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Abstract: Residential energy consumption forecasting has immense value in energy efficiency and sustainability. In
the current work we tried to forecast energy consumption on residences in Athens, Greece. As a proof of
concept, smart sensors were installed into two residences that recorded energy consumption, as well as indoors
environmental variables (humidity and temperature). It should be noted that the data set was collected during
the COVID-19 pandemic. Moreover, we integrated weather data from a public weather site. A dashboard was
designed to facilitate monitoring of the sensors’ data. We addressed various issues related to data quality and
then we tried different models to forecast daily energy consumption. In particular, LSTM neural networks,
ARIMA, SARIMA, SARIMAX and Facebook (FB) Prophet were tested. Overall SARIMA and FB Prophet
had the best performance.

1 INTRODUCTION

Electricity was invented in 1752. Over the years and
as technology advanced, electricity evolved from be-
ing a commodity mostly enjoyed by the upper class
to a service available in every household. But as
the population grows and production is heading to a
green model, meanwhile energy prices are increasing,
which makes someone wonder if having electricity in
the future will be once again considered a luxury (Seel
et al., 2018). Since the beginning of 2022 and es-
pecially since the recent turmoil in Eastern Europe,
a rally of increasing prices in energy was registered
globally with many European countries being more
vulnerable to the current energy crisis. It is easily un-
derstood that the energy crisis is not a temporary state
but a problem that the whole world needs to address
and find innovative ideas to confront it.

To resolve the energy crisis in Europe, many Eu-
ropean countries such as Spain, Italy, Greece and UK,
adopted national measures to avert the crisis, such as
offering subsidies to energy providers and imposing
price caps, in order to shield citizens from rising elec-
tricity costs as their economies recover fully from the
COVID-19 pandemic (Ozili and Ozen, 2021). On the
other hand, consumers are interesting in ways that
help them reduce their energy consumption without
compromising their needs. A technological advance-
ment that contributed to this issue is the ability to

turn most of the devices that people use daily into
smart ones (Tom et al., 2019). With the rise of 4G
and more recently 5G, these smart devices are able
to connect to the internet and be utilized by the user
remotely. Nowadays, bulbs can turn off when a per-
son leaves the room, thermostats can adjust to energy
needs on the fly, other appliances can notify the user
of energy leaks and much more. The idea that led
to this is the Internet of Things (IoT), a network of
physical objects that use sensors, software and other
technologies to connect to each other and exchange
data between them over the internet. Grids and Smart
Homes, along with significant Information and Com-
munication Technology developments, will leverage
the future energy system paradigm, where digitally
based marketplaces will allow consumers to easily
trade energy and services (Soto et al., 2021).

Contribution

In the current work the goal was to forecast energy
demand at the level of individual residence. To this
end, we installed smart sensors in over 20 different
residences to gather energy and (indoor) weather re-
lated readings. We also dealt with the quality of the
data coming form the sensors. We evaluated machine
learning models for time-series to predict the daily
energy consumption over a period of one week. In
particular we applied ARIMA models, FB Prophet
and LSTM Neural Networks. Furthermore, a dash-
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board was developed for visualizing historical and
forecasted data. The dashboard can be accessed by
the end customer, or remotely by the electric com-
pany.

The rest of the paper is organized as follows. In
Section 2 we refer to previous work on energy pre-
diction. Then in Section 3 we refer to the forecasting
models and also to the dashboard that was designed.
Following, Section 4 refers to data harvesting, and
data quality issues. Forecasting results are presented
in Section 5. Finally, conclusions are drawn in Sec-
tion 6.

2 RELATED WORK

There have been many efforts to predict energy de-
mand, but the prediction task differs depending on the
time horizon, e.g. long-term, medium-term or short-
term; the focus on the prediction, for instance av-
erage energy demand over peak energy demand and
whether features beyond past samples of energy de-
mand are used. Moreover, pre-processing of the data
as well as handling data quality issues is important.

For instance in (Chaturvedi et al., 2022), the au-
thors compared various time-series models to pre-
dict total monthly and peak monthly demand in In-
dia. In particular SARIMA, LSTM RNN and FB
Prophet have been evaluated. FB Prophet along with
SARIMA have been the most accurate with LSTM
being exhibiting lower performance.

