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Abstract: Modeling processes with declarative process models, i.e. sets of constraints which have to be satisfied through-
out the whole process execution, allows for a great degree of flexibility in process execution. However, having
a process specified by means of symbolic, textual or formal constraints comes along with the problem that
it is often hard for humans to understand complicated interactions of constraints and overlook the entire pro-
cess model without unintentionally neglecting important process details. Caused by these reasons, standard
questions regarding process models, e.g. ”Can a running process instance still be completed successfully?”,
can often only be answered with great computational and temporal effort or even not at all. In this paper we
present an efficient scenario-based approach for declarative process models, which supports process modelers
in checking process models for important and common scenarios which regularly occur when modeling declar-
ative processes. We implement our approach and show that the solutions for the scenarios can be computed
within milliseconds even for real-life event logs. Furthermore, a user study conducted demonstrates that the
error rate in understanding declarative process models is enormously reduced by using our implementation.

1 INTRODUCTION

In Business Process Management (BPM), two op-
posing classes of processes can be distinguished:
knowledge-intensive processes (also called decision-
intensive processes, flexible processes or declara-
tive processes) and routine processes (Fahland et al.,
2009; Fahland et al., 2010). While in routine pro-
cesses the control flow is limited to a few a-priori de-
fined variants, in knowledge-intensive processes the
process participants are granted more influence on
the control flow (based on their knowledge and de-
cisions), resulting in a large set of execution variants.

This difference is also reflected in the associated
process modeling languages. Knowledge-intensive
processes are described by declarative process mod-
eling languages (e.g. Declare (Pesic, 2008), DCR
(Hildebrandt et al., 2013), GSM (Damaggio et al.,
2011)), which describe a process by restrictions (so
called constraints) over the behavior that must be sat-
isfied throughout the whole process execution. In
contrast imperative process modeling languages, such
as Petri-nets (Aalst, 2011), BPMN1, and UML2, are
well-suited for routine processes because they explic-
itly describe all feasible execution paths in a graph-

1www.bpmn.org
2www.uml.org

based structure.
Model checking aims to verify that a given process

model represents the intended behavior observed in
reality and is an essential part of the process of model
debugging and re-modeling (Dumas et al., 2013). In
addition to automatic validations steps such as syn-
tax validation (Mendling, 2009) and detection of un-
reachable paths, manual verification by domain ex-
perts or, more generally, humans involved in the exe-
cution of the process is a crucial part of the verifica-
tion process (Dumas et al., 2013). This manual veri-
fication checks whether the process model adequately
covers frequent or particularly critical scenarios of the
underlying process and whether undesirable scenarios
are appropriately prevented. These checks are per-
formed by answering questions such as ”Does a cer-
tain state of the process execution reflect a situation
that occurs in reality?”, ”For a running process in-
stance, what are all possible continuations or what
activities I am allowed to perform next?”, or ”Can a
process instance still be (successfully) completed?”.

For routine processes, these questions are usually
easy to answer. For knowledge-intensive processes,
however, this is anything but an easy task. There are
many reasons for this: (i) The complexity of the con-
straints impose some edge cases that are easy to over-
look (e.g. empty process instances) or lead to pos-
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sible misinterpretations (e.g. unnecessary execution
of activities) (Haisjackl et al., 2016). (ii) The con-
straints cannot be considered in isolation from each
other, since they all have to be fulfilled at the same
time and influence each other. Therefore, we need
to take a holistic perspective, which is complicated
due to explicit and implicit dependencies (so called
hidden dependencies) between constraints (De Smedt
et al., 2016; De Smedt et al., 2018). (iii) The large
degrees of freedom in process execution lead to an
almost unmanageable number of possible process ex-
ecution variants. These issues, combined with a less
intuitive representation in terms of constraints, make
the verification of declarative process models to a very
tedious, strenuous and error-prone task. This finding
is supported by numerous studies in the scientific lit-
erature, e.g. (Haisjackl et al., 2016).

In this paper, we identify three core functionalities
that support the simulation and verification of differ-
ent scenarios in knowledge-intensive processes and,
thus, support domain experts and process participants
to verify their models in a scenario-driven way. We
conduct a user study that shows that these core func-
tionalities, with appropriate tool support, lead to sig-
nificant time savings, reduce the mental effort of the
people involved and significantly lower the error rate.

The remainder of the paper is structured as fol-
lows. First, we introduce some basic terminology (cf.
Section 3) and delimit our work from existing work
(cf. Section 2). In Section 4 we propose three core
functionalities, while in Section 5 we evaluate our
approach from different angles. Finally, we provide
some concluding remarks and suggest paths for future
work.

