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Abstract: Today’s demand for customized service-based systems requires that industry understands the context and
the particular needs of their customers. Service Oriented Dynamic Software Product Line practices enable
companies to create individual products for every customer by providing an interdependent set of features
presenting web services that are automatically activated and deactivated depending on the running situation.
Such product lines are designed to support their self-adaptation to new contexts and requirements. Users
configure personalized products by selecting desired features based on their needs. However, with large feature
models, users must understand the functionalities of features and the impact of their gradual selections and
their current context in order to make appropriate decisions. Thus, users need to be guided in configuring
their product. To tackle this challenge, users can express their product requirements by textual language and a
recommended product will be generated with respect to the described requirements. In this paper, we propose
a deep neural network based recommendation approach that provides personalized recommendations to users
which ease the configuration process. In detail, our proposed recommender system is based on a deep neural
network that predicts to the user relevant features of the recommended product with the consideration of their
requirements, contextual data and previous recommended products. In order to demonstrate the performance
of our approach, we compared six different recommendation algorithms in a smart home case study.

1 INTRODUCTION

On-time and On-demand service-based systems are
constantly increasing from day to day. Thereby, soft-
ware application providers have to take drastic mea-
sures to speed up their development process in order
to survive in the ever-demanding competitive soft-
ware market and deliver software systems accord-
ing to specific customer needs . Faced with such a
challenge, Service Oriented Architecture (SOA) pro-
vides a promising means for supporting continuously
changing of customers’ requests, needs, requirements
and contexts. To address this issue, the reuse ap-
proach has been suggested as one of the pioneer so-
lutions. The Service Oriented Dynamic Software
Product Line (SO-DSPL) technique has already been
adopted as one of the most promising techniques for
reuse. This framework is addressed by combining
SOA with Dynamic Software Product Lines Engi-
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neering (DSPLE). A SO-DSPL (Capilla et al., 2014)
is known as a family of service-oriented systems shar-
ing a set of common features and managing a set of
variable features, which are managed according to
the needs of a specific market segment and/or envi-
ronment by its automatically activation and deactiva-
tion according to the running situation. SO-DSPLs
support their self-adaptation to new contexts and re-
quirements. In SO-DSPL framework, deriving a cus-
tomized software refers to the dynamic configuration
process that is defined by the decision-making pro-
cess of dynamically selecting/activating/deactivating
a set of features from the product line that complies
with the feature model (FM) constraints and fulfill the
product’s requirements and the running context.

To enable such a dynamic configuration, sev-
eral approaches have been proposed (Jonathan et al.,
2005). Nevertheless, the applicability of these ap-
proaches is still limited. In particular, for SO-DSPLs
with a huge exponential configuration space, they
have shown to be infeasible. The diversity of options
provided by the product line and their sensitivity to
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different factors, such as the user’s context and the
context of the DSPL, make configuration more diffi-
cult. With the large number of features, the user may
have difficulty understanding the features, the rela-
tionships between them and the constraints. To tackle
these challenges, expressing user needs in textual for-
mat became a necessity to help them, furthermore rec-
ommendation techniques have become also essential
to efficiently filter the huge amount of SPL variants
and suggest to the user suitable products. In recom-
mender systems, user requirements may be inferred
from consumption patterns and contextual informa-
tion can be used to ensure relevant product recom-
mendations (Pereira et al., 2016).

In this paper, we propose a deep-learning based
approach encompasses a requirement-based recom-
mender system that suggest to the user a product
based on its textual product requirements and its con-
textual information. The main contribution of this pa-
per is to ease the configuration process by effectively
predicting which combination of feature is the best
suited to users, based on their requirements that are
collected in several ways. In addition, domain experts
and product developers can also take advantage of this
approach as it offers a simple configuration process.
In summary, we provide these main contributions:

• We propose a requirement-based personalized
recommender system that suggest to users the
product configuration based on their given tex-
tual requirements and their contextual informa-
tion. The system is based on the products chosen
by previous users to generate personalized recom-
mendations for a current user.

• We reuse a set of swrl rules proposed by DSPL
sub-ontology (Maalaoui et al., 2021) in order to
verify the validation of the product configuration
with the DSPL constraint and context.

• As a pre-treatment phase, we use the approach
presented in (Maalaoui et al., 2022) to extract the
core requirements from the user requirements in
order to have data that follows the same pattern
and consequently have a reliable recommenda-
tion.

