
Castles Built on Sand: Observations from Classifying Academic
Cybersecurity Datasets with Minimalist Methods

Laurens D’hooge a, Miel Verkerken b, Tim Wauters c, Filip De Turck d and Bruno Volckaert e

IDLab-Imec, Department of Information Technology, Ghent University,
Technologiepark-Zwijnaarde 126, 9052 Ghent, Belgium

Keywords: Machine Learning, Cybersecurity, Data Quality Issues, Baselines.

Abstract: Machine learning (ML) has been a staple of academic research into pattern recognition in many fields, includ-
ing cybersecurity. The momentum of ML continues to speed up alongside the advances in hardware capabili-
ties and the methods they unlock, primarily (deep) neural networks. However, this article aims to demonstrate
that the non-judicious use of ML in two prominent domains of data-based cybersecurity consistently misleads
researchers into believing that their proposed methods constitute actual improvements. Armed with 17 state-
of-the-art datasets in traffic and malware classification and the simplest possible machine learning model this
article will show that the lack of variability in most of these datasets immediately leads to excellent models,
even if that model is only one comparison per feature.

1 INTRODUCTION

The term pattern recognition has largely become syn-
onymous with machine learning, especially in aca-
demic research. While in itself this is not a bad di-
rection since these methods have proven capable of
solving hitherto unsolvable tasks, eager adoption of
increasingly complex ML models in security-oriented
pattern recognition tasks presents a problem.

That problem is evaluating the true merit of these
newly proposed complex models on datasets where
the margins at the top are very narrow. While model
authors claim the superiority of their novel models,
the reality is that it is not possible to rank-order them
effectively because extremely simple ML models of-
ten score equally well.

This article’s chief contribution is the continued
affirmation of the observation made by (Holte, 1993).
Within data-based cybersecurity, even the simplest
ML models perform well or even perfectly on the
available datasets. This observation from experiment
severely undercuts novel ML models’ claims that
they significantly improve detection. To the authors’
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knowledge, the concern of increased model complex-
ity without commensurate gains in classification per-
formance has been raised by researchers in the field,
but has not yet been experimentally validated. Our
motivation for this work stems from both our search
for the smallest effective models for high-throughput
low-latency intrusion detection systems and from our
prior work that established that well-known models
still reach outstanding classification scores even un-
der severe data restrictions (D’hooge et al., 2021).

This article presents true baselines for 17 security
datasets obtained with a model at the lower bound of
ML model complexity, one rule (OneR, 1R). In many
cases its performance sits remarkably close to that of
most recently proposed classification methods.

The article is structured as per the template. In
section 2 the literature on two broad domains of pat-
tern recognition in cybersecurity is outlined with a
particular focus on model innovation. Those two
domains are network traffic classification (primar-
ily intrusion detection) and malware detection. The
methodology is described in section 3 and focuses
on the models OneR and ensemble OneR. The re-
sults are conveyed per dataset in chronological order
in section 4. The discussion aggregates the results
and presents the insights and recommendations to im-
prove new detection algorithm proposals and to im-
prove the datasets themselves. The conclusion 6 and
future work 7 round out the article.
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2 RELATED WORK

In both security-oriented network traffic classification
and malware classification, academic research had al-
ready embraced machine learning as the method of
choice for further investigation by the 2010s. (Buczak
and Guven, 2015) and (Mishra et al., 2018) made this
observation the central theme of their landmark sur-
veys in intrusion detection. Across the entire spec-
trum of classical data mining and machine learning
methods, they were able to compile and compare
dozens of proposed algorithms. A bibliographical re-
view of malware research by (Ab Razak et al., 2016)
equally noted the rising prevalence of machine learn-
ing in malware recognition. (Shalaginov et al., 2018)
noted that static analysis was quickly getting infused
with ML methods to cope with the explosive growth
in the volume and variations of malware.

The aforementioned (older) surveys focus mostly
on classical ML methods, but a more recent survey by
(Ahmad et al., 2021) explicitly compares the amount
of new proposals with classical methods to new deep
learning approaches in intrusion detection. In their set
of recently proposed methods, they find that 60% are
now pure deep learning methods, 20% are hybrids be-
tween deep learning and classical methods and the re-
maining 20% continue to innovate purely on classical
methods. Two years prior, (Liu and Lang, 2019) se-
lected 26 proposals in intrusion detection, 14 of which
relied on deep learning. In the challenges and future
directions, the authors already identified the low ef-
ficiency of the ever more complicated methods as a
growing issue to be solved.