2 RELATED WORK

Despite the well-known advantages of declarative
process modeling languages for so-called flexible
processes (Reichert and Weber, 2012), the corre-
sponding declarative process models, which generally
consist of several constraints, are notoriously diffi-
cult for humans to understand (Haisjackl et al., 2016;
Nagel and Delfmann, 2021). The main reason for
this is the mutual interaction of the constraints, which
makes it very hard even for experts to understand
the whole process model without overlooking impor-
tant details. Another point of (Haisjackl et al., 2016)
was the observation that individuals use the compo-
sition of graphical and text-based elements to inter-
pret declarative models represented in Declare (Pesic,
2008), which is a widespread declarative modeling
language. The idea of hybrid process representations

combining both graphical and text-based elements did
not address this issue and led to similar difficulties
(Andaloussi et al., 2019a; Andaloussi et al., 2019b).

Recently approaches aimed at investigating
declarative process models and helping people to un-
derstand them have been made. (De Smedt et al.,
2018; De Smedt et al., 2016) address the issue of
detecting so called hidden dependencies in declara-
tive process models. Hidden dependencies are the re-
sult of the interaction of multiple constraints and are
therefore not explicitly modeled in the model, making
it difficult for humans to find them. The detected hid-
den dependencies are added to the models in the form
of graphical and textual annotations to improve their
understandability (De Smedt et al., 2018). (Di Cic-
cio et al., 2017; Corea et al., 2022) examine the set
of constraints of declarative process models for re-
dundancies and inconsistencies, which do not make a
single execution trace satisfiable and hence the model
useless. A possible solution to resolve the detected
inconsistencies is proposed by (Corea et al., 2021).
In (Schützenmeier et al., 2022), the authors provide
a comparison approach for Declare process models
that allows Declare models to be compared with each
other in order to identify common properties and dif-
ferences. All of these approaches are useful for mak-
ing declarative process models more comprehensible.
Nevertheless, they do not provide support for concrete
scenarios at runtime, e.g. ”What are all possible con-
tinuations at a running process instance?”.

(Bauer et al., 2011) presents a runtime verification
technique for linear temporal logic (LTL) that enables
to check traces for fulfillment. Since declarative pro-
cess modeling languages like Declare (Pesic, 2008)
are based on linear temporal logic over finite traces
(LTL f ) (Montali et al., 2010), this approach can help
to verify Declare models at runtime. Nevertheless,
concrete scenarios as mentioned above cannot be han-
dled either. In (Schützenmeier et al., 2019), the au-
thors present a method to extract Declare constraints
from LTL formulas by transforming common Declare
templates into a standardized form called positive nor-
mal form, with the aim of reducing the complexity of
Declare models.

While finite state automatons have proven to be
well-suited for in-depth analysis of single-perspective
declarative process models (Schützenmeier et al.,
2022), they are hardly used in the multi-perspective
case due to the associated state explosion (Käppel
et al., 2021). There, mostly techniques that rely on
SAT solving are employed. In such techniques, how-
ever, the search space used for the analysis (i.e. max-
imum trace length) must be defined beforehand in or-
der to be able to work efficiently. Unfortunately, this
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prevents analyses in which a maximum trace length
is not known in advance. However, multi-perspective
declarative process models are not within the scope
of our approach, and that is why we can rely on finite
state automatons.

3 PRELIMINARIES

In this section, we introduce the theoretical concepts
necessary for understanding the rest of the paper.

3.1 Events, Traces and Declarative
Process Models

When a process instance is executed, this execution is
recorded in a (process) event log. There we encounter
events and traces (Aalst, 2011).

Definition 1. An event encapsulates the execution of
an activity (i.e. a well-defined step in a business pro-
cess) in a particular process instance.

Definition 2. A trace is a finite sequence σ =
⟨e1, ...,en⟩ of events that belong to the same pro-
cess instance and are ordered by their execution time,
where n := |σ| denotes the trace length of σ.

As we are interested in control-flow, we represent
events by the name of the activity they encapsulate.

In declarative process modeling languages, a pro-
cess is described by restrictions over the behavior that
must be satisfied throughout the whole process execu-
tion. Formally, a declarative process model is a pair
P = (A ,T ) where A is a finite set of activities and T
is a finite set of constraints. Often these constraints
are specified in terms of logical expressions, e.g. in
the modeling language Declare the Linear Temporal
Logic on finite traces is used for this purpose. In
general, the semantics of such a declarative process
model is interpreted on finite traces. Since business
processes are assumed to terminate, the restriction to
finite traces is not a limitation.

3.2 Automata Theory

We build our approach on the foundations of the the-
ory of finite state automatons. It has been shown
that the representation of single-perspective declara-
tive process models as finite state automatons is well-
suited for theoretical in-depth investigations and sim-
ulation tasks (Schützenmeier et al., 2022). Therefore,
for most declarative process modeling languages al-
gorithms exist to convert their process models into fi-
nite state automatons (Di Ciccio et al., 2017).

Definition 3. A deterministic finite-state automaton
(FSA) is a quintuple M = (Σ,Q,q0,δ,F) where Σ is
a finite (non-empty) set of symbols, Q is a finite (non-
empty) set of states, q0 ∈ Q is an initial state, δ : Q×
Σ→ Q is the state-transition function, and F ⊆ Q is
the set of final states.

