
A Dynamic Service Placement in Fog Infrastructure

Mayssa Trabelsi a, Nadjib Mohamed Mehdi Bendaoud b and Samir Ben Ahmed c

LIPSIC Laboratory, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia

Keywords: Internet of Things (IoT), Fog Computing, Service Placement, Real-Time Application, Quality-of-Service
(QoS), iFogSim.

Abstract: The Internet of Things (IoT) is a key technology that improves the connectivity between applications and
devices over different geographical locations. However, IoT devices, particularly those used for monitoring,
have stringent timing requirements that Cloud Computing might not be able to satisfy. Fog computing, which
uses fog nodes close to IoT devices, can solve this problem. In this paper, we propose a Dynamic Service
Placement (DSP) algorithm for Fog infrastructures. DSP’s objective is to dynamically place the services
emitted by applications one at a time and in real time on Fog nodes. The algorithm chooses the fog node
with the least response time over the infrastructure and dynamically places the incoming service in it. The
algorithm is implemented in the iFogSim simulator, and its performances were evaluated and compared to
other algorithms. DSP showed very encouraging results, as it proceeded to minimize the average response
times and the application placement rate, thus lowering the infrastructure usage and energy consumption.

1 INTRODUCTION

The Internet of Things (IoT) has become a highly im-
portant aspect in peoples daily lives and businesses.
IoT is the network of smart devices such as sensors,
actuators, vehicles, smartphones, and cameras. These
devices are interconnected and communicated in or-
der to generate massive amounts of data that need
to be stored, processed, analyzed, and represented
to obtain valuable information meeting users’ needs
(Tavousi et al., 2022). However, most IoT devices
have limitations in terms of computing power, storage
capacity, battery power, and bandwidth. Hence, more
powerful devices are required to process and store the
services requested by an IoT device and manage the
enormous amounts of generated data, such as cloud
computing and fog computing (Tavousi et al., 2022)
(Azizi et al., 2019).

The Cloud of Things (CoT) refers to integrating
IoT with Cloud Computing, which enhances network
performance by transferring application services to
the cloud data centers to execute and store. Never-
theless, IoT applications’ geographically distributed
nature differs from the centralized nature of cloud
data centers. As IoT devices are usually far away

a https://orcid.org/0000-0002-1723-9486
b https://orcid.org/0000-0002-1442-6323
c https://orcid.org/0000-0002-4642-2108

from the cloud data centers, high communication la-
tency and high network bandwidth consumption are
inevitable. Hence, cloud computing is not feasible
for delay-sensitive IoT applications requiring Real-
Time (RT) service. To overcome these limitations
(network bandwidth consumption, geographic distri-
bution, high service delay, and privacy-sensitive ap-
plications), Cisco proposed a new paradigm called fog
computing (Bonomi et al., 2012). The primary pur-
pose of the Fog is to extend the Cloud resources and
services at the edge of the network.

Fog computing provides computational and stor-
age resources at the network edge devices closer to the
data generation sources; thus, it provides the services
for RT IoT applications (Natesha and Guddeti, 2021).
It can support latency-critical IoT applications requir-
ing short response times. In fact, using Fog comput-
ing can allow for a drastic reduction of the overall net-
work latency (Naas et al., 2017). Furthermore, it im-
proves the quality of service (QoS), such as latency
and response time, of IoT applications, particularly
for delay-sensitive ones (Khosroabadi et al., 2021).
Any device capable of computing, storing, and con-
necting to the network can be considered a fog node
(FN), such as smart gateways, personal computers,
switches, routers, and local servers. Fog computing
faces new challenges and difficulties that need more
research, and attention (Azizi et al., 2019) (Khos-

444
Trabelsi, M., Bendaoud, N. and Ben Ahmed, S.
A Dynamic Service Placement in Fog Infrastructure.
DOI: 10.5220/0011852400003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 444-452
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

roabadi et al., 2021). For example, the placement of
services is an optimization problem in fog comput-
ing in which services should be placed in the fog in-
frastructure more efficiently. This problem is referred
to as the Service Placement Problem (SPP) (Khos-
roabadi et al., 2021).

This paper proposes a Dynamic Service Place-
ment algorithm (DSP) in a real-time fog infrastruc-
ture. Our algorithm aims to solve the problem of dy-
namic service placement for latency-critical IoT ap-
plications in hierarchical Fog infrastructure in order
to achieve high QoS for IoT users. The algorithm is
implemented in the iFogSim simulator (Gupta et al.,
2017) and compared with random and first-fit policies
together with the iFogSim built-in cloud-only policy.