Within the suite of available deep architectures,
auto-encoders (AE), convolutional neural networks
(CNN), recurrent neural networks (RNN), deep belief
networks (DBN) and restricted Boltzmann machines
(RBM) were the most widely studied before 2020
(Berman et al., 2019), (Aldweesh et al., 2020). The
same architectures enjoyed the greatest popularity in
malware detection during the same period (Naway
and Li, 2018), (Qiu et al., 2020).

Due to the speed with which new architectures are
proposed, tested and adopted in more well-known ap-
plications of ML (e.g. vision and language modelling
tasks), they are adapted equally rapidly by data-based
security researchers. Large models based on the trans-
former architecture, originally designed for language
modelling and quickly transmuted for vision tasks,
are the latest inspiration for methods like MalBERT
(Rahali and Akhloufi, 2021) and DDoSTC (Wang and
Li, 2021).

The overall trend in the surveys and the latest
methods is clear. Ever more complicated detection al-

gorithms are proposed with performance gains indis-
tinguishable from run-to-run variance. Occasionally
model authors compare their new proposal to simpler
ML methods (very often to a stock random forest).
The impulse is commendable, but the execution is too
rushed. More adequate comparisons would include
XGBoost or Catboost and spend the same amount of
time and resources to optimize them as well as the
newly proposed algorithm. The step down to a sim-
pler model rarely occurs and even so, this article will
demonstrate that another model with a tiny fraction of
the complexity of XGBoost or Catboost still performs
good or even great on the same academic cybersecu-
rity datasets.

This literature section constrains itself to high-
quality reviews which surveyed hundreds of individ-
ual methods. 17 datasets were evaluated in this arti-
cle and due to the limited space, it was not possible
to provide individual examples for each dataset. For
those readers who are not familiar with the domain,
the reviews capture many of the included datasets and
do detailed reporting of the achievable performance.
Similarly, the dataset authors / publishers often in-
cluded baselines (relevant citations in table 1).

2.1 Included Datasets

Seventeen academic datasets have been evaluated in
this analysis. Broadly, they fall in two categories:
traffic classification and malware classification. The
traffic classification datasets primarily include (multi-
class) intrusion detection datasets as well as some
specialty datasets. The set of malware datasets is not
as expansive, but stills cover Android, Windows and
Linux malware as well as one specialized dataset on
malware delivery through malicious PDF files. Ta-
ble 1 presents an overview of the included datasets
with their relevant citation(s) and year of publication.
The author maintains clean versions of every dataset
on Kaggle updated in accordance with the latest re-
search. All computation, preprocessing and analy-
sis are publicly available at https://www.kaggle.com/
dhoogla/datasets.

3 METHODOLOGY

The methodology section introduces the two algo-
rithms which have been used throughout the analy-
sis. Their simplicity is a deliberate design choice in-
formed by (Holte, 1993) meant to highlight the ease
with which many of the state-of-the-art ML security
datasets can be classified.
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Table 1: The Included ML-Focused Security Datasets.

Traffic Classification Datasets
Name Year Purpose
NSL-KDD 2009 (Tavallaee et al., 2009) Multi-class intrusion detection
CTU-13 2014 (Garcı́a et al., 2014) Botnet detection
UNSW-NB15 2015 (Moustafa and Slay, 2015) Multi-class intrusion detection
CIDDS-001 2017 (Ring et al., 2017a) Multi-class intrusion detection
CIDDS-002 2017 (Ring et al., 2017b) Port scanning detection

CIC-NIDS Collection
CIC-IDS 2017 (Sharafaldin. et al., 2018) Multi-class intrusion detection
CIC-DoS 2017 (Jazi et al., 2017) DoS detection
CSE-CIC-IDS 2018 (Sharafaldin. et al., 2018) Multi-class intrusion detection
CIC-DDoS 2019 (Sharafaldin et al., 2019) DDoS detection
CIC-Darknet 2020 (Habibi Lashkari et al., 2020) VPN & Tor detection
CIRA-CIC-DoHBrw 2020 (MontazeriShatoori et al., 2020) DNS covert channel detection
CIC-Bell-DNS-EXF 2021 (Mahdavifar et al., 2021) DNS data exfil detection
USB-IDS-1 2021 (Catillo et al., 2021) DoS detection
Distrinet-CIC-IDS 2021 (Engelen et al., 2021) Corrected issues in CIC-IDS2017

Malware Classification Datasets
CCCS-CIC-AndMal (Rahali et al., 2020) 2020 (Keyes et al., 2021) Android malware
CIC-Malmem 2022 (Carrier et al., 2022) Obfuscated malware classification
CIC-Evasive-PDFMal 2022 (Issakhani et al., 2022) Hidden malware in PDF files

3.1 The Simplest ML Model: One Rule

If you’re allowed only one comparison, which fea-
ture and which value would you pick? That’s the
central question of the One Rule (OneR) model.
Implementation-wise it is identical to a decision tree
model with just a root node. This article uses OneR
exclusively, but keeps a OneR model for every feature
in each dataset, rather than keeping only one. Figure
1 visually demonstrates the model.