A concatenation ω = a1 . . .an of finitely many
symbols ai ∈ Σ is called word. We call n the length
of ω. The word of length 0 is called the empty word
and is denoted by ε. All words that can be con-
structed with symbols from an alphabet Σ are denoted
by Σ∗ := {a1 . . .an | n ∈ N≥1,ai ∈ Σ} ∪ {ε}. In or-
der to enable the processing of words instead of sin-
gle symbols, we extend the state-transition function
as follows:
Definition 4. For an FSA M = (Σ,Q,q0,δ,F) we de-
fine the extended state-transition function δ̂ : Q×
Σ∗→ Q,

(s,ω) 7→


s ω = ε

δ(s,ω) ω ∈ Σ

δ(δ̂(s,a),b) ω = ab, with a ∈ Σ,b ∈ Σ∗.

The set of all words accepted by an automaton
M is called language of M, i.e. L(M) := {ω ∈ Σ∗ |
δ̂(ω) ∈ F}.

In general, two different (non-isomorphic) au-
tomatons M ̸= M′ can accept the same language, i.e.
L(M) = L(M′). By applying a minimization algo-
rithm to M (e.g. the Hopcroft algorithm (Hopcroft,
1971)), an automaton Mmin with a minimal number of
states can be constructed that accepts the same lan-
guage as M, i.e. L(Mmin) = L(M). Minimizing an
FSA reduces memory and speeds up various compu-
tations.

3.3 Linking Declarative Process Models
and Finite State Automatons

As mentioned above, we can transform a declar-
ative process model P = (A ,T ) into an FSA MP
(also called process automaton). Concrete transfor-
mations can be found in (Westergaard et al., 2013;
Schützenmeier et al., 2022). In this paper, we use
the transformation presented in (Schützenmeier et al.,
2022) because this transformation directly yields a
minimized FSA.

In this process automaton, the alphabet Σ is the
set of activities A of the process P. Therefore, traces
are represented as words. For example, a trace σ =
⟨a,a,c,d⟩ is represented as a word ω = aacd. An ac-
cepted word represents a valid trace, i.e. a trace that
satisfies all constraints τ ∈ T . Consequently, MP ac-
cepts exactly those words whose corresponding traces
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are not forbidden by T , i.e. the language of MP is the
set of all valid traces that can be derived from P.

4 CORE FUNCTIONALITIES
(CFs)

Simulating all allowed paths of a process model al-
lows both estimating the impact of changes and veri-
fying the process model. When all process paths are
known, it its possible to determine the extent to which
the process model captures the desired behavior of
the underlying process. However, the large number
of possible execution paths in flexible processes com-
bined with a potentially unbounded trace length make
the simulation of all possible traces to an almost im-
possible task. On the other hand, a rigid maximum
trace length for simulation prevents answering rele-
vant questions such as “Can this process instance be
finished?” since it is only possible to check whether
the process instance can be finished within this de-
fined scope. Apart from that, simulation is computa-
tionally and time intensive and cannot be performed
for each aspect that needs to be checked during pro-
cess validation. Therefore a more targeted simulation
technique is needed that simulates only those parts
that are relevant to assess a certain aspect. These as-
pects usually refer to frequent or particularly critical
scenarios of the process. Formally, a scenario de-
scribes a (hypothetical) sequence of already executed
activities in a process instance that has not yet been
completed. Consequently, a scenario can be described
by a trace. In scenario-based simulation, we either
analyze the scenario or simulate possible continua-
tions of the process instance (i.e., we play through the
scenario and simulate how the process model covers
this scenario). The simulation of a scenario can be
reduced to a few repetitive core functionalities (CFs):

• check the validity of a trace (CF1),

• check if a scenario leads to a successful comple-
tion of the process instance (CF2),

• simulate continuations for a given scenario (CF3).

These CFs can be combined arbitrarily to perform
more advanced analysis. In the following subsections,
we describe these three CFs with their respective in-
tended scope. We also show that CF2 outperforms
classical approaches with regard to check process in-
stance completion.

In the following, we assume that a declarative pro-
cess model P = (A ,T ) has already been transformed
into a finite state automaton MP = (A ,Q,q0,δ,F).

4.1 Trace Validity

A common task in validating a process model is to
check whether a given trace t is valid, i.e., satisfies
all constraints. If it does not, it is necessary to de-
termine which constraints are violated. If the trace is
mistakenly not valid, the process analyst receives in-
dications which constraints may need to be adjusted.
Moreover, in the case of a desired behavior, this anal-
ysis provides a well-understandable explanation for
the behavior exhibited. This functionality can be re-
alized by checking if the corresponding process au-
tomaton MP accepts t, i.e. δ̂(q0, t) ∈ F . For the con-
straint violation check, we consider each constraint
c ∈ T as a separate process model Pc = (A ,{c}) and
check whether t satisfies Pc.