• We empirically evaluate the performance of our
proposed recommender system on “smarthome”
dataset (Murukannaiah et al., 2016) that contain
crowd user requirements with different additional
information. We extend the given data by other
contextual data based on a proposed SO-DSPL
ontology (Maalaoui et al., 2021) and we extract
manually the associated products (the set of se-
lected features) in order to evaluate our proposed
approach.

2 BACKGROUND

2.1 Software Product-Line Engineering

Software Product-line engineering is a paradigm
within software engineering, used to define and derive
sets of similar products from reusable assets (Capilla
et al., 2014). The development life cycle of a prod-
uct line encompasses two main processes: domain en-
gineering and application engineering (Capilla et al.,
2014). While domain engineering focuses on estab-
lishing a reuse platform, application engineering is
concerned with the effective reuse of assets across
multiple products. Domain engineering is responsi-
ble of defining all common and variable assets of a
product line and their respective interdependencies.
The aim of the application engineering process is to
derive specific applications by exploiting the variabil-
ity of the software product line. Feature modeling
is the main activity to represent and manage PL re-
quirements as reusable assets by allowing users to de-
rive customized product configurations (Capilla et al.,
2014). Product configuration refers to the decision-
making process of selecting an optimal set of features
from the product line that comply with the feature
model constraints and fulfill the product’s require-
ments (Bashari et al., 2017). A common visual rep-
resentation for a feature model is a feature diagram
(Kang et al., 1990). The feature diagram defines com-
mon features found in all products of the product line,
known as mandatory features, and variable features
that introduce variability within the product line, re-
ferred to as optional and alternative features. In ad-
dition, feature diagrams often contain cross-tree con-
straints: a feature can include or exclude other fea-
tures by using requires or excludes constraints, re-
spectively. Figure 1 shows an example of a feature
diagram associated to the Smart Home SO-DSPL.

2.2 Service Oriented Dynamic Software
Product-Line Engineering

SPL approaches moved to recent development ap-
proaches like Dynamic Software Product Lines as an
emerging paradigm to handle variability at runtime
and at any time. Dynamic software product lines are
able to dynamically switch an executing system from
one variant to another, without stopping its execu-
tion, without violating its feature model’s constraints
and without degrading its functional and nonfunc-
tional behavior. Consequently, the feature model it-
self must become a runtime entity that can dynami-
cally evolve to satisfy new variability dimensions in
the system. Dynamic Software Product Lines (SPLs)
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Figure 1: Smart home SO-DSPL.

provide configuration options to adjust a software sys-
tem at runtime to deal with changes in the users’ con-
text (Capilla et al., 2014). Service oriented dynamic
software product lines (SO-DSPL) represent a class of
DSPLs that are built on services and service-oriented
architectures (SOAs) (Capilla et al., 2014).

3 RELATED WORKS

Due to the importance and the complexity of SPL
configuration process, a large body of literature has
been dedicated to facilitate configuration process
by recommending features. Several approaches are
based on feature models. In this scenario, some stud-
ies (Martinez et al., 2015a) aim to predict the util-
ity of an entire set of features that compose a prod-
uct, others (Bagheri et al., 2010a),(Bagheri et al.,
2010b),(Czarnecki et al., 2012) aim to predict the util-
ity of each feature for the user. Mazo et al. (Mazo
et al., 2014) present a collection of recommendation
heuristics to prioritize choices and recommend a col-
lection of features to be configured with the objec-
tive of reducing the number of configuration. How-
ever, configuration process still difficult while the au-
thors do not propose any mechanism to help users and
contextual information are not considered by the pro-
posed recommendation heuristics.

Bagheri et al. (Bagheri et al., 2010a) propose a
feature ranking approach based on soft and hard con-
straints in order to satisfy the soft stakeholder con-
straints. Then, the proposed decision maker select the
recommended feature interactively until the full con-
figuration of the feature model.

In (Pereira et al., 2016), Pereira et al. propose
a recommendation approach that provides the deci-
sion maker with a smaller set of relevant features,
such as a top-10 classification. The authors adapt
in their work six state-of-the-art recommender algo-
rithms to the product line configuration, which are
neighbourhood-based collaborative filtering, collab-
orative filtering-significance weighting, collaborative

filtering-shrinkage, collaborative filtering-Hoeffding,
average similarity, and matrix factorization. Mar-
tinez et al. (Martinez et al., 2015b) propose an ap-
proach that predict configurations’ relevance. The au-
thors approach uses tailored data mining interpolation
techniques to predict configuration likability based on
people’s vote feedback for a dataset of configurations.
Their approach is developed in two phases. First, a
dataset of configurations is created using a genetic al-
gorithm. Second, based on people’s vote feedback for
the dataset of configurations, tailored data mining in-
terpolation techniques are used to predict configura-
tion likability. Thus, a ranking is created among all
possible configurations.