Figure 1: OneR: one optimal split point on a number line.

The hard point splits that are found for each fea-
ture will either have some predictive power if a dis-
proportionate amount of samples from one class fall
below (or above) the split point. No such predictive
power will reveal itself for two possible reasons and
two edge cases.

1. there is an equal proportion of the classes on each
side of the split point

2. enough negative samples sit on either side of the
value range for the feature for the positive samples

The edge case for reason 1 is that all samples’ val-
ues for the feature fall on the split point (i.e. a fea-
ture with zero variability). Such features should be
removed by the dataset authors prior to publication.
Reason 2 does not need to be a problem if you are
allowed more than 1 decision. Its edge case is that
there is full overlap between the observed values for

a feature for all negative and all positive samples with
a majority of negative samples at each value.

3.1.1 The Simplest Ensemble

A single OneR model disregards all features but one.
This is extremely restrictive. We have opted to also
include an ensemble method with threshold optimiza-
tion. The simplest ensemble takes the outputs of each
OneR model with any predictive power and averages
them. These average outputs per sample then serve
as the final predictions. In general, an uplift in clas-
sification performance is observed for the ensemble
because it combines the predictions of independent
models (so long as a majority of the independent clas-
sifiers predicts the right outcome).

However, partly because an unweighted averaging
was used, it is possible to see a loss in classification
performance. If there is a preponderance of models
with weak classification performance then they will
drag the stronger models down. A change in the
weight contribution of the individual OneR models
tied to their individual performance would alleviate
this.

One final trick which was employed is the use of
Youden’s J statistic (Youden, 1950). J is calculated as
the true positive rate minus the false positive rate and
allows setting the optimal threshold to assign predic-
tions to a class (in a binary context). In the imple-
mentation, the maximum J and subsequent optimal
threshold are calculated based on the predictions for
the training set and the same threshold is re-used for
the test set to avoid leaking information.
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3.2 Sampling

Contrary to the prevailing wisdom and the litera-
ture, an 80-20 split is not required at all to train
performant models. The loss in performance from
inverting the standard split to its complement 20%
train 80% test split hardly affects performance. For
the datasets with millions of samples even more
aggressive sampling methods (i.e. 1-99 or even
0.1-99.9 train-test) remain effective with negligible
losses in performance (https://www.kaggle.com/code/
dhoogla/cic-ids2017-03-minimal-data-binary). For
the datasets with pre-designated splits (a.o. NSL-
KDD, UNSW-NB15, USB-IDS-1), those splits were
kept to keep comparability with the state-of-the-art
even though more aggressive sampling methods work
equally well.

3.3 Common Dataset Preprocessing

All datasets are provided as comma-separated-value
files (CSV). CSVs are readable as text, but not effi-
cient compute or storage wise. Every dataset under-
went at least the following preprocessing steps.

• Dropping metadata shortcut features (D’hooge
et al., 2022a) and other contaminant features
(D’hooge et al., 2022b) (only for NSL-KDD,
UNSW-NB15 and the CIC-NIDS collection)

• Downsizing the features into appropriate types

• Removing samples with missing or corrupt values

• Removing duplicate samples to avoid inflating
classification scores

3.4 A Note on Classification Resolution

Throughout this analysis, the choice was made to
work with binary classification. For most datasets
this is the most logical level because it coincides with
the labeling by the dataset authors. For the CIC col-
lection which has massive differences in sample size
for its available classes, classification was done on
each available attack class versus benign traffic. True
multi-class evaluation was eschewed because it would
obscure the class imbalance and because the model is
too simplistic.

4 RESULTS

The results are presented in two big blocks with the
network traffic datasets first and the malware datasets

second. Additional preprocessing (if any) is men-
tioned, the top-5 features are listed and the perfor-
mance of the unweighted ensemble of the successful
OneR models is presented. To keep the article maxi-
mally self-contained, the results are written in a dense
format. We recommend reading table 2 first which
presents a summary of the numerical results and then
circling back to the detailed results for the individual
datasets.

4.1 Network Traffic Classification
Datasets

The results on the fourteen network traffic classifi-
cation datasets are presented first and in chronolog-
ical order of dataset publication. Even though some
datasets are outdated by now and superseded by more
recent entries, certain design aspects of the older
datasets positively influence their usability and legit-
imately decrease OneR’s performance (a detailed ex-
planation is part of section 5).