4.2 Trace Completion

A second question is whether a process execution that
has not yet been completed can still be completed.
And if so, what are the valid continuations of mini-
mal length? For answering this question, FSA based
simulation has several advantages over classical sim-
ulation approaches: as long as the execution does not
lead to a dead state, it is still possible to find a valid
completion of the trace, i.e. a continuation that satis-
fies all constraints of the process model. Another ad-
vantage of using minimization techniques is the exis-
tence of a unique “dead state” (Hopcroft et al., 2007):

Theorem 1. Let M = (Σ,Q,q0,δ,F) be a minimized
FSA. Then there is a unique state qd ∈ Q:

1. qd /∈ F
2. ∀a ∈ Σ : δ(qd ,a) = qd .

In other words, state qd cannot be left for all sym-
bols a ∈ Σ and as qd /∈ F , i.e. qd is not an accepting
state, there is no possible path to an accepting state
starting in state qd . We will use this fact in our CFs to
exclude certain execution traces.

However, if the execution reaches a dead state,
there is no possibility for a valid continuation of the
trace. In other words: a trace can be completed suc-
cessfully, iff there is a path that leads to an accept-
ing state. Otherwise, the trace cannot be completed
successfully. To answer this question, we consider
the automaton as a weighted graph G = (V,E) whose
nodes V are the states of MP and whose edges E
are the state transitions, with each edge e ∈ E asso-
ciated with the symbols for the respective transition
as weights. This enables us to apply common graph
algorithms for searching paths. For a given trace t,
we start a modified breadth-first search from the node
representing the state δ̂(q0, t), which returns the set
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Γ
δ̂(q0,t)

of all paths of minimal length l from δ̂(q0, t) to
a node representing an accepting state. Our breadth-
first search stops when it reaches either a node repre-
senting an accepting state or a dead state. In this con-
text, minimal length means that an edge is traversed
at most once. If we found such a path, we can assume
that the trace can be completed successfully. Finally,
we construct the traces (i.e. words) from the paths
by replacing two consecutive nodes i and j with the
weights of the edge that connects i and j. This proce-
dure is exemplary illustrated in Fig. 1. To ensure min-
imal trace length, we avoid visiting a node multiple
times. Therefore, we ignore recurrent edges as well
as iterating cycles more than once. The corresponding
procedure is shown in Algorithm 1. Note that the al-
gorithm terminates if all nodes have been visited. This
is always the case, since our automaton does not con-
tain any unreachable states. In practical application, a
concrete scenario can thus be modeled as a trace and
then it can be checked whether this scenario leads to a
successful process completion and which options ex-
ist for this. In the case that either paths are missing or
unintentionally allowed, the model must be adjusted.
The resulting set of traces can be analysed in various
ways, for instance, whether a certain activity must al-
ways be executed.

Algorithm 1: checkCompletion

Input: Process Automaton
PM = (A ,Q,q0,δ,F), trace t

Output: Set S of completed traces of
minimal length, if t can be
completed successfully, otherwise
False

1 if δ̂(q0, t) ̸= qd then
2 Γ

δ̂(q0,t)
←breadth-first search(δ(q0, t))

3 S← constructWords(Γ
δ̂(q0,t)

)

4 return S
5 else
6 return False
7 end

4.3 Simulate n Steps

A third basic task simulates continuations of maxi-
mum length n for a trace t. Thus, we look for all
valid traces and those that can still become valid (i.e.
traces that are currently invalid but may eventually be-
come valid again as more activities are executed) of
length≤ |t|+n. This analysis tells us which activities
can be executed next (or more generally in the next n
steps) and which paths are feasible. Depending on the
choice of n, we can perform a more specific analysis,

such as a determination of the next feasible activity or
a classical simulation of all paths up to length |t|+n.

Therefore, as in CF2, we transform the process au-
tomaton MP into a weighted graph. Then we apply a
modified breadth-first search of depth n, starting from
the node representing the current state δ̂(q0, t), which
outputs all paths ending in a node representing an ac-
cepting state. Finally, we construct all words from the
found paths, as in CF2. Algorithm 2 shows the de-
tailed procedure of this functionality.

Algorithm 2: simulateNSteps

Input: Process Automaton
PM = (A ,Q,q0,δ,F), trace t, number
of steps n

Output: Set S of traces with length ≤ |t|+n
that are valid or can become valid
again

1 P
δ̂(q0,t)

←breadth-first search(δ̂(q0, t),n)
2 S← constructWords(P

δ̂(q0,t)
)

3 return S

5 EVALUATION

We implemented our approach as a prototype Java
web application. The code and a runnable jar file
can be accessed online3. This tool contains the CFs
and all methods required to convert a declarative pro-
cess model into the required automaton representa-
tion. Moreover, an intuitive graphical user interface
allows it to be used by a wide range of users even
without expert knowledge in declarative process man-
agement. To test the effectiveness of our approach,
we perform a profound evaluation of three differ-
ent aspects: (i) the theoretical worst-case runtime of
our algorithms, (ii) the real-world runtime when used
with real-life declarative process models from prac-
tice, and (iii) the benefits to the people involved in
process model verification in terms of time savings,
error reduction, and mental effort reduction.

5.1 Runtime Complexity

To determine the worst-case runtime of our approach,
we determine the runtime complexity of the three core
functionalities (CFs).