Few works are interested in product configuration
based on user requirements. Shamim Ripon et al.
(Ripon et al., 2020)propose an approach that extracts
automatically requirements, derive configuration and
verify product configuration. The proposed approach
is divided into two phases: requirement extraction and
product configuration verification. In requirement ex-
traction phase, requirements are collected from the
user as a textual description, then features are ex-
tracted, and a technical product configuration is de-
rived. In the second phase, the derived configuration
is checked for validation before sending a feedback
to user. In (Maalaoui et al., 2022), the authors pro-
posed an approach to better understand the user re-
quirements, to predict other information about the re-
quirements and to derive an appropriate service (soft-
ware application as a combination of several services)
in the SO-DSPL application engineering phase. In the
first step, the core requirements are extracted from
user requirements, then features and knowledge are
extracted to populate in an ontology which infer rele-
vant knowledge and execute predefined rules to derive
or adapt a product with the consideration of contex-
tual information.

Although there are many interesting studies that
aim to make the configuration process easier by rec-
ommending features and products, the process is still
far from trivial. Even features recommendation and
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ranking algorithms are proposed, the user remains
very involved in the configuration process while FM
still complicated. However, contextual information is
not taken into account during the configuration pro-
cess. Also, the satisfaction of the recommended fea-
tures with respect to the DSPL context is not yet ver-
ified, while a combination of features may be valid
with respect to the constraints of the DSPL but invalid
with respect to the DSPL context.

To address this issue, we propose a requirement-
based recommender system to suggest to the user a
product configuration (set of features) that satisfies its
requirements. In contrast to the current literature, our
approach predicts features that are not mentioned in
the given requirements. The proposed recommenda-
tion approach takes into consideration the user con-
text and the derived product configuration is verified
with respect to the DSPL context. As well, our pro-
posed approach benefits from the products configu-
rations space, their associated requirements and the
contextual information of their users and uses this
data to learn intelligently by the use of deep leaning
models.

4 CONTEXTUAL PRODUCT
RECOMMENDATION
FRAMEWORK

According to the limitations presented in related
works (see Section 3), recommending products in
DSPL framework is still challenging. To ease
this process, we propose a product recommendation
framework that aims to attend these main objectives:

1. To recommend a set of features which compose a
product to an active user

2. To consider contextual information in the recom-
mendation process.

3. To recommend a product adaptation in the case of
requirements or context changes.

As shown in the Figure 3, our recommendation frame-
work takes as input a set of requirements given by the
user, which are associated to the desired product, and
a set of contextual information related to the active
user. Given a product requirements and user context,
our recommender system is responsible to predict a
set of features that satisfy users’ requirements, its pro-
file, context and its future context changes with the
respect to the DSPL properties in one hand, and pre-
dict an adaptation of the product in the case of context
change. To recommend relevant products and ensure
the integration of an intelligent learning process, our

proposed recommendation framework exploits the ad-
vantages of machine learning algorithms and the pro-
posed ontology in (Maalaoui et al., 2021). Thus, we
use:

• The NLP approach presented in (Maalaoui et al.,
2022) to extract relevant information from the
given product requirements. The relevant infor-
mation extracted from the product requirements
are named core requirements and this step is
called “Core requirement Recognition”.

• A neural network model to predict relevant feature
based on the extracted core requirements with the
attention of contextual data. The proposed model
supports the dynamic change of requirements and
context by recommending the adapted product.
Our proposed recommendation process starts by

extracting core requirements from product require-
ments in order to keep only relevant information.
Then, based on the user context and its given core
product requirements, the recommended features are
predicted based on a deep learning model which is
trained on previous products requirements, their as-
sociated products, and the contextual information of
their users. Finally, the combination of the prediction
features is verified based on the proposed DSPL sub-
ontology presented in (Maalaoui et al., 2021).