Predicting building energy consumption is an-
other area that has been investigated (Bourdeau et al.,
2019), (Amasyali and El-Gohary, 2018). Various
models have been considered including Autoregres-
sive Models (AR), Artificial Neural Networks (ANN)
and Ensemble methods. Also unsupervised tech-
niques, reinforcement learning (RL) and transfer
learning have been tried.

The evaluation results are not directly comparable,
as they were applied on different not publicly avail-
able data sets. However, there has been a recent inter-
national competition on a publicly available data set 1

to predict energy consumption on buildings (Miller
et al., 2022). This may be a good starting point for
the comparison of different models.

3 METHODOLOGY

In this section, the pipeline of the time-series predic-
tion along with a detailed reference to the applied ma-

1https://www.kaggle.com/c/ashrae-energy-prediction

chine learning models is being presented. (See also
Figure 2).

3.1 Pipeline of Time-Series Prediction

We address the problem of forecasting the daily en-
ergy consumption of residences over a period of
one week. We used models based on econometrics:
auto-regressive integrated moving average (ARIMA)
and its successors, seasonal ARIMA (SARIMA) and
SARIMA with exogenous factors (SARIMAX). We
also used the FB Prophet and the Long Short-Term
Memory (LSTM) Neural Network. The three models
were trained using data from 2019 to 2022, and they
were evaluated on data from 2022. The evaluation
metrics employed were the root mean squared error
(RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE) and the R-squared (R2). Fi-
nally, there was developed a dashboard to visualize
energy and indoor environmental data.

ARIMA Models

ARIMA models are widely used econometric ap-
proaches to uni-variate time-series modeling (Box
et al., 2015), (Shumway et al., 2000). It is actually
a class of models that explain a time-series based on
its own past values. In particular, it uses its own lags
and the lagged forecast errors, so as to predict future
values. All three above-mentioned ARIMA variations
(ARIMA, SARIMA and SARIMAX) 2 are considered
to be tools for time-series forecasting. The difference
between ARIMA and SARIMAX is the seasonality
and exogenous factors. ARIMA model is character-
ized by three parameters: p is the order of the AR
term, q is the order of the MA term and d is the num-
ber of differencing required to make the time-series
stationary. SARIMAX requires an extra set of p,
d, and q parameters for the seasonality aspect, and
an s parameter that is the periodicity seasonal cycle
of the data. The parameters of the ARIMA models
are usually determined by the auto-correlation func-
tion (ACF) and by the partial auto-correlation func-
tion (PACF).

Facebook Prophet

Prophet is an open-source tool developed by Face-
book in 2017 for the prediction of time-series val-
ues (Taylor and Letham, 2018). It has been used in
different business applications and is available both in

2https://github.com/statsmodels/statsmodels/tree/main/
statsmodels/tsa
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Python and R. 3 It is an additive model featuring a de-
composed time-series with three components: trend
g(t), seasonality s(t), holidays h(t) (optional term)
and an error term (εt ) that stands for random fluc-
tuations that cannot be explained by the model, and
which are assumed to be normally distributed.

LSTM Recurrent Neural Network Model

The LSTM Recurrent Neural Network model was
proposed in 1997 and it is widely used in forecast-
ing (Hochreiter and Schmidhuber, 1997), (Greff et al.,
2016). LSMTs are complex models, i.e. in general
they need much more effort to optimize them. Many
parameters, such as the number of layers, epochs,
batch size, activation functions, optimizer, have to be
properly tuned, in order to get the best possible re-
sults. We have used the Keras library 4.

Dashboard

A dashboard named Home Assistant Administrator’s
Interface was designed with Microsoft Power BI. 5

The purpose of the dashboard is to allow users to
monitor the sensors installed in residences (see Fig-
ure 1). The dashboard consists of a homepage, con-
taining the logo of the telecommunications company
along with the report’s name, and an interactive rib-
bon on the left part of the page with buttons that allow
the user to navigate through several pages.