The major contribution of this paper can be sum-
marized as follows.

• A framework for placing services dynamically
and in real-time in a hierarchical fog infrastruc-
ture is developed.

• An Integer Linear Programming (ILP) formula-
tion is presented for the SPP problem subject to
constraints such as application deadlines, require-
ments, and fog nodes characteristics.

• This paper proposes an efficient heuristic algo-
rithm that dynamically assigns a placement for a
service in real-time in the most suitable fog node.
The algorithm selects the best fog device that min-
imizes the response time and meets the deadline
of the processed application.

• The novelty of this work lies in the ability of the
framework to dynamically process tasks emitted
by applications one at a time and in real-time. The
algorithm proceeds to optimize the placement of
the services dynamically in the fog infrastructure
as and when a new task is emitted. The proposed
algorithm offers high performances even when the
complexity of the process increases with a large
number of delay-sensitive applications.

The remainder of the paper is organized as follows.
In Section 2, the related works are reviewed. Section
3 describes the system architecture. In Section 4, we
formulate the problem and describe our solution. We
evaluate the proposed solutions in Section 5 and con-
clude in Section 6.

2 RELATED WORK

In this section, we review and discuss some recent re-
lated works that have been proposed for solving the
problem of placing services (SPP) in the fog environ-

ment, focusing on their objective functions and solu-
tions to the SPP.

In (Khosroabadi et al., 2021), authors proposed a
heuristic algorithm, dubbed as ”a clustering of fog de-
vices and requirement-sensitive services first” (SCAT-
TER), based on fog node clustering to solve the SPP.
This algorithm, which has promising results, is based
on QoS metrics in terms of application response time,
network usage, average application loop delays, and
energy consumption. In (Farzin et al., 2022), au-
thors proposed a flexible and scalable platform called
FLEX for the SPP in multi-Fog and multi-Cloud en-
vironments. The service placement problem is for-
mulated as an optimization problem and solved by
the heuristic algorithm with the aim of delay and cost
minimization. In (Tran et al., 2019), Tran et al. pro-
posed a novel approach to task placement on fog com-
puting made efficient for IoT applications that can en-
hance the performance of IoT services in terms of
response time, cost, and energy. In (Tavousi et al.,
2022), authors developed a fuzzy approach to classify
IoT applications based on their characteristics. Fur-
thermore, they proposed a heuristic algorithm to place
applications on the virtualized computing resources.
Cost and resource usage are the performance metrics
for evaluating the proposed approach. The problem
is formulated using Mixed Integer Linear Programing
(MILP). In (Azizi et al., 2019), authors introduced
an efficient heuristic algorithm, called Most Delay-
sensitive Application First (MDAF), to solve the SPP
in fog-cloud computing environments. The proposed
algorithm placed the most delay-sensitive application
services closer to the IoT devices. This later work was
extended in (Hassan et al., 2020) where the authors
proposed a service placement policy, called MinRE,
to provide high QoS for IoT services and low energy
consumption for fog service providers. In addition,
they proposed two heuristic-based algorithms to solve
the problem efficiently. The first one tried to provide
high QoS for critical services in terms of response
time, while the second focused on the fog environ-
ment’s energy efficiency. In (Nezami et al., 2021),
authors studied two optimization objectives for IoT
service placement. They formulated a decentralized
global and local load-balancing problem to minimize
the cost of deadline violation, service deployment,
and unhosted services. In (Natesha and Guddeti,
2021), authors developed a docker and containers-
based two-level fog infrastructure to provide the re-
sources. Furthermore, they formulated the service
placement problem as a multiobjective optimization
problem for minimizing service time, cost, and energy
consumption. The multiobjective problem is solved
using the Elitism-based Genetic Algorithm (EGA). In

A Dynamic Service Placement in Fog Infrastructure

445

(Herrera et al., 2021), the authors proposed a frame-
work called Umizatou that combines three optimiza-
tion problems, the Decentralized Computation Dis-
tribution Problem (DCDP), the Fog Node Placement
Problem (FNPP), and the SDN Controller Placement
Problem (CPP) that aimed at minimizing response
time. Umizatou is a holistic deployment optimiza-
tion solution based on Mixed Integer Linear Program-
ming.

In this work, we propose a dynamic service place-
ment algorithm for real-time application in a Fog In-
frastructure. The main goal of this algorithm is to
minimize the response time and meet the deadline
of the processed application. Different from state-
of-the-art approaches, the dynamic algorithm that we
propose is the better solution for service placement in
delay-sensitive IoT applications.