4.1 Core Requirement Recognition

The core requirement Recognition phase is the data
pre-preparation step. In this step, the objective is to
remove non-essential and noisy data from the given
user requirements, by the interpretation of the user
requirements through his/her textual request and its
transformation to a formal representation (require-
ments structure defined as ”Core Requirement”) that
will be later used by the recommendation process. In
this step we use the method presented in (Maalaoui
et al., 2022), where the input is a textual product re-
quirements given by a user, and the output is the prod-
uct core requirements built in accordance with the
core requirement structure.

A core requirements has the following structure:
<feature>+ <obligationdegree>? <goal>+ <item
>* <condition>*
Where :
– * : denotes a zero repetition to an infinite number
of times repetitions.
– + : denotes repetition once or more number of
times.
– ? :denotes a repetition zero or one time.
– — :denotes a disjunction (it signifies OR).
– ! : denotes a negation

Toward a Deep Contextual Product Recommendation for SO-DSPL Framework

141



Figure 2: Contextual product recommendation framework overview.

As an example, the input is defined by this prod-
uct requirement:
My sensor should detect movement. if I get up late
night, lights in my house should turn on to enhance
convenience and safety”.
As a result, this product core requirements are gener-
ated:
Sensor should detect movement. Lights should turn
on if I get up nigh. The used method is based on a
set of linguistic rules and the support of uncertainty.
These rules facilitate the building of core requirement
structure which is then loaded as an instance of an on-
tology that infer new relevant knowledge.

4.2 Product Recommendation Based on
Deep Learning Architecture

Understanding users’ requirements is very crucial for
the success of software development process, espe-
cially in dynamic software product line engineering.
As an example, in the DSPL framework, the success
of product derivation process is based on the good
matching between the expressed user requirements
and the features that satisfy them. However, match-
ing users requirements that are expressed in a natu-
ral language and its corresponding features with re-
gards to additional information (i.e. the user context)
is a challenge. In this section, we present the product
derivation approach, which is responsible for recom-
mending a set of features that constitutes a valid prod-
uct with the goal of the satisfaction of the expressed

users’ core requirements and its contextual informa-
tion.

Our proposed recommendation process exploits
previous configurations (i.e. selected features ), their
correspondence with the expressed requirements and
their contextual information in order to predict hid-
den features that the user has not the attention to note
them in his requirements. To achieve our objective,
we propose a framework based on the combination of
deep neural networks, where convolutional and recur-
rent neural networks are combined together to predict
the corresponding product’s features.

The choice of this combination is based on the
success of Deep neural networks text learning and
processing and in recommender system (Katarya and
Arora, 2020). Recurrent neural networks (RNN) and
short-term memory (LSTM) have been widely ap-
plied to text, they have good performance for learn-
ing and processing text representation (Sengar et al.,
2021). Convolutional Neural Networks (CNN) has
also been applied to text classification problems. Es-
pecially when integrating with the recurrent model,
recurrent-CNN can achieve better performance. As
examples, C-LSTM utilizes CNN to extract a se-
quence of higher-level phrase representations and are
fed into a long short-term memory recurrent neural
network (LSTM) to obtain the sentence representa-
tion. The 2-D CNN can extract not only local fea-
tures between adjacent words but also the small re-
gions (word stem) inside of words than 1-D CNN. Bi-
LSTM can extract sequential features from both past
and future.
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Thus, in our proposed approach, the stacked 2-D
CNN and Bi-LSTM are combined together to rec-
ommend product’s features. This combination can
achieve the best accuracy in our problem, because
they can extract not only local features between adja-
cent words through convolution layers but also global
features (long-term dependencies) of sentences by re-
current layers. As well, our proposed framework
adopts Roberta (Bidirectional Encoder Representa-
tions from Transformers)(Liu et al., 2019) to embed
both products requirements and user contextual in-
formation with a context-dependent word embedding
method. Roberta is a method of pre-training language
representations, which can generate different word
embedding for a word based on its context(the other
words in the sentence).

As consequence, our proposed model can not only
automatically abstract the features from core require-
ments, but also the features from contextual infor-
mation such as user roles, user interest, user prefer-
ence and other contextual information chosen by the
product line expert such as user region (to deduce the
weather). In our approach, we used a smart home
DSPL (FM in Figure1 as a running example, based on
an analysis of data that influence the recommended
result, we have chosen the user roles (worker, home
occupant, student, pets owner..) and the user region
as contextual information.