The runtime of CF1 depends only on the trace
length n of the trace t that is checked for validity, and
not on the process automaton MP. The calculation

3https://github.com/NicolaiSchuetzenmeier/Scenario-b
ased-Model-Checking
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𝑞𝑞0 𝑞𝑞3

𝑞𝑞2

𝑞𝑞1a,b

c

a

b

b

a,b,c

a,c
c

Paths Derived words

𝑞𝑞0 − 𝑞𝑞2 c

𝑞𝑞0 − 𝑞𝑞1 − 𝑞𝑞2 ac, bc

𝑞𝑞0 − 𝑞𝑞1 − 𝑞𝑞3 − 𝑞𝑞2 aab, bab

Figure 1: Searching all paths from q0 to q2 of minimal length (i.e. without reflexive transitions) and deriving the corresponding
words.

takes n steps because for each symbol of t the tran-
sition function of MP must be evaluated. Hence, the
runtime of CF1 is O(n) (depending on the trace length
n), i.e. linear.

In the case of CF2, finding minimal valid contin-
uations of a trace t, we need to determine the runtime
of three subsequent steps: (i) we need to process t
such that the automaton represents the current state,
(ii) find all paths of minimal length leading from the
current state (i.e. δ̂(q0, t)) to an accepting state, (iii)
derive all words from the found paths. The runtime
for the first step is identical to the runtime for CF1.
For (ii) the corresponding graph G = (V,E) to the
process automaton MP is traversed by a breadth-first
search that has a time complexity of O(|V |+ |E|). The
third part (iii) constructs all valid continuations of t
from the found paths. Therefore, we denote m as the
number of distinct activities that occur in the process
model. In the worst-case, there are then m2|V | differ-
ent continuations of t because in general any activity
could be possible at any step (e.g. in a process model
that accepts any trace). Since this CF avoids loops
from being traversed more than once and also recur-
rent edges being traversed more than once, the length
of the trace is limited to a maximum of 2|V |. Conse-
quently, the total runtime complexity (i.e. the sum of
the complexity of the substeps) of the computation is
exponential.

The runtime of CF3 differs only in the time re-
quired to construct the words from the found paths.
While in CF2 the maximal trace length is limited
to 2|V |, we now have a user-defined arbitrary trace
length of l.

Although two of the CFs have exponential run-
times, we will see in the next section (cf. Sec. 5.2)
that the performance is nonetheless applicable and
efficient for most real-world calculations, since the
trace length and the size of the automaton are in a
manageable range.

5.2 Empirical Evaluation

To evaluate the practical applicability of our ap-
proach, we conducted runtime experiments with the
real-life event logs of the Business Process Intelli-
gence Challenge (BPIC) extracted from the 4TU Cen-
ter for Research Data4. From these logs, we auto-
matically created Declare models using the MINER-
ful miner (Di Ciccio et al., 2015; Alman et al., 2020).

For our evaluation, we used the available BPIC
event logs of the last five years, i.e., the log of the
BPIC 2017 (financial industry), BPIC 2018 (fund pro-
cess), BPIC 2019 (purchase process) and the BPIC’20
(reimbursement process). The event logs of the
BPIC’20 contain sub-logs, which are labelled accord-
ingly. For each event log, we mined a Declare model.
As mining parameters, we chose the mining parame-
ters as suggested in (Di Ciccio et al., 2017), namely a
support factor of 75% (minimum number of cases in
which a rule has to be fulfilled in), as well as confi-
dence and interest factors of 75% (support scaled by
the ratio of cases in which the activation occurs, re-
spectively support scaled by the ratio of cases both
the activation and reaction occur). An exception was
made for the BPIC 2017 event log, as these param-
eters yielded to many (several hundreds) constraints
here - instead, the parameters of 95%, 95%, 95% for
support, confidence and interest were chosen. Ta-
ble 1 shows the sizes of the resulting Declare mod-
els and the corresponding calculated automatons. All
obtained models and automatons can be found on-
line5. Investigating the mined Declare models, we
found that the two models for BPIC’20(domestic)
and BPIC’20(international) accept exactly one trace.
This is due to the fact that the mined constraints are
too strict. Therefore, we excluded these two models
from our evaluation. The mined process model for

4https://data.4tu.nl
5https://github.com/NicolaiSchuetzenmeier/Scenario-b

ased-Model-Checking
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BPIC’20(prepaid) was broken, i.e. it did not accept a
single trace. Hence, this model was also omitted from
our evaluation.

To evaluate the three CFs, we performed several
calculations on the corresponding automatons. CF1
and CF2 were calculated within milliseconds for all
mined process models and all trace lengths up to
length n = 20. We chose this trace length because
the average trace length of the traces in the event logs
considered was significantly smaller. Hence, a length
of n = 20 covers all sensible applications. The effi-
cient runtime is obvious, as for these CFs only one
trace has to be simulated in the corresponding au-
tomaton.