4.1.1 NSL-KDD

NSL-KDD is included because it has been the most
studied NIDS dataset to date. Although its attacks are
no longer reflective of a modern network landscape,
the original dataset authors (KDD98/99) made sound
decisions to produce a varied dataset with separate
train and test sets with non-overlapping sets of cyber
attacks. For this evaluation, the given train-test split
was respected.

Even though NSL-KDD is already a rework of
the KDD99 dataset, more issues with contaminat-
ing features have recently been found (D’hooge
et al., 2022b). Those features have been removed
and the highest quality version of NSL-KDD is
publicly available https://www.kaggle.com/dhoogla/
datasets/nslkdd.

OneR models are just moderately capable on this
dataset with the top-5 features all scoring between
0.745 and 0.819 AUROC (scr-bytes, dst-bytes, flag,
service, dst-host-same-srv-rate). OneR models for 22
out of the 36 features had at least some predictive
power (AUROC > 0.5) and their unweighted ensem-
ble scored 0.929 AUROC (precision 0.94 and recall
0.86).

4.1.2 CTU-13

After removing contaminating metadata features
which act as shortcuts for ML models, the botnet
dataset CTU-13 only has 9 features. Worse still, the
observed values for benign and malicious samples
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overlap nearly perfectly. None of the OneR models
yield any results better than random guessing.

4.1.3 UNSW-NB15

UNSW-NB15 has pre-designated train and test sets,
so those were respected in the analysis. Nearly all
published articles that use this dataset are unaware
that there are contaminating features, but for this anal-
ysis, the improved version of the dataset is used.

With the corrected UNSW-NB15 dataset OneR
models remain capable with the top-5 features be-
ing rate, sload, dbytes, dpkts and dmean each scor-
ing above .766 AUROC (max 0.781). Compared to
the full set of features (contaminating ones included)
a flat loss of 0.1 AUROC has been observed. The
features stll and ct-state-ttl used to be the top-2 per-
formers with AUROCs above 0.85. For this dataset,
the first instance of the ensemble underperforming an
individual feature is observed as the ensemble reaches
just 0.776 AUROC with precision at 0.96 and recall at
0.62.

4.1.4 CIDDS-001

After the removal of contaminating metadata features,
CIDDS-001 has 12 features, 6 of which are one-
hot-encoded versions of TCP flags. With the ad-
ditional imbalance in benign versus malicious traf-
fic (4,354,282-11875) and full overlap in values and
value ranges for the malicious traffic, OneR models
are not sophisticated enough to create useful distinc-
tions.

4.1.5 CIDDS-002

Even though CIDDS-002 has the same minuscule
set of features and a worse class balance (benign
2,640,306 - malicious 3829) compared to CIDDS-
001, a few OneR models prove capable. During the
construction of CIDDS-002 only port scan attacks
were gathered.

Three features demonstrate splitting power with
a single comparison each. The observed values for
proto (0.833 AUROC), tos (0.782) and bytes (0.598)
have overlap between the benign and malicious sam-
ples. However, for the useful features, the malicious
samples have a majority on the edges of the range,
granting them their predictive power. The ensemble
OneR model reaches an AUROC of 0.878 with 78%
precision and 76% recall.

4.1.6 CIC-NIDS-Collection

Rather than evaluating the individual CIC-NIDS
datasets, the analysis has been conducted on the

global aggregate dataset of the NIDS collection.
Working on the collated version should improve the
variability due to the large increase in the number of
represented attacks.

Additionally, the CIC collection as used takes
(D’hooge et al., 2022a) and (D’hooge et al., 2022b)
into account, removing all shortcut metadata features
and all content features which have been identified as
contaminants. In total the dataset has more than 9 mil-
lion unique samples with 58 statistical features. For
academic researchers, it is the most comprehensive,
labeled NIDS dataset available.