3 SYSTEM ARCHITECTURE

The architecture of the Fog Infrastructure system is
shown in Fig. 1. It presents a hierarchical struc-
ture. We discuss the components and how they in-
teract with each other below.

Figure 1: Fog computing architecture.

3.1 IoT Layer

The IoT devices are distributed in different geograph-
ical locations and include end-point devices such as
sensors and actuators. In IoT devices, the sensors
send their service requests to the fog gateway node,
which sends them to the fog node for further process-
ing and filtering. The actuators provide the results of
service execution for users.

3.2 Fog Layer

The fog layer is the middle layer between IoT de-
vices layer and the cloud layer. Any device with
the capability of hosting application modules in the
fog layer is referred to as fog node, such as routers,
switches, local servers, and base station. These fog
nodes are computing nodes that can host virtual ma-
chines, given their resource capacity. On each virtual
machine, some applications are responsible for run-
ning the services requested by IoT devices. The fog
gateways are the fog devices that connect sensors to
the network, such as Wi-Fi access points, cellular base
stations, and home switches, which are located near
IoT devices (Gupta et al., 2017).

3.3 Cloud Layer

The cloud environment is a set of large-scale data cen-
ters and servers. IoT applications without deadline
requirements are placed and run on servers located at
cloud data centers. Although the cloud offers good
performances on high-demand applications, the com-
munication latency could be very high due to the ge-
ographical distances between the cloud and IoT de-
vices.

4 SERVICE PLACEMENT IN FOG
INFRASTRUCTURE

Our architecture is inspired by (Naas et al., 2017).
This paper formulated a data placement problem and
proposed an exact solution using integer program-
ming. The hierarchical fog architecture used in (Naas
et al., 2017) is suitable for our suggested dynamic ser-
vice placement.

In this section, we describe the proposed architec-
ture and formulate the problem of placing services in
a hierarchical fog infrastructure.

4.1 Proposed Architecture Description

Our proposed architecture is presented in Fig.2. The
sensors are responsible for sending requests to the
gateways, which will send the requests to the other
fog nodes, depending on the physical connections be-
tween the nodes. The choice of the fog node which
will receive and execute the request sent by the gate-
way devices is managed by our proposed framework.
The proposed framework consists of a heuristic algo-
rithm called Dynamic Service Placement (DSP).

From a closer perspective, the sensors collect raw
data from the environment, creating sensing tasks.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

446

Figure 2: Proposed System Architecture.

The sensor sends the task to the fog node through
their connected gateways, to a fog node at a higher
level, or to the cloud server. The fog node sends the
results back to the actuator specific to the IoT device
which initially sent the task, as illustrated in Fig 3.

Figure 3: Sensor and Fog Node communication.

The formulation of SPP is discussed in detail
within the following subsections.

4.2 Problem Statement

Suppose the total number of all computing devices
in fog and cloud layer is m, represented by the set
F = {F1,F2, . . . ,Fm}. Each Fog device Fj has dif-
ferent resources, such as CPU and RAM. Therefore,
Fcpu

j and Fram
j represent the capacity of the CPU,

measured in a million instructions per second (MIPS),
and RAM, measured in Megabytes (MB), of the Fog
device, respectively.

Let A represent a set of n IoT applications that
can be requested by IoT devices. Each applica-
tion Ai ∈ A consists a set of independent tasks Ai ={

ti,1, ti,2, . . . , ti,|Ai|
}

, where each Ai has a different

number of tasks, and ti,h represents the h-th task of
application Ai. Each task ti,h requires the number of
resources, such as CPU (in a million instruction per
second – MIPS) and RAM (in Megabytes – MB), that
is denoted as tcpu

i,h and tram
i,h , respectively. Throughout

this paper, the terms service, and task are used inter-
changeably.

In this work, we attempt to place tasks on com-
putational nodes to reduce application response time.
Next, we model the objective functions using ILP.

4.3 Problem Formulation

We consider the binary decision variable x j
i,h to indi-

cate that the task ti,h on which fog device Fj is located.

x j
i,h =

1, if task ti,h is placed on node Fj

(∀ti,h, ∀Fj ∈ F)
0, Otherwise

(1)

Any latency-sensitive application Ai should satisfy
the following Eq. (2), where RTAi is the average re-
sponse time of application Ai, and DAi is the deadline
for Ai application users determine that.

RTAi ≤ DAi ,∀Ai ∈ A (2)

The response time of application Ai is defined as the
time interval between the IoT application request by
the respective IoT device and the moment it receives
the result (Apat et al., 2022).