For CF3, we started with the empty trace for all
mined models and computed all valid traces up to
length n = 20. The corresponding runtimes in sec-
onds and the number of found traces are shown in
Table 2. Note that for all runtimes < 1 second, we
used 1 as a default value. The experiments were run
on a Windows 10 64 Bit system equipped with an In-
tel Core i7-7500U CPU @2.70GHZ 32GB memory
and SSD drive. For reliable time measurements, we
ensured that no parallel experiments were run on the
workstation.

We observe that almost all computations - even
with millions of traces (e.g. BPIC 2019) - take
place within a few (milli)seconds, which under-
lines the practical applicability of our approach.
BPIC’20(request) shows outlier behavior because
there is exactly one accepted trace for each trace
length (cf. Table 1). The relatively large runtimes for
BPIC 2018 and BPIC’20(travelpermit) are due to the
fact that the corresponding process models are very
flexible, i.e. they allow a very large number (cou-
ple of millions) of execution traces. This fact can be
understood at automaton level regarding the attribute
#non-dead-transitions in Table 2. This attribute de-
scribes the number of transitions that do not yield into
the dead state, i.e. the transitions that are responsible
for the number of accepted words. The corresponding
automatons of BPIC 2018 and BPIC’20(travelpermit)
have the highest number of non-dead-transitions. For
this reason, the exponential runtime (see Section 5.1)
is severer than for the other event logs. Note that it
was therefore not possible to calculate the accepted
traces of BPIC’20(travelpermit) for trace lengths ≥
16, which explains the missing values in Table 2.
Since the average trace length in the original event
log of BPIC’20(travelpermit) is much smaller (∅ =
12.2), our calculations up to length 14 are representa-
tive.

5.3 User Study

In the following, we briefly describe the overall proce-
dure of the study and the rationale behind its construc-
tion. For a detailed description of materials, ques-
tionnaires, and instrumentation we refer the reader to
the supplementary material6. To verify that a process
model captures the desired behavior of an underlying
process, the process model has to be completely un-
derstood by users. Especially when confronted with
declarative models, users face challenges in under-
standing the logic defined by a set of constraints.

In our study, we evaluate the extent to which us-
ing the CFs with the proposed tool supports domain
experts to verify declarative process models. For this
purpose, we designed an experimental study in which
participants perform tasks with and without using the
tool. Thereby, the tasks refer to sub-steps that are per-
formed during the validation of a declarative process
model. We followed previous studies that evaluate
the comprehensibility of process models from vari-
ous perspectives with different focuses, e.g., (Ficht-
ner et al., 2022; Figl et al., 2009; Jošt et al., 2016;
Mendling et al., 2007). The comprehensibility of a
process model is linked to its usability (Houy et al.,
2014), while according to ISO 9241-11, effectiveness
and efficiency are two key aspects of usability. Effec-
tiveness indicates the ability of a participant to cor-
rectly solve a task. We measure this by the number
of errors made on a task. Efficiency is derived from
the resources (i.e. time and additional material) re-
quired by the user to solve the task. We measure this
by stopping the time, asking to what extent the aux-
iliary material was used, and having the participants
rate their mental effort.

Inspired by the results of related work, we formu-
late the following hypotheses:

• Hypothesis 1: When using a tool that offers the
CFs, the success increases.

• Hypothesis 2: Subjects benefit from the tool sup-
port through the CFs regardless of their prior
knowledge.

• Hypothesis 3: Subjects who initially work with
the tool subsequently perform better when work-
ing without the tool than subjects who work on
such tasks without the tool for the first time.

Study Setup, Materials, and Task Design. We
have created two task sets S1 and S2 which are equal
in structure and level of difficulty. A task set consists
of a process model and three corresponding tasks 1, 2,

6https://github.com/NicolaiSchuetzenmeier/Scenario-b
ased-Model-Checking
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Table 1: Overview of considered Declare models and characteristics of the corresponding process automatons.

event log #constraints #activities #states #non-dead-transitions
BPIC 2017 154 9 14 20
BPIC 2018 178 10 21 55
BPIC 2019 14 4 5 8
BPIC’20(domestic) 32 5 7 5
BPIC’20(international) 116 9 11 9
BPIC’20(travelpermit) 70 9 13 37
BPIC’20(prepaid) 55 6 1 0
BPIC’20(request) 32 5 7 6

Table 2: Runtimes (in seconds) and number of calculated traces for mined process models in dependency of the trace length.

BPIC17 BPIC18 BPIC19 BPIC20(travelpermit) BPI20(request)
trace length n

10 runtime ≈1 ≈1 ≈1 ≈1 ≈1
#traces 0 0 2,304 9,140 6

12 runtime ≈1 ≈1 ≈1 4 ≈1
#traces 13 13 11,264 235,444 8

14 runtime ≈1 8 ≈1 992 ≈1
#traces 153 537 53,248 5,543,860 10

16 runtime ≈1 59 ≈1 ≈1
#traces 867 10,951 245,760 > 106 12

18 runtime ≈1 509 2 ≈1
#traces 3375 167,790 1,114,112 > 106 14

20 runtime ≈1 31,923 16 ≈1
#traces 10,382 2,242,933 4,980,736 > 106 16

Table 3: Prior knowledge and demographics of the study participants.