The results will be discussed per represented at-
tack class. The analysis was done at this level of res-
olution because there are millions of DDoS and DoS
samples, whereas Portscan is represented by a mere
2255 (positive) samples. Collapsing all attack classes
into one dataset would skew the results to a DDoS /
DoS model.
DDoS: top-5 features: total-backward-packets, bwd-
packets/s, avg-fwd-segment-size, fwd-packet-length-
mean and fwd-packet-length-max (AUROCs between
0.702 and 0.728). 27/57 features contributed to the
ensemble OneR model which reaches 0.842 AUROC
with 0.655 precision and 0.8653 recall. Having the
combination of the DDoS samples of three datasets
(IDS17, IDS18 and DDoS19) definitely improved the
variability in the data (e.g. when compared to 4.1.11
DDoS).
DoS: top-5 features: packet-length-variance, bwd-
packet-length-std, flow-bytes/s, fwd-seg-size-min,
bwd-packets/s (AUROCs between 0.701 and 0.817).
39/57 OneR models contribute to the ensemble which
reaches 0.905 AUROC with 0.820 precision and
0.811 recall. Again, having the DoS samples of three
NIDS datasets (IDS17, DoS17 and IDS18) increased
the classification difficulty, especially for a model
such as OneR.
Bruteforce: top-5 features: subflow-fwd-bytes,
fwd-packets-length-total, fwd-header-length, fwd-
act-data-packets, bwd-header-length (AUROCs be-
tween 0.951 and 0.964). 40/57 OneR models con-
tribute to the ensemble which reaches 0.973 AUROC
with 0.979 precision and 0.936 recall.
Portscan: top-5 features: bwd-packet-length-
mean, bwd-packets-length-total, subflow-bwd-bytes,
packet-length-variance and packet-length-std (AU-
ROCs between 0.849 and 0.865). 34/57 OneR models
contribute to the ensemble which reaches 0.926 AU-
ROC with 0.692 precision and 0.925 recall.
Botnet: top-5 features: flow-bytes/s, flow-iat-mean,
avg-bwd-segment-size, bwd-packet-length-mean and
bwd-packets/s (AUROCs between 0.852 and 0.870).
38/57 OneR models contribute to the ensemble which
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reaches 0.9793 AUROC with 0.996 precision and
0.948 recall.
Webattack: top-5 features: avg-packet-size, packet-
length-max, flow-bytes/s, packet-length-variance and
packet-length-std (AUROCs between 0.801 and
0.804). 40/57 OneR models contribute to the ensem-
ble which reaches 0.886 AUROC with 0.728 preci-
sion and 0.796 recall.
Infiltration: is represented in both CIC-IDS datasets,
but only with 30 samples in CIC-IDS2017. CSE-CIC-
IDS2018 expanded the infiltration attacks, but con-
siders the traffic from downloading a malicious file
from Dropbox as part of the malicious traffic, heav-
ily padding the sample count. The quality of the ex-
periment to gather this attack class has not been suf-
ficient. As a consequence no models perform well
on this attack class. For completeness: the ensemble
OneR model relied on positive contributions from just
4 features and reached an AUROC of 0.57.

On the individual data sets of the CIC-NIDS col-
lection results are more in-line with the results on the
updated Distrinet-CIC-IDS2017 (subsection 4.1.11).
The grouping into one larger, more varied dataset and
the removal of contaminating features has reduced the
effectiveness of the OneR model.

4.1.7 CIC-Darknet2020

The CIC Darknet dataset from 2020 has two compo-
nents. The dataset is designed around VPN and Tor
recognition and provides this labeling resolution to its
users (Tor/NonTor & VPN/NonPN).

On the Tor/NonTor task, the top-5 features were
bwd header length, total bwd packets, ack flag count,
fwd init win bytes and bwd init win bytes with AU-
ROCs ranging from 0.753 up to 0.898. The ensem-
ble model reaches 0.980 AUROC with an F1 score of
0.732. A middling performance on the positive class
but high overall AUROC indicates that the model pre-
dicts very few false positives.

The VPN/NonVPN task had significantly worse
performance. Its top-5 features do not reach higher
than 0.719 AUROC. (subflow bwd bytes, bwd packet
length max, total length of bwd packet, bwd packet
length mean and bwd segment size avg). The en-
semble with contributions by 53/77 features improves
slightly to 0.779 AUROC with an F1-score of 0.739,
indicating a pretty mixed performance in terms of
type I and type II errors.

4.1.8 CIRA-CIC-DoHBRW2020

CIRA-CIC-DoHBrw provides two layers of tasks. L1
focuses on the split between DoH and NonDoH traffic
while L2 focuses on the recognition of DoH tunnel

abuse for exfiltration / communication purposes for
malware as opposed to legitimate use.

On the L1-task, the top-5 features are packet-
time-mean, packet-time-stdev, packet-time-var, du-
ration and packet-length-mode (AUROCs between
0.767 and 0.856). The ensemble model reaches 0.903
AUROC with 60% precision and 82% recall. Nine of
the twenty-nine features contributed to the ensemble.

On the L2-task, the top-5 features are packet-time-
stdev, packet-time-var, flow-sent-rate, flow-bytes-sent
and flow-bytes-received (AUROCs between 0.604
and 0.698). The ensemble model reaches an AU-
ROC of 0.799 with a precision-recall pair of 0.971 and
0.972. The ensemble took the predictions of 13/29
models into account.

4.1.9 CIC-Bell-DNSExf2021

CIC-Bell-DNSExf2021 is the second CIC dataset tar-
geting covert communication and data exfiltration
over DNS. Two versions of the cleaning process for
this dataset have been performed. The first tries to
stay as close to the data as possible. The second ver-
sion is much more opinionated and focuses on getting
the data as close to its own documentation as possi-
ble. For this analysis, the minimalistically cleaned
files were chosen because they deviate the least from
the raw dataset.

