. In Figure 5, we compare intermediate out-
puts of ADN before and after the Layer-wise Exter-
nal Attention at each attention point. The first col-
umn indicates intermediate outputs before the Layer-
wise External Attention, the second column indi-
cates the attention map generated by CAAN, and the
third column indicates intermediate outputs after the
Layer-wise External Attention. DR2 (Retina) and
PlantVillage (Potato) datasets were used for inputs.
For both cases, the Layer-wise External Attention no-
tably highlighted anomalous regions from low-level
to high-level features.
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Table 3: Comparison of F1 scores on Retina, Potato, Cloud, Leather, and Wood datasets.
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4.4 External Attention for
Self-Attention Models

Finally, we evaluated whether Layer-wise External
Attention can be used with Self-Attention for image

anomaly detection. In Figure 6, we compare the de-
tection performances of Self-Attention models with
and without Layer-wise External Attention. Here, SE
module (Hu et al., 2020b), SimAM module (Yang
et al., 2021), and SRM module (Hyunjae et al., 2019)
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Figure 5: Visualization of intermediate outputs at attention points before and after the Layer-wise External Attention.

MVTec Plant Village Etcetera 

Figure 6: Effects of Layer-wise External Attention for Self-Attention Models.

were attached to ADN for Self-Attention mechanism.
Numbers in parentheses indicate the adopted attention
point. The blue bars indicate the averages of F1 scores
of Self-Attention models without the Layer-wise Ex-
ternal Attention for MVTec, PlantVillage, Hurricane,
Concrete, Cloud and DR2 (DRIVE) datasets. The
red bars indicate those of Self-Attention models with
the Layer-wise External Attention. The results clearly
show that the Layer-wise External Attention success-
fully boosts detection performances of Self-Attention
models.

5 CONCLUSION

In this paper, we proposed a concept of Layer-wise
External Attention for efficient image anomaly de-
tection. Especially, our concern was on whether

the introduction of Layer-wise External Attention en-
ables us to utilize prior knowledge about anomalies
for deep anomaly detection. Through comprehensive
experiments using real-world datasets, we demon-
strated that the Layer-wise External Attention suc-
cessfully boosts anomaly detection performances of
CNNs. Also, we found that the benefits are still ac-
tive and working even for small and imbalanced train-
ing data. For an additional experiment, we attempted
to attach the Layer-wise External Attention module
on Self-Attention models. Somewhat surprisingly,
the anomaly detection performances of Self-Attention
models were also improved by Layer-wise External
Attention, which suggests that Layer-wise External
Attention complementary works with Self-Attention.
So we conclude that Layer-wise External Attention
mechanism has an enough potential to be the new
trend in visual attention.
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The present study has not yet clarified the most
reasonable way in generating attention map. Re-
sults shown in Figure 5 implies that External Atten-
tion sometimes emphasizes noises. Such excessive
attentions could inhibit training progresses of ADN.
So we need to establish some methodologies for ad-
justing the strength of external attention at each at-
tention point. One simple idea is to introduce spar-
sity assumptions on attention map. At the same time,
the effectiveness of Layer-wise External Attention
most likely depends on the quality of anomaly map.
In experiments that we conducted in this study, we
use CAAN to generate anomaly map for all datasets.
However, for more practical use, it is reasonable to
choose the most appropriate Anomaly Attention Net-
work for each dataset and task. The LEA-Net sys-
tem was originally designed to appropriately replace
Anomaly Attention Network to suit for the target do-
main. In this regard, we can say that Layer-wise Ex-
ternal Attention is more versatile system in compari-
son with Self-Attention.
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