There are pages dedicated to the residential en-
ergy consumption analysis, that display statistical
data (e.g. minimum and maximum energy readings).
Also it provides energy readings for specific years,
months, weeks, or days including the number of de-
tected sensors’ malfunctions. A donut shaped chart,
a tree-map, and a column chart are constructed, each
one depicting the average energy consumption of the
residence based on the years, months, and days re-
spectively. The color palette allows the user to inspect
and detect the periods of high energy consumption
and draw meaningful insights. Lastly, a Prediction
Analysis page is available, where the user can view
the daily predictions of the energy consumption over a
week for each model developed on the project, as well
as the actual energy readings. There is an additional
card containing the evaluation metrics (MAPE, MSE,
RMSE and R2) of each prediction model and another
one for the execution time in seconds. A gauge visual
depicts the average of the residuals of each model,
along with the minimum and maximum values and

3https://github.com/facebook/prophet
4https://www.tensorflow.org/api docs/python/tf/keras/

layers/LSTM
5https://powerbi.microsoft.com/en-au/

another card shows the percentage of days that were
predicted over the whole spectrum of days contained
in the data set. The column chart is utilized for the
comparison of the actual and predicted consumption
values per day and uses a line to show their residuals.

All report’s pages are interactive and contain ar-
row and navigation buttons to move to the next page
and to a chosen analysis tab, respectively.

Figure 1: A user dashboard to monitor residential sensors.

4 DATA SET HARVESTING

We retrieved data from the smart sensors installed
in two residences, to train models for energy con-
sumption forecasting. A Non-Disclosure Agreement
(NDA) was signed between the OTE Academy, 6

a subsidiary of OTE, which is one of the largest
telecommunication companies in Greece, and the au-
thors. Since the smart sensors collected personal in-
formation of the customers, it was ensured that the
whole process would comply with the General Data
Protection Regulation (GDPR). 7 The NDA required
to handle all data with strict confidentiality, and take
all the appropriate measures so the data is stored
safely and used only for the purpose of the current
work.

Environmental sensors have been installed in the
two residences that measure indoor humidity and in-
door temperature. Moreover there are power meters
installed at the residences’ switchboards which record
power and energy consumption. All the data were
harvested and subsequently stored in InfluxDB, 8 a
time-series highly optimized database. The data were
retrieved from InfluxDB in a JSON format to facil-
itate post-processing and interoperability with other
system components.

The data set was enriched with weather data, and
in particular with the outdoor temperature and out-

6https://oteacademy.gr/en/
7https://www.gdpreu.org/
8https://www.influxdata.com/
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Figure 2: The pipeline of the energy consumption predic-
tion.

door humidity. These data were collected through a
free API from the World Weather Online. 9

4.1 Data Description

As a proof of concept, we used data from two differ-
ent residences, both of which are situated in Athens,
Greece. The installation of the first sensors to the
residences started in June 2019, and data were col-
lected from that time and for a period of two years.
We have also collected weather related data for the
same period. Both the sensor and weather data refer
to hourly data points. Some descriptive statistics of
the acquired sensor and weather related data sets are
depicted in Table 1.

Table 1: Statistics of the data sets (2019–2022).
Residence 1

cumulative
energy
[kWh]

power [W ] temperature
[◦C]

humidity
[%]

mean 2296.50 19881.96 21.14 62.44
std 1554.35 60317.96 4.13 8.75
min 5.39 -40980.86 13.03 32.07
max 27083.62 3623000 31.83 85.73
missing values 5.53% 5.53% 3.85% 3.85%
#samples 24,239 24,239 19,904 19,904

Residence 2

cumulative
energy
[kWh]

power [W ] temperature
[◦C]

humidity
[%]

mean 7350.65 2388.58 20.85 67.49
std 2043.66 7790.89 4.06 12.18
min 3498.92 0 13.25 30.33
max 13861.59 140739.83 30.90 99.52
missing values 3.21% 3.58% 4.07% 4.07%
#samples 23,852 23,760 14,003 14,003

4.2 Data Quality

Poor-quality data is often pegged as the source
of operational snafus, inaccurate analytics, and ill-
conceived business strategies (Batini et al., 2016). Be-
sides, the main challenge of this study was the data
pre-processing phase, since data in the real world
is often dirty and corrupted with inconsistencies,
noise, incomplete information, and missing values,
and therefore data quality should be recognized and
addressed.