Individual OneR models are relatively capable of
discerning the malicious from the benign DNS traf-
fic. The top-5 features are FQDN-count, subdomain-
length, special, sld and longest-word (AUROCs from
0.784-0.796). The ensemble model reaches 0.846
AUROC with an F1 score of 0.862. OneR models
for 24/41 features contributed to the ensemble.

4.1.10 USB-IDS-1

USB-IDS-1 focuses on DoS attacks and their poten-
tial defenses. Having captured millions of samples
of four DoS attacks under various defensive circum-
stances, it was expected that there would be a great
deal of variety in the samples. The compatibility with
the feature set of the CIC collection also opens up fur-
ther investigations into generalization.

The expectation of a varied dataset, impossible to
be classified by a model as simple as a single com-
parison, did not hold up. The top-5 features are bwd
bytes/bulk avg, total length of bwd packet, fwd iat
min, bwd psh flags and fwd init win bytes, all with
AUROCs above 0.95. A single comparison with the
top feature fwd init win bytes produces a model with
0.999 AUROC. 46/77 features have immediate sep-
arating power. There is no need for the ensemble
model, but for completeness’ sake, its performance
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was 0.997 AUROC with 0.982 F1 score.

4.1.11 Distrinet-CIC-IDS2017

The Distrinet update of CIC-IDS2017 offers the same
attack classes as the CIC collection. Even though this
is a single dataset, the distinction will be kept be-
cause the number of available samples for each of the
classes varies greatly.
DDoS: top-5 features: bwd-packet-length-mean, avg-
bwd-segment-size, packet-length-variance, packet-
length-std and bwd-packet-length-std (AUROCs from
0.993-0.998). 60/77 OneR models contribute to the
ensemble which reaches 0.999 AUROC with 0.995
precision and 0.979 recall.
DoS: top-5 features: fwd-iat-max, bwd-iat-mean,
flow-duration, fwd-iat-total and fwd-seg-size-min
(AUROCs from 0.858-0.899). 64/77 OneR models
contribute to the ensemble which reaches 0.965 AU-
ROC with 0.906 precision and 0.823 recall.
Bruteforce: top-5 features: bwd-header-length,
bwd-psh-flags, psh-flag-count, fwd-psh-flags and
down/up-ratio (AUROCs from 0.951-0.975). 53/77
contribute to the ensemble which reaches 0.998 AU-
ROC with 0.998 precision and 0.987 recall.
Portscan: top-5 features: fwd-packet-length-max,
fwd-packets-length-total, subflow-fwd-bytes, fwd-
packet-length-mean and avg-fwd-segment-size (AU-
ROCs from 0.951-0.955). 45/77 features contribute
to the ensemble which reaches 0.993 AUROC with
0.878 precision and 0.983 recall.
Botnet: top-5 features: packet-length-mean, avg-
packet-size, subflow-bwd-bytes, avg-bwd-segment-
size and bwd-packet-length-mean (AUROCs from
0.910-0.950). 53/77 features contribute to the ensem-
ble which reaches perfect 1.0 AUROC with 0.998 pre-
cision and perfect recall.
Webattack: top-5 features: bwd-header-length, bwd-
iat-std, init-bwd-win-bytes, init-fwd-win-bytes, fwd-
seg-size-min (AUROCs from 0.844-0.894). 56/77
features contribute to the ensemble which reaches
0.969 AUROC with 0.895 precision and 0.855 recall.

Even though the Distrinet lab materially improved
CIC-IDS2017, it remains a trivial dataset to classify.

4.2 Malware Classification Datasets

Although far fewer malware classification datasets
have been included, the results on them highlight the
same issue.

4.2.1 CCCS-CIC-AndMal2020

This mixture of around 400k samples of android ap-
plications (half of which are malware) has 14 cate-

gories of malware including adware, backdoors, spy-
ware, trojans, scareware, ... It has features captured
both through static and through dynamic analysis. For
the benign software samples, the 150+ dynamic fea-
tures were not captured, leaving only the 9500+ static
features. The static features were not individually
named in the dataset so they will be represented sim-
ply by their index (Fxxxx).

The top-5 features were F50, F57, F37, F48, F58
all with AUROC scores above 0.84 (max 0.875). Of
the 9503 features less than 500 had direct separating
power. The ensemble OneR model reaches 0.953 AU-
ROC with 0.953 precision and 0.869 recall.