Variable Scale Mean/Count SD/Percentage

Age min / max / avg 24.0 / 69.0 / 37.21 13.93
Gender male / female / diverse 19 / 10 / 0 65.52% / 34.48%

/ 0.0%
Highest level of education primary / lower sec. / secondary / high

school / university
0 / 0 / 4 / 3 / 22 0.0% / 0.0% /

13.79% / 10.34%
/ 75.86%

Working experience min / max / avg 0.0 / 48.0 / 9.9 12.05
Prior knowledge yes / no 18 / 11 62.07% / 62.07%
Read process models yes / no 17 / 1 94.44% / 5.56%
Create process models yes / no 11 / 7 61.11% / 38.89%
Read declarative process models yes / no 6 / 12 33.33% / 66.67%
Create declarative process models yes / no 4 / 14 22.22% / 77.78%
Years of exp. PM min / max / avg 0.0 / 31.0 / 3.45 7.32
Years of exp. declarative PM min / max / avg 0.0 / 28.0 / 2.31 6.7

and 3. 2 and 3 are divided into independent subtasks
(2a, 2b, 3a, 3b, 3c). The (sub-) tasks correspond to
the respective CFs and can be solved with them (see
Table 4). In some cases, the tasks can be solved in dif-
ferent ways, i.e. the correct result can be achieved by
different CFs and/or a combination of them. The pro-
cess models used in the study are Declare models con-
sisting of four and five constraints respectively. The
comparatively small size of the models is motivated
by three points: (i) this is the typical size of running
examples in scientific literature, e.g. (Schützenmeier
et al., 2021; Corea et al., 2022), (ii) a study in the form
of a face-to-face interview should not exceed 45 min-

Table 4: Subtasks of task sets S1 and S2 and the correspond-
ing CFs that can be used for solving.

Subtask Category Core functionalities
1 Trace Validity 1
2a Trace Completion 2, (3)
2b Trace Completion 2
3a Trace Simulation 3
3b Trace Simulation 3
3c Trace Simulation 3, (2)

utes to achieve sufficient acceptance (Tscheulin and
Helmig, 2004), (iii) our preliminary study has shown
that larger declarative process models can no longer
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be verified by people with little or no prior knowl-
edge.

To avoid any bias (i.e. misinterpretation) due to
implicit contextual knowledge, the process model de-
scribes an abstract process that is not inspired by a real
process. Therefore, activities were named using only
single letters. To avoid process-specific terms pre-
venting participants with little or no prior knowledge
from successfully completing a task, we replaced the
terms process model, constraint, alphabet, and trace
with more common terms set of rules, rule, charac-
ter, and character sequence. For consistency, these
terms have also been replaced in the corresponding
tool. We also provide an explanation of the Declare
constraints used in natural text, since their meaning
cannot be assumed to be known. Participants (regard-
less of their prior knowledge) could refer to this note
at any time during the study. For instance, to a given
process model we asked in task 2a from task set S1:
List all valid character sequences of length 4 that be-
gin with “DE”. The process models, all other tasks,
and additional material used can be found in the sup-
plementary material.

We would like to emphasize that this study does
not evaluate the tool (i.e. its usability and graphical
representation), but rather the usefulness of the iden-
tified CFs. The chosen study design is sufficient for
this purpose: even when using the tool, participants
must find a solution on their own, including identify-
ing the appropriate CF in each case. Since the tool
only provides these CFs, its impact is limited to mak-
ing the problem-solving process more structured and
goal-oriented. Thereby, its introduction of the CFs re-
lieves the work that would otherwise have to be done
manually. However, the facilitation of manual work
has no effect on problem-solving skills. Thus, the
study measures the extent to which the CFs support
the verification of a process model. This is empha-
sized in our setting by the fact that we took no action
to optimize the user interface.

Study Procedure. The study consists of three
parts: (i) inquiring descriptive characteristics, (ii)
solving a task set with or without tool support and
rating mental effort, (iii) solving the other task set
with/or without tool support and again rating mental
effort. We randomly determine whether participants
begin with or without the tool and which one of the
two task sets is completed first.

First, the descriptive characteristics are collected
during an interview to ensure complete coverage.
This is followed by a brief introduction to the topic
of the study. Here, the main terms (set of rules, rule,
characters, character sequence) are explained and the

subjects are given the opportunity to ask questions.
The subjects are also informed that the aids (scratch
sheet, overview of the rules and their explanation) can
be used at any time.