9https://www.worldweatheronline.com/

The first step was the exploration of the raw data to
detect any sensor malfunction before performing pre-
processing. Both energy and weather data collected
by the power meters and the environmental sensors
were examined in terms of data quality, as any de-
tected inconsistencies directly affect the performance
of the predictive models.

Energy Related Sensor Malfunctions

Erroneous readings from the power meters were re-
lated to many causes. First, internet connection dis-
ruptions, and power failures resulted in missing val-
ues. Second, hardware problems caused lags. This
resulted in energy values that were constant for ex-
tended periods of time or even resulted in energy
spikes, which is unusual (see Figure 3).

Figure 3: Cumulative energy through time: At about 16,000
hours the curve drops from about 12,000kWh to about
6,000kWh. A clear case of sensor malfunction.

Environment Related Sensor Malfunctions

A rough way to check for sensor lags is by visually in-
specting the time-series. For instance, Figures 4 and 5
depict temperature and humidity over time. Miss-
ing values occurred at about 12,000 hours (about 1.5
years from the beginning of the time series). Also,
some very prominent spikes are indicative of some
malfunction.

4.3 Feature Extraction

The extraction of temporal features was proven criti-
cal in analyzing the energy consumption of the resi-
dences. The exact hour, day, month and year as well
as the time intervals that correspond to working hours,
or to busy hours were essential pieces of informa-
tion. We used the Python holidays library 10 to iden-

10https://python-holidays.readthedocs.io/en/latest/#
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Figure 4: Indoor temperature, missing values around
12,000h.

Figure 5: Indoor humidity, missing values around 12,000h.

tify Greek holidays, a factor that could likely affect
the energy consumption, as on public holidays people
behave differently. Moreover, features related to the
sunrise, sunset time, and daylight duration were ex-
tracted from information included in the weather data.

Finally, since the sensors reported cumulative en-
ergy, we had to subtract two neighboring values to
obtain the energy consumption per hour. The training
data set comprised hourly measurements. The fore-
casting was performed on a daily basis for up to 7
days (see Table 2 for an overview of the data features).

4.4 Data Cleaning

Sensor malfunctions affected to a great extend the
data quality. In particular we detected and addressed
the following types of data quality issues: missing
values, outliers and other suspicious data.

First, we applied a z-score value of 4 to remove
cumulative energy, indoor temperature and indoor
humidity outliers. Then, we replaced the missing en-
vironmental values with their adjacent values by uti-

lizing the forward fill function of Pandas in Python;
this propagates the last valid observation forward 11.

Following that, we dealt with the suspicious en-
ergy values that are due to hardware problems, includ-
ing internet connection disruptions and power fail-
ures. This caused missing values. Sensor malfunc-
tions caused lags that occurred for extended periods
of time. This was observed as constant energy values
or as energy spikes.

As far as the malfunctions due to internet connec-
tion issues were concerned, we replaced the missing
energy values by the mean and smoothing the line
between those two points, since we had two correct
points of reference. That was possible due to the fact
that after the internet connection was restored, the
sensor’s measurements would revert to the correct en-
ergy values.

Addressing the energy spikes and the constant en-
ergy values was more challenging. First, we per-
formed time-series data visualization with Grafana. 12

We observed that the sensors were lagging for ex-
tended time periods, as they were returning the same
energy value for the many consecutive time steps.

• For the energy per hour feature (see also Sec-
tion 4.3), the z-score outlier detection method was
applied again to remove any abnormally high en-
ergy values. These values were then replaced with
their adjacent energy values by using the forward
fill function of Pandas. Such values were ob-
served in a few occasions, something that could
be the result of a sensor’s malfunction or an ex-
treme but still actual event.

• The detection of the constant energy values was
based on domain experts’ advice that the mini-
mum energy consumed at each data point should
be more that 0.06kWh. Thus in the case that we
detected a series of 3 or more consecutive data
points in the time-series where the energy con-
sumption was below that threshold, the values
were replaced with the mean value of their ad-
jacent ones. Constant energy values lasting for a
whole month values were observed in residence 2.
It was an extreme case of corrupt values in terms
of duration.