The response time of each task of Ai is composed
of three parts: communication delay, processing de-
lay, and queuing delay. Therefore, the response time
RT j

ti,h of ti,h can be calculated as Eq. (3).

RT j
ti,h = TC j

ti,h +T E j
ti,h +T Q j

ti,h ,∀ti,h (3)

where, TC j
ti,h is the sum of the two ways communica-

tion link delays between the IoT device and the com-
putational node where the task of application Ai is
placed. T E j

ti,h is the processing execution delay for

ti,h. T Q j
ti,h is the queuing delay for ti,h.

The average response time of an IoT application
can be calculated using Eq. (4). Average response
time is obtained by dividing the total response time of
an application over the number of tasks |Ai|.

RTAi =
1
|Ai|

|Ai|

∑
h=1

RT j
ti,h (4)

4.4 The Objective Function

Our main goal is to solve the service placement prob-
lem in the Fog infrastructure to minimize the response

A Dynamic Service Placement in Fog Infrastructure

447

time of the tasks, as stated by the following equation.

Min
n

∑
i=1

|Ai|

∑
h=1

RT j
ti,h (5)

Our optimization model involves the following five
constraints.

n

∑
i=1

|Ai|

∑
h=1

tcpu
i,h × x j

i,h ≤ Fcpu
j ,∀Fj ∈ F (6)

n

∑
i=1

|Ai|

∑
h=1

tram
i,h × x j

i,h ≤ Fram
j ,∀Fj ∈ F (7)

m

∑
j=1

x j
i,h = 1,∀ti,h (8)

x j
i,h ∈ {0,1} (9)

RTAi ≤ DAi ,∀Ai ∈ A (10)

Constraints 6 and 7 indicate that the total CPU and
RAM of all tasks placed on each computational node
should not exceed their capacity. Constraint 8 ensures
that each task is hosted on only one computational
node. Constraint 9 specifies the domain of the deci-
sion variable. Finally, constraint 10 provides that the
deadline for each application must be met.

The proposed model for the dynamic service
placement problem is an Integer Linear Programming
(ILP) problem. As a result, offering an accurate solu-
tion to this problem on a large scale is almost inappli-
cable (Salaht et al., 2020).

In the next section, we propose an efficient heuris-
tic algorithm for solving this problem.

4.5 Proposed Algorithm

In this work, we describe our proposed heuristic al-
gorithm called Dynamic Service Placement (DSP) in
Fog infrastructure. Our framework takes place after
fog gateway nodes. Its purpose is to minimize the
response time for each task sent from the gateway de-
vices. The main idea of DSP is to calculate and place
in real-time the delay-sensitive application services
on fog devices with the lowest response time. This
ensures that the application deadline is met, hence sat-
isfying the global constraint in Eq. (2). Based on the
architecture Fig. 2, each IoT device (which has a sen-
sor and an actuator) is directly connected to a specific
fog gateway. Therefore, when a sensor is transmitting
a task, it is automatically placed on the corresponding
fog gateway. Then, the DSP framework runs the algo-
rithm to find the best host for the task to be placed on.
Once a task is deployed successfully, the node uses

some of its computation power to execute it. Then it
processes the request and sends back the result to the
actuator. The pseudocode of the proposed algorithm
is presented in Algorithm 1.

Algorithm 1: Dynamic Service Placement algorithm.
Input: ti,h , FogDevicesList F
Output: ti,h −→ F

L1:= /0 , L2:= /0;
for each Fj ∈ F do

if tcpu
i,h ≤ Fcpu

j && tmem
i,h ≤ F ram

j then
L1 := L1∪Fj

end if
end for
if L1 ̸= /0 then

for each Fj ∈ L1 do
calculate RT j

ti,h using eq.(3);
L2 := L2 ∪ RT j

ti,h ;
end for
place ti,h on Fj ∈ L2 with the minimum RT j

ti,h ;
end if

The DSP algorithm is explained in the following para-
graphs:

The algorithm receives as input a task ti,h from an
application Ai and the list of the available computa-
tional nodes in the architecture F .

The process begins in line 1 by generating two
empty lists, L1 and L2. Then, for each task emitted
by a sensor to a fog gateway, the algorithm will begin
by iterating over all the computational nodes F . If a
computational node Fj can satisfy the requirements of
a task ti,h, the node Fj is added to the list L1 (line 2-6).

Afterward, if the L1 list is not empty, the algo-
rithm will iterate over L1. For each computational
node Fj in L1, the algorithm calculates the response
time of task ti,h on that node. The response time RT j

ti,h
is then added to L2 (line 7-11). Finally, the minimum
response time is calculated from list L2, and task ti,h
will be placed on the corresponding node Fj.