As well as randomly determining which task set
participants should start with and whether they start
with or without the tool, the order of the three tasks
within a task set is randomised. This decision avoids
the occurrence of learning and order effects. In con-
trast, within a task, the order of the subtasks is fixed,
i.e. subtask a) is processed first, then b), then c). The
time of each subtask execution is recorded. We mea-
sure the number of errors indirectly by the points that
can be achieved in a subtask. Points are awarded for
each correct part of the answer, while missing parts
brings no points, and errors are penalized with point
deduction. The maximum point value to be achieved
differs per subtask (from two to eight), while subject
cannot achieve less than zero points. After each sub-
task execution, subjects receive situational feedback
from the study conductor. Finally, after completing
a task set, the study participants receive a hard-copy
questionnaire to assess their perceived mental effort
during task execution on a scale between zero and 220
(Zijlstra and Van Doorn, 1985).

Immediately before participants start working
with the tool, they receive a brief introduction. The
study conductor teaches different functionalities and
shows how traces can be entered, how analyses can be
started, and where the results are displayed. In case of
technical problems with the tool, help is offered by the
study conductor. However, this support is limited to
questions about using the tool only and excludes an-
swering questions about the task or its solution. Due
to the study design, which aims to evaluate the use-
fulness of the CFs rather than the tool, this does not
bias the results. After completing the tasks with the
tool, the participant is asked whether he or she used
the explanation of the constraints.

Results. Our study was conducted with 29 partic-
ipants. Detailed descriptive statistics of the partici-
pants can be found in Table 3. We tested our hy-
potheses and were able to confirm all of them: For
all subtasks except task 3c, we observed significant
time savings regardless of participants’ prior knowl-
edge (see Fig. 2, Fig. 5, Fig. 6). The error rate was
also significantly reduced (as evidenced by a higher
point score), especially for the first subtasks, which
were almost always solved without errors when using
the tool. However, in 3c, where the participants had
to find a character sequence in which a certain charac-
ter occurs exactly twice, there is an outlier behavior.
Since the process models in both task sets allow the
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Figure 2: Time and point benefits by using the tool divided according to prior knowledge.
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Figure 3: Mental effort for the processing of the subtasks
with and without tool support, divided according to prior
knowledge (scale from zero (low) to 220 (very high)).

occurrence directly as the first two characters of the
sequence, an obvious first try led directly to the cor-
rect solution. Therefore, this task could be solved just
as fast or in some cases even more quickly without
tool support.

Regardless of their prior knowledge, subjects
mostly rated the mental effort of working without tool
support as strenuous (see Fig. 3). Compared to other
studies (Fichtner et al., 2022; Orendt et al., 2016), a
score of 150 (on the scale up to 220) is associated
with great effort. In general, participants with no
prior knowledge rated their mental effort significantly
higher than subjects with sufficient prior knowledge.
In both groups, the mental effort when using the tool
shifted to an acceptable range (< 80). We also see
that mental effort decreases more for subjects with
prior knowledge when using the tool. This can be ex-
plained by the fact that the mental effort in this group
of participants is caused more by the numerous steps
to be performed and less by solving the problem itself.
Moreover, we can observe that 24 out of 29 subjects
indicated that they no longer needed explanations of

the rules when working with the tool.
In testing hypothesis 3, we found that with the

exception of subtasks 1 and 2b, we observe a small
learning effect, i.e. subjects who initially work with
the tool perform eventually better when they work
without the tool. The same effect is observed for the
time required, where, with the exception of subtask
3b, less time was required for manual solving. We
have visualized this result in Fig. 4.

Threats for Validity. Explanatory power is limited
due to small sample size. However, our sample size
is in line with comparable studies in this field and
is sufficient to check our hypotheses. Nevertheless,
the small sample size combined with the imbalance
of some descriptive features (e.g. occupation, highest
education level) prevents a more fine-grained evalu-
ation, e.g. to what extent the results differ between
different occupational groups or age groups. More-
over, the non-optimized graphical user interface of the
tool introduced a small bias, as some participants had
overseen certain results. However, this does not af-
fect the overall significance of our study, but only the
strength of the observed effect.

6 CONCLUSION AND OUTLOOK

In this paper we presented a scenario-based model
checking approach for declarative process models.
We discussed essential scenarios and challenges a
process modeler is confronted with throughout the
phases of process modeling and model checking. Our
approach, which is based on automata theory, is able
to solve all the described challenges in a reasonable
runtime, which we have proven in several scenarios
calculated on real time applications. The results of an
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Figure 4: Left: Time spent manually completing subtasks when initially working with the tool compared to time spent when
initially working without the tool. Right: Points achieved for the manual processing of the subtasks when initially working
with the tool compared to the points achieved when initially working without the tool (more points are better and indicate a
lower error rate).
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Figure 5: Time spent for processing the subtasks with and
without tool support.
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Figure 6: Points achieved per subtasks with and without
tool support (more points are better and indicate a lower
error rate).

elaborate user study underlined the practical useful-
ness of our approach.

In future work, we aim to adjust the graphical in-
terface of the developed tool in order to enhance user

friendliness and to create the opportunity to conduct
meaningful user studies with a greater number of par-
ticipants. We also want to focus on extending our ap-
proach to other process perspectives, e.g. the data-
flow perspective, which describes data objects that
are involved in a process and their occurring usages.
In order to do so multi-perspective process modeling
languages like MP-Declare will have to be investi-
gated and included in our approach.
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