4.2.1 Product Recommendation Approach

To recommend products based on user’s core require-
ments with context awareness, we propose an ap-
proach using deep neural networks. It mainly con-
sists of three components, including Features Extrac-
tion of the Core requirements and the contextual data,
feature merge and product’s features generation. Fig-
ure 4 shows the overall framework of product recom-
mendation. In the first stage, product’s core require-
ments and contextual information are embedded us-
ing Roberta model. In the second stage, the stacked
2-D CNN and Bi-LSTM are then used to extract core
requirements Features for the embedded ones. After
getting the vectors embedding of the user roles and its
region from Roberta output, we use a fully connected
neural network for feature extraction. After retrieving
the feature vectors of product’s core requirements h1,
user role h2 and user region h3, we merge them into
a unified feature. Finally, the task layers do the fi-
nal features recommendation based a fully connected
feed-forward neural network, which inputs the high-
level representation from the feature extraction layers
(the merged features) and outputs a set of probabilities
assigned to each feature of the product configuration
that determines whether it is selected or not.

4.2.2 Core Requirements Embedding and
Feature Extraction

In order to embed core requirements, Roberta Model
is applied. The embedding layer takes a product’s
core requirements extracted from a product’s require-
ments given by a user as an input, where each word
is transformed into a n-dimensional vector according
to the contexts of words. This matrix keeps the or-
der and representation of each word, further feature
extraction can be done based on this matrix. The em-
bedding layer of product’s core requirements outputs
a nLen (nLen is the max length of inputs) by n de-
scription matrix e for the next layer. We assume that
x1 is a set of product’s core requirements. The em-
bedding of product’s core requirements froberta can
be defined as :

e = f roberta(x1) (1)

To extract feature of a product’s core requirements,
the stacked 2-D CNN and Bi-LSTM are adopted, with
f2-D CNN is a deep convolutional model, which uses
the trained filters to extract local features between
adjacent words and f-Bi-lstm is a deep sequence
model, which extract sequential features through
time-Therefore, the output feature h1 of product’s
core requirements is:

h1 = f Bi− lstm∗ f 2−DCNN(e) (2)

To prevent the model from over-fitting on the train-
ing, dropout layer is used. Furthermore, for faster
convergence, an activation function ReLU is used to
improve the model learning efficiency.

4.2.3 Contextual Information Embedding and
Feature Extraction

In this step, contextual information chosen by the ex-
pert are embedding and its features are extracted. In
our running example (smart home DSPL), user roles
and user region are chosen as contextual informa-
tion since they influence the choice of the recom-
mended features and consequently the user’s satis-
faction. Firstly, the user roles are embedded using
Roberta Model. Since the user role usually contains
a few words, the further complex feature extraction
is not necessary. After getting the embedding of user
role from Roberta output, we use a fully connected
neural network ffull with activation function tanh for
feature extraction. We assume that x2 is the user roles
associated with a given core requirements. The em-
bedding and feature extraction of a user roles can be
defined as:

h2 = f f ull ∗ f roberta(x2) (3)
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Figure 3: Product recommendation approach.

The same process is applied to the user region. In the
first step, Roberta Model is used to embed user region.
After that, a fully connected neural network ffull with
activation function tanh for is applied to the Roberta
output for feature extraction. We assume that x3 is the
user region associated with a given core requirements.
The embedding and feature extraction of a user region
can be defined as:

h3 = f f ull ∗ f roberta(x3) (4)

4.2.4 Feature Merge and Features
Recommendation

After retrieving the feature vectors of product’s core
requirements h1, user roles h2 and user region h3, we
merge them into a unified feature while the lengths of
those features are the same, we adopt simple vector
addition for feature merging. The output of feature
merging is:

h = h1+h2+h3 (5)

After feature merging, the output result is used by the
task layers to do the final product’s features recom-
mendation. It contains a fully connected feed-forward
neural network ffc, which inputs high-level represen-
tation h from feature extraction layers and outputs a
recommended list of product’s features l:

l = f f c(h) (6)

ffc contains three fully connected layers with ac-
tivation function σ1,σ2 and σ3. Each layer computes
ai+1 by the weight Wi, bias bi, and the output ai from
the previous layer:

ai+1 = σ(Wi ai+bi) (7)

where σ1 and σ2 are the tanh function and σ3 is
the sigmoid function that computes the probability of
each feature.

In short, our proposed model takes product’s core
requirements x1, user roles x2 and user region x3 as

input, and outputs the vector l that denotes the proba-
bility of the selection of each feature of the DSPL to
be recommended:

l = f f c∗ ( f Bi− lstm∗ f 2−DCNN ∗ f roberta(x1)+
f f ull ∗ f roberta(x2)+ f f ull ∗ f roberta(x3))

(8)

4.2.5 Hyper-Parameters

The hyper-parameters of our proposed model contains
the network configuration and training setting.