5 FORECASTING RESULTS

In this section we report the forecasting experiments
with ARIMA, SARIMA, SARIMAX, FB Prophet and

11https://pandas.pydata.org/docs/reference/api/pandas.
DataFrame.ffill.html

12https://grafana.com/
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Table 2: Extracted features of the time-series data.
Feature Name Format
Time-based features
Year timestamp (form: 2019)
Month timestamp (form: Jan 1 - Dec 12)
Date timestamp (form: 2019-06-27)
Day timestamp (form: 27)
Day of week timestamp (form: Mon 0 - Sun 6)
Time timestamp (form: 09:00:00)
Hour timestamp (form: 9)
Weekday 1 if day of week < 5, else 0
Working Hours 1 if hour in range [9:00, 18:00] & day of week

<= 5, else 0
Busy hours 1 if hour in range [7:00, 9:00] or [19:00, 00:30]

in weekdays or hour in range [9:00, 15:00] in
weekends

Holiday NoHoliday, MondayoftheHolySpirit, Easter-
Monday, IndependenceDay, DayafterChrist-
mas, Labourday, OchiDay, Epiphany, Clean-
Monday, AssumptionofMary, NewYearsDay,
Christmas

Weather-based features
Sunrise conversion to strptime() (form: 1561601100.0)
Sunset conversion to strptime() (form: 1561654320.0)
Is day light 1 if sunrise ≤ time ≤ sunset, else 0
Sensor-based features
Energy per hour energy value (form 0.0)

LSTM models, along with their evaluation.
In ARIMA, SARIMA and FB Prophet, the en-

ergy, date and year features of the data were selected.
In SARIMAX the environmental parameters indoor
temperature and humidity were included as the ex-
ogenous variables. Finally, in the LSTM the energy,
indoor and outdoor environmental parameters along
with the features listed in Table 2 were selected.

ARIMA Results

First we considered ARIMA models, to provide a
baseline performance benchmark with which to com-
pare the rest of the models. Overall it has a poor
performance. This was due to the fact that although
ARIMA can handle data with an underlying trend, it
fails to support time-series with a seasonal compo-
nent. The model’s performance is depicted in Fig-
ures 6 and 7 for residences 1 and 2 respectively.

Figure 6: ARIMA Forecast for Residence 1.

In an attempt to improve the prediction, ARIMA’s
successors SARIMA and SARIMAX were applied.
A grid search discovered the best parameters for
the model with the augmented Dickey-Fuller (ADF)
and Akaike Information Criterion (AIC) metrics.

Figure 7: ARIMA Forecast for Residence 2.

The best results were for (p,d,q) = (0,1,0) and
for (P,D,Q,M) = (1,1,1,7), where the (p,d,q) and
(P,D,Q,M) terms refer to the order of the time-series
and the order of the seasonal component respectively.

The experiments have shown that SARIMA with
only the energy feature, resulted in slightly better pre-
dictions compared to SARIMAX, that included the
indoor temperature and humidity values (See Fig-
ures 8 and 9 for the results).

Figure 8: SARIMA Forecast Line Plot for Residence 1.

Figure 9: SARIMA Forecast Line Plot for Residence 2.

Facebook Prophet Results

In FB Prophet the trend changepoints prior scale (τ)
and seasonality prior scale (σ) hyper-parameters can
be tuned so that the model fits data optimally. After
experimentation, the daily, weekly, and yearly sea-
sonality parameters of the model were set to true,
whereas the period indicating the number of the prior
periods that are important for the prediction was set
to 1. The last parameter that we considered was the
Fourier order, which is responsible for estimating the

Forecasting Residential Energy Consumption: A Case Study for Greece

489



seasonality and whose value was set to 8.
After selecting the best values of the parameters,

we employed them to evaluate the FB Prophet model
in the test phase. The results for the two residences
are presented in Figures 10 and 11 respectively.

Figure 10: FB Prophet forecasting for residence 1.

Figure 11: FB Prophet forecast for residence 2.

The FB Prophet offers additional features as exter-
nal sources, such as custom holidays, vacation days,
and even a custom seasonality that could be based on
the user’s behavior. However, since the predictions
were pretty accurate, the exploration of these features
was left for future work.

LSTM Recurrent Neural Network Results

The architecture of the LSTM in Keras 13 consists of
an LSTM layer, dense and dropout layers for pre-
vention against over-fitting. The Adam optimizer
was used, and the optimization was based on mean
squared error (MSE). Finally, the model was trained
for 10 epochs with a batch size of 64. The forecasting
lines of the LSTM model for both residences can be
observed in Figures 12 and 13.