4.2.2 CIC-MalMem2022

The second malware dataset in this article has been
designed for the detection of obfuscated malware with
features derived from memory dumps. It is a tabular
dataset, horizontally with 55 unique features are pro-
vided and vertically it has 58,596 records perfectly
balanced with 29,298 benign and 29,298 malicious
samples.

Our additional preprocessing was limited to
adding intermediate levels of labeling. Only the most
abstract level, the binary split between malicious and
benign samples is taken into account.

The top-5 features were svcscan.nservices,
svcscan.shared-process-services, svcscan.kernel-
drivers, handles.nmutant and dlllist.avg-dlls-per-proc,
all landing with AUROC scores above 0.987. Of the
55 available features, 51 can yield single comparison
models with separating power beyond 0.5 AUROC.
The ensemble model of the useful single feature
models reached 0.996 AUROC and 0.984 F1 (0.974
precision, 0.993 recall).

4.2.3 CIC-Evasive-PDFMal2022

The third and final malware dataset centers on mal-
ware hidden in PDF files. It is almost balanced with
5555 malicious samples and 4468 benign samples.

Our preprocessing for this dataset was quite exten-
sive because two classes of data inconsistencies ex-
ist in CIC-Evasive-PDFMal2022. First, there are fea-
tures where a negative value is impossible based on
the documentation, but negative values occur. Sec-
ond, there are features which should be numeric, but
some samples have string or other non-numeric val-
ues.

The top-5 single-decision, single feature models
were built on startxref, metadatasize, javascript, js
and stream, all with AUROCs above 0.814. Luckily,
unlike CIC-MalMem2022 it is not possible to solve
the dataset well with one feature and one comparison.
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For 20 of the 31 available features, single comparison
models have (at least some) effectiveness.

The ensemble of the 20 contributing OneR mod-
els reaches an AUROC of 0.986 with an F1 score of
0.9539 (precision 0.969, recall 0.939).

5 DISCUSSION

The result section 4 is extremely dense, but the core
thread is clearly visible. Even with a computational
budget of one comparison per feature, good to excel-
lent models can be found. Table 2 summarizes the
results on each dataset. The table only mentions the
performance of the ensemble of OneR models, since
it’s more often the better model. Still for every en-
try with a †, an individual OneR model had the best
performance. Figure 2 visualizes a blatant example
of lacking variability which leads to OneR being so
powerful.

Table 2: Result Summary.

Traffic Classification Datasets
Dataset AUROC Precision Recall
NSL-KDD 0.93 0.94 0.86
CTU-13 0.5 0.5 0.5
UNSW-NB15† 0.78 0.96 0.62
CIDDS-001 0.5 0.5 0.5
CIDDS-002 0.88 0.78 0.76

CIC-NIDS Collection
DDoS 0.84 0.66 0.87
DoS 0.91 0.82 0.81
Bruteforce 0.97 0.98 0.94
Portscan 0.93 0.69 0.92
Botnet 0.98 1.0 0.95
Webattack 0.89 0.73 0.80
CIC-Darknet-Tor 0.98 0.59 0.97
CIC-Darknet-VPN 0.78 0.63 0.90
CIRA-CIC-DoHBrw-L1 0.90 0.60 0.82
CIRA-CIC-DoHBrw-L2 0.80 0.97 0.97
CIC-Bell-DNS-EXF 0.85 0.80 0.94
USB-IDS-1† 1.0 1.0 0.96

Distrinet-improved-CIC-IDS2017
DDoS 1.0 1.0 0.98
DoS 0.97 0.91 0.82
Bruteforce 1.0 1.0 0.99
Portscan 1.0 1.0 1.0
Botnet 1.0 1.0 1.0
Webattack 0.97 0.90 0.86

Malware Classification Datasets
CCCS-CIC-AndMal 0.95 0.95 0.87
CIC-Malmem† 1.0 0.97 0.99
CIC-Evasive-PDFMal 0.99 0.97 0.94

Three additional observations present themselves:

1. The CIC-NIDS collection does introduce more
variability, not just additional volume which leads
to weaker performance for the OneR model

2. Datasets with intelligently predefined train-
validation-test splits are less affected

3. More malware datasets have to be examined since
they were amongst the most affected

The first observation leads to a hopeful conclu-
sion for future work. Datasets should strive towards
interoperability with the others to quickly achieve
higher variability, not just higher volume. The dif-
ferences in experimental setup and execution will
lead to new, unique samples. A comparison of fig-
ures 3 (Distrinet-IDS-2017-DDoS) and 4 (CIC-NIDS-
Collection-DDoS) immediately reveals how the dif-
ference in distributions for the same features leads
OneR to score so well on the former and a lot poorer
on the latter.