5 EVALUATION

To evaluate our dynamic service placement algorithm,
it is important to examine its performance accord-
ing to the QoS criteria, such as application response
times, energy consumption, network usage, and the
number of service placements at each infrastructure
level.

The proposed DSP algorithm has been imple-
mented on the iFogSim simulator (Gupta et al., 2017).
In addition, the performance of DSP has been com-

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

448

Table 1: Characteristics of Applications.

Application name Number of instructions (MI) Memory requirements (MB) Deadline (ms) Frequency (ms)
App1 60000 256 4000 50
App2 150000 256 4500 60
App3 350000 256 5000 55
App4 180000 256 5000 70
App5 80000 256 4000 100
App6 150000 256 3500 52
App7 100000 256 4000 65
App8 300000 256 4000 150

pared with other benchmark algorithms such as First-
Fit (F.F), Random, and Cloud-Only strategies. The
First-Fit strategy (Tavousi et al., 2022) consists of
placing the service on a computational node of the
first level of the infrastructure; this node has to meet
the requirements of the service. Otherwise, the ser-
vice is sent to a higher level until it finds a computa-
tional node that satisfies the service’s requirements. If
no node in the fog infrastructure can host the service,
it will be placed in a data center located in the cloud.
On the other hand, the random strategy, as its name
suggests, will randomly select a computational node
to place a service (Tavousi et al., 2022). Meanwhile,
the cloud-only strategy will have all the application
services running on cloud data centers (Azizi et al.,
2019).

5.1 Experiment Settings

The experiments were performed on a PC Intel Core
i7-2670 CPU 2.20 GHz *8, 3.7 GB RAM, and Ubuntu
20.04.5 LTS.

The simulated infrastructure is modeled accord-
ing to the architecture illustrated in Fig. 2. Eight
IoT applications are considered, and each applica-
tion has one sensor with a distinct periodic frequency
Freqi. All the applications Ai have different deadlines
DAi , they emit a task each FreqAi . The required re-
sources for each application are presented in Table 1.
Moreover, There are eight fog gateways (Fog Level 0
(FL0)), as each application sensor is connected to a
fog gateway. So then, four fog devices are present in
the first level (FL1) of the infrastructure, followed by
two in level 2 (FL2), and finally, one cloud server.

Furthermore, the computational devices in each
level of the infrastructure have their own character-
istics, RAM and CPU (see Table 2).

Table 2: Characteristics of computational devices.
Level Node Number of node CPU (MIPS) RAM (MB)

0 Fog gateway 8 250 256
1 Fog device 4 2800 1000
2 Fog device 2 4000 4000
3 Cloud server 1 44800 40000

Table 3 shows the latency in (ms) between the
different devices and nodes, such as the cloud, fog
nodes, sensors, and actuators.

Table 3: Nodes communication latencies.

Network link Latency (ms)
Fog node-cloud 3000

Fog node-Fog node 500
Fog node-Fog Gateway 50

Sensor-Fog Gateway 10
Actuator-Fog Gateway 10

5.2 Analysis of the Results

To evaluate the performance of the service place-
ment algorithm, the difference between the applica-
tion deadline and response time (DAi −RTAi) will be
determined. The results of algorithms performance
based on (DAi − RTAi) is shown in Table 4. The
First-Fit algorithm violates application A2 deadline
at 5578.68 ms, application A3 deadline at 12044.15
ms, application A4 deadline at 12262.31 ms, applica-
tion A7 deadline at 3220.99 ms, and application A8
at 4642.75 ms.

Meanwhile, the cloud-only algorithm violates
all the application deadlines in 7183.43, 7192.10,
7190.91, 7183.74, 7184.92, 7185.25, and 7123.42
ms. Also, In the random algorithm, the deadlines
for all applications are violated in 10494.98, 9290.20,
9907.91, 9515.52, 10371.82, 9317.8, and 10568.67
ms. However, no application deadline is violated in
DSP; this shows how effective the proposed algorithm
is compared to other algorithms, as it managed to suc-
cessfully meet all the application deadlines.

Fig. 4 offers a better illustration of the average
response time of all the applications and shows the
deadline curve to better measure the performance of
the algorithms.

A Dynamic Service Placement in Fog Infrastructure

449

Table 4: Algorithms performance comparison.

Average Response Time (ms) DAi −RTAi (ms)
DSP Cloud-Only Random F.F DSP Cloud-Only