Comparison of Models

We rated the performance of the models on the time-
series data based on the MSE, MAPE, RMSE (lower
values are better) and R2 (higher values are better)
metrics. The results for both the training and test-
ing phases, along with the models’ execution time are

13https://keras.io/

Figure 12: LSTM Forecast Line Plot for Residence 1.

Figure 13: LSTM Forecast Line Plot for Residence 2.

presented for both of the residences in Tables 3 and 4.

Table 3: Evaluation metrics for residence 1.
Training set residence 1

Models MSE MAPE RMSE R2 Execution
time [sec]

ARIMA 0.76 0.87 11.26 0.62 47
SARIMA 0.78 0.88 12.05 0.61 47
Prophet 0.93 0.96 16.96 0.53 48
LSTM 1.32 1.15 16.48 0.35 59

Testing set residence 1
Models MSE MAPE RMSE R2 Execution

time [sec]
ARIMA 0.14 0.37 6.37 -0.27 47
SARIMA 0.29 0.55 10.49 -1.72 47
Prophet 0.11 0.33 5.75 0.02 48
LSTM 0.78 0.88 15.98 -5.55 59

6 CONCLUSIONS

In the current work we tried to forecast the energy
consumption in two residences. We used data col-
lected from sensors in the residences (energy con-
sumption and environmental data) as well as weather
data (outdoor data). We dealt with data quality issues
stemming from the operation of the sensors and the
internet connection.

Different models were tested for forecasting the
energy consumption. The best models were as ex-
pected the SARIMA and FB Prophet that had a good
accuracy. As far as the LSTM’s performance is con-
cerned, there was evidence that further optimization
of its parameters would improve its results.

Overall the models that used only the energy con-
sumption feature to make predictions had a better
performance. This was probably caused because the
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Table 4: Evaluation metrics for residence 2.
Training set residence 2

Models MSE MAPE RMSE R2 Execution
time [sec]

ARIMA 8.20 2.86 18.32 -0.37 24
SARIMA 8.23 2.87 18.81 -0.37 24
Prophet 3.18 1.78 11.23 0.47 24
LSTM 2.67 1.63 11.11 0.53 29

Testing set residence 2
Models MSE MAPE RMSE R2 Execution

time [sec]
ARIMA 6.90 2.63 19.02 -2.92 24
SARIMA 0.41 0.64 4.16 0.77 24
Prophet 1.09 1.05 7.19 0.38 24
LSTM 1.96 1.40 9.95 -0.26 29

available data set was not large enough. Also the data
were collected during the COVID-19 pandemic, when
the subsequent lockdown periods caused an unusual
behavior on the part of the consumers. The data were
collected over the past three years, but each year was
different. In 2019 the residents’ behavior was nor-
mal, since there was no lockdown, but in 2020 all
changed since people had to stay at home and thus the
energy consumption increased (Abu-Rayash and Din-
cer, 2020). Abnormalities like these heavily affect the
data especially in the seasonality aspect, that is crucial
for time-series data as the ones in hand. This might be
the reason of models performing worse when no ex-
ternal data are utilized, since the target variable that is
used is compromised. Moreover, all the models, ex-
cept FB Prophet performed worse with large sizes of
training data. The FB Prophet had better performance
with a larger size of training data.

Concluding, the forecasting models are part of a
software service that is accessible via a dashboard.
The service can be used by the customer to moni-
tor historical energy consumption, obtain predictions
and thus to draw conclusions providing a better under-
standing of the residence’s energy consumption, and
to possibly take actions in economizing. The service
can also be used by the electric company to acquire
sensor data from all residences. The company could
possibly “intervene” in the residence by switching off
unused smart plugs should they have the customer’s
consent; or even to suggest ways to reduce the resi-
dential energy consumption by replacing old and in-
efficient domestic appliances, i.e., oven, fridge, wash-
ing machine.

The current work can be expanded in several di-
rections. First, we can try to predict energy consump-
tion based on all 20 residences instead of only 2. Sec-
ond, as data continue to be gathered we could enhance
the training data sets. Finally, we could try different
forecasting models such as the transformer networks.
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