NSL-KDD and UNSW-NB15, even though they
are quite a bit older than the latest datasets, have a
feature that protects them from easily finding models
with inflated performance. Creating designated train,
validation and test splits that are no mere consequence
of random sampling, but contain unseen attacks from
the same classes guarantees new patterns to more rig-
orously test generalization beyond the training.

Some datasets are not well-suited to ML evalu-
ation despite being created for that purpose. Both
CTU-13 and CIDDS-001 have so few features and
so much overlap in the available values for those
features between benign and malicious samples that
no method, however sophisticated, will reach ade-
quate performance. Both datasets are also extremely
class-imbalanced (CIDDS: benign 4,354,282, mali-
cious 11,875, CTU-13: benign 8,432,312, malicious
190,210). A visual explanation of the issue is visible
in figure 5. That visualization also reveals a short-
coming in the experiment’s design. All attacks were
short in duration and therefore did not generate a large
amount of traffic (bytes). Worse still is the distribu-
tion of the third feature “flows” which has 0 variance
because it has only one potential value (1.0).

Since OneR is the simplest model that can
be devised, it is not always a genuine contender
compared to recently proposed models. The gap in
complexity between OneR and the state-of-the-art
proposals is hard to overstate. Even if method
authors do not compare their proposal to OneR, they
should compare it to XGBoost (Chen et al., 2015),
Catboost (Prokhorenkova et al., 2018) or even just to
randomized decision trees (Geurts et al., 2006). For
the included datasets which cover the state-of-the-art
in NIDS and a fair portion of malware classification,
method authors would discover that their proposals do
not outperform simpler, computationally less expen-
sive models. This rings particularly true for the slew
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Figure 2: Lackluster variation in the data creates OneR’s excellent performance on CIC-Malmem2022.

Figure 3: The class-grouped distributions of Distrinet-DDoS demonstrate why it is so easily classified.

Figure 4: The class grouped distributions of CIC-NIDS collection DDoS show significantly more variability in its samples.
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Figure 5: CIDDS-001: Heavy class imbalance and complete overlap in the value ranges for the benign and malicious samples
or no variation at all.

of deep neural networks that have been proposed in
recent years.

6 CONCLUSION

Cybersecurity research has ventured far into machine
learning for its pattern recognition tasks. New model
proposals are numerous and often borrow / recom-
bine model advances discovered for other ML tasks.
Along the way it has lost its commitment to deliver-
ing models with excellent performance while keeping
computational cost low. Survey authors had already
noticed that the optimization for ever higher classifi-
cation metrics resulted in growing model complexity
without keeping in mind that many security-related
pattern recognition tasks are time-sensitive and bene-
fit from a dual optimization of model complexity and
computational efficiency. Their objections have not
dissuaded the research community from continuing to
increase model complexity even though the margins
for improvement on many state-of-the-art datasets are
slim to non-existent.

This article is inspired by (Holte, 1993) which
demonstrated that the simplest supervised machine
learning model, one rule (OneR, 1R) performed well
on the most commonly used datasets of its time. On
17 state-of-the-art cybersecurity datasets for network
traffic classification and malware recognition, the ef-
fectiveness of OneR and ensemble OneR is estab-
lished. Despite being nothing more than a single com-
parison, OneR (or ensemble OneR) often proves itself
competitive with recent detection proposals. Further
investigation into the datasets themselves has revealed
that many suffer from a lack of variability which al-
lows even OneR to be effective.

From a practical standpoint, the authors of this
article want to urge authors of new detection pro-
posals to compare their work to a well-tuned XG-
Boost or Catboost model before claiming superiority
for their model. Researchers working on any dataset
should also be aware of OneR’s performance even
if they don’t explicitly mention it in their proposals.
Ultimately, the authors of this article hope that this
practice will lead more researchers to investigate the
datasets themselves, to uncover their flaws and dedi-
cate their future work to improving dataset quality so
that the more complex models will actually become
necessary. As it stands today, the complexity of many
novel detection methods is not warranted for the avail-
able datasets.

7 FUTURE WORK

For the network traffic datasets this article should
clearly convey the issue, but the sampling of malware
classification datasets is too sparse to carry the same
weight. Future work (primarily on Kaggle) will con-
tinue to include more security datasets (especially in
malware classification) to establish baselines. Cyber-
security datasets have to improve, particularly when it
comes to variety. Future work will focus on this data
generation problem with particular interest in dataset
compatibility.

In network intrusion detection datasets another
fundamental problem exists that may be tied to the
lack of variability in the datasets. Proposed methods
yield excellent results in the standard intra-dataset
evaluation (the same dataset for training, validation
and testing), but they fail to generalize to inter-dataset
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evaluation, even if the second dataset has been
collected under very similar circumstances.
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