1. Network hyper-parameters: We choose the
pre-trained ROBERTA model (Roberta-base)
from Transformers (rob, ), which transforms each
word of the input into a 768-dimension vector.

Our proposed model contains two convolution
layers and one bidirectional LSTM layer. The first
convolution layer has 64 filters with kernel size
9 by 9, the second convolution layer has 32 fil-
ter with kernel size 3 by 3. The hidden state of
LSTM is a 1024-dimension vector. The task layer
contains 34 nodes with an activation function sig-
moid to compute the probabilities of each DSPL
feature. To avoid over-fitting, we add a dropout
layer between every two layers of our proposed
model.

2. Training hyper-parameters: our proposed recom-
mendation model adopts the binary cross-entropy
as the loss function. The Adam optimization algo-
rithm is used for training with the learning rate 5e-
5, beta1 0.9, beta2 0.999, epsilon=1e-6, and learn-
ing decay 0.01.
Xavier normal initializer is used to initialize the
kernel parameters.The total epoch number is 40
with batch size 32. The hidden state of Bi-LSTM
and all bias are initialized to zero.
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4.3 Recommended Product Consistency
Checking

In order to ensure the validity of the recommended
product, we check its consistency with respect to SO-
DSPL constraints, we use SWRL rules presented in
(Maalaoui et al., 2021). In the first step, the rec-
ommended product populate the ontology conceptual-
ized for SO-DSPL framework (Maalaoui et al., 2021),
then swrl rules are executed. If the product is valid (no
violation constraint is detected), it will be taken as the
final recommended product, else if the recommended
product is not valid (violation constraint is detected),
the appropriate swrl rules are triggered to correct the
product by activating the valid features and removing
the invalid ones. We present in Table1 an extract of
the proposed SWRL rules.

5 EVALUATION

In this section, we introduce metrics, and the evalu-
ation results of our proposed approach for product’s
features recommendation, which includes the com-
parison results with other machine learning methods.
To prepare dataset, we have extended the smart home
requirements data set (dat, )on a larger volume of
data, we have augmented the existed dataset using
data augmentation algorithms (Murukannaiah et al.,
2016), which consists in altering an existing data to
create a new one. The objective is to augment the
dataset by generating new product requirements with
the same meaning as the existing requirements but
written in another form. Thus, we have used “nlpaug”
libraries using the Substitution by contextual word
embeddings RoBERTA technique. This data collec-
tion consists of textual product requirements. We
extend the data with user context information based
context elements presented in the “User context sub-
ontology” and the “DSPL sub-ontology” (Maalaoui
et al., 2021). Indeed, we associated to each prod-
uct requirements the contextual information of its user
that are basically: user interests, user roles, user skills,
user preferences and personal information such as its
region.

5.1 Competitive Methods

In order to show the feasibility and effectiveness of
our approach, we carried out experiments and com-
pared with different ML approaches and using various
embedding methods.

We compare 6 combination of machine learning
methods from conventional machine learning meth-

ods to deep learning models for product’s features
recommendation on the product’s core requirements
dataset, which include CNN , LSTM, BI-LSTM and
using three embedding methods that include Bert,
Roberta and FASTtext. All the conventional mod-
els are implemented by scikit-learn library4 and all
the deep learning models are implemented by Tensor-
Flow. All the models are trained and tested on Google
Colab (col, ).

5.2 Evaluation Metrics

In order to measure the accuracy of our proposed
product’s features recommendation approach among
different approaches, Recall and MAP (Mean Av-
erage Precision) are used as the evaluation metrics.
Each evaluation indicator is described as below.
(1) Recall. It refers to the ratio of the correct number
of the recommended product’s features in the Prod-
uct’s recommendation list to the total number of the
relevant product’s features which is defined as:

Recall =

|{p f eatures}|∩{recomended f eature}
|{p f eatures}|

Where pfeatures is the real set of features of
a product itself, and recomendedfeature is a set of
predicted features recommended by a method. For
example, given a bloc of core requirements crs asso-
ciated to a product p and its corresponding features
are f1; f2; f3, if the recommended features are f1; f3;
f5, then the recall of features recommendation is:

|{ f 1, f 3}|
|{ f 1, f 2, f 3}|=0,667

Recall@n refers to the rate when the total number
of features of a product itself |{p f eatures}|= n.
That is, the first n features are used to calculate the
recall rate. Here, recall measures the degree of the
recommendation results that cover all of the Product
features.
(2) MAP. It is the expected average of the precision
that is the ratio of the correct number of predicted
features in the recommendation list, which is defined
as:

MAP@n =
1
U

U

∑
u=1

n

∑
K=1

P(K)∗Rel(K) (9)

where where P(k) is the precision value at the kth
recommendation, rel(k), is just an indicator that
says whether that kth recommendation was relevant
(rel(k)=1) or not (rel(k)=0) and U is the number of
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Table 1: Extract of the SO-DSPL SWRL rules.

ID SWRL Rule Description

R1 dspl:configuration(?cf)∧ composed-of(?cf,f1)∧
recommended-with(?f1,?f2) -> composed-of(?cf,?f2) if a feature is selected in a config-

uration and it recommends another
feature (with the semantic relation
”recommended-with” then the rec-
ommended feature is with be se-
lected in the running configuration.

R2 swrlx:makeOWLThing(?S, ?y)∧ dspl:Feature(?y)) ->
implements(?y, ?S))∧ ws:Service(?S) For each dspl feature an individ-

ual service is created and related by
the relationship “implements” to ex-
ecute its functionalities.

R3 swrlx:makeOWLThing(?f, ?c)∧ dspl:Feature(?F) ->
composed-of(?f, ?c)∧ Configuration(?c) each configuration must be com-

posed by more than one feature.

R4

uc:CoreRequirement(?CR1)∧ uc:CoreRequirement(?CR2)
∧ uc:ProductRequirement(?PR)
∧ uc:composed-of(?PR,?CR1) ∧
uc:composed-of(?PR,?CR2) ∧ has-priority(?CR1, Desirable) ∧
has-priority(?CR2, Essential) ∧ dspl:Feature(?F1)
∧ dspl:Feature(?F2) ∧ dspl:alternative-with(?F2,?F1)
∧ dspl:satisfy(?F1,?CR1)
∧ dspl:satisfy(?F2,?CR2) ∧ dspl:Configuration(?CF)
∧ satisfy(?CF,?PR) ∧ dspl:composed-of(?CF,?F1)
-> dspl:composed-of(?CF,?F2)∧ dspl:selected-for(?CF,?F2)
∧ dspl:eliminated-for(?CF,?F1)

The features associated to a prod-
uct’s core requirements and their
are related with the relationship
”alternative-with” then an adaptation
is triggered to the running configura-
tion by eliminating the optional fea-
ture and selecting the essential one.

R5

uc:CoreRequirement(?CR1)∧ uc:CoreRequirement(?CR2)
∧ uc:ProductRequirement(?PR)
∧ uc:composed-of(?PR,?CR1) ∧
uc:composed-of(?PR,?CR2) ∧ has-priority(?CR1, Essential) ∧
has-priority(?CR2, Essential) ∧ dspl:Feature(?F1)
∧ dspl:Feature(?F2) ∧ dspl:alternative-with(?F2,?F1)
∧ dspl:satisfy(?F1,?CR1)
∧ dspl:satisfy(?F2,?CR2) ∧ dspl:Configuration(?CF)
∧ satisfy(?CF,?PR) ∧ dspl:composed-of(?CF,?F1)
-> uc:alternative-conflict(?CR1,?CR2)

The features associated to a prod-
uct’s core requirements and their
are related with the relationship
”alternative-with” and the two core
requirements are essential then a
conflict of alternative constraint vi-
olation is detected.

relevant recommendation, with P(K) is defined as:
P(K)= |{p f eatures}|∩{recommended f eature(k)}

|{K}| —
and precision P is defined as:
P = |{p f eatures}|∩{recomended f eature}

|{recomended f eature}|

5.2.1 Experimental Results and Analyses

To test the performance of our proposed approach,
the extensive experiments on product recommenda-
tion are conducted among the mentioned competitive
approaches. Table 2 shows the experimental results
on the different evaluation metrics.

Table 2: Comparison result of machine learning methods.

ML Methods MAP@10 RECALL@10
Roberta+CNN 0,57 0,41
Roberta +LSTM 0,72 0,587
Roberta +BI-LSTM 0,78 0,594
Bert+cnn+lstm 0.857 0,65
FASTTEXT+cnn+lstm 0.753 0,61
Roberta+cnn+lstm 0,88 0,692
Roberta+2-D
cnn+BI-lstm

0,91 0,78
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It can be seen from the experimental results that
our proposed product’s features recommendation ap-
proach is superior to the existing ones among the
evaluation metrics. In the experiments, the CNN
has the lowest performance on MAP@10 and Re-
call@10, that means only considering local feature
between adjacent words is not working for SPL fea-
tures recommendation problem. For sequence mod-
els, they can abstract learn global features such as
long-term dependencies from the past time steps,
which makes LSTM reach 72,34% MAP@10 and
58,79% Recall@10. When stacking sequence model
with 1-D CNN for learning the local features, LSTM
can get higher MAP@10 and Recall@10 88,21% and
69,32%. BI-LSTM can learn the long-term depen-
dencies from the past as well as the future informa-
tion. That makes BI-LSTM reach 78.70% MAP@10
and 59.43% Recall@10. Finally, our proposed model
uses 2-D CNNs with BI-LSTM, it can learn both
local and global features as well as the features in
small regions inside of words. Moreover, it uses
both information from core requirements, user roles
and user region with context-dependent word embed-
ding. Applying three context-dependent word embed-
ding methods with our proposed model, it has a lower
performance with FASTTEXT embedding than with
BERT embedding. While, using Roberta embedding,
our proposed model has the highest performance.

In order to further test the parameter influence on
the product’s features recommendation, a set of ex-
periments are carried out among four competitive ap-
proaches. The experimental results of parameter tun-
ing are illustrated in Figure4 and Figure5.

Figure 4: The experimental results of MAP@n affected by
the parameter n.

Along with the changes of parameter for the num-
ber of recommended features, Figs. 5 and 6 illus-
trate the experiments results on MAP@n and Re-

Figure 5: The experimental results of Recall@n affected by
the parameter n.

call@n among four competitive approaches. In the
experiments, the parameter of MAP@n and Recall@n
ranges from 1 to 10 and the results are calculated with
different values.

Compared to the existing approaches, Fig. 4
shows that the experimental results of our proposed
approach has better MAP@n along with the changes
of n. Specifically, as n of MAP@n changes from 1
to 10, the experimental results of each approach have
a certain decrease, and reach the best features rec-
ommendation at MAP@1. Therefore, as the number
of features to be evaluated increases, the predictive
power of each recommendation approaches declines.
However, our self-developed approach has the lowest
decline compared with the other approaches.

6 CONCLUSION AND FUTURE
WORKS

In this paper, we targeted an open research question in
the SO-DSPL configuration domain: How to predict
a suitable set of features based on explicit information
from users? We answer this question by providing an
advanced a contextual product recommender system.
Our system helps user in the product configuration
process by suggesting relevant features according to
its described textual requirements. Our experimental
results show that the proposed approach is very use-
ful as it provides feature predictions that are in accor-
dance with the user context and requirements. Since
there are no other publicly available datasets with real
user requirements and associated configurations, we
could not test our work on further datasets. Moreover,
we will extend this work to take into account non-
functional properties, adapt our approach to be more
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efficient with a large number of features and training
our proposed deep learning model on more dynamic
adaptation cases that can be triggered at runtime.

REFERENCES

Google colab. https://colab.research.google.com/. Ac-
cessed: 2022-05-15.

nlpaug. https://github.com/makcedward/nlpaug. Accessed:
2022-05-15.

Roberta. https://huggingface.co/roberta-base. Accessed:
2022-05-15.

Bagheri, E., Asadi, M., Gasevic, D., and Soltani, S. (2010a).
Stratified analytic hierarchy process: Prioritization
and selection of software features. In Bosch, J. and
Lee, J., editors, Software Product Lines: Going Be-
yond, pages 300–315, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bagheri, E., Di Noia, T., Ragone, A., and Gasevic, D.
(2010b). Configuring software product line feature
models based on stakeholders’ soft and hard require-
ments. In Proceedings of the 14th International Con-
ference on Software Product Lines: Going Beyond,
SPLC’10, page 16–31, Berlin, Heidelberg. Springer-
Verlag.

Bashari, M., Bagheri, E., and W.Du (2017). Dynamic soft-
ware product line engineering: A reference frame-
work. International Journal of Software Engineering
and Knowledge Engineering, pages 191–234.

Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortes, A., and
Hinchey, M. (2014). Overview of dynamic software
product line architectures and techniques:observations
from research and industry. The Journal of Systems
and Software, pages 3–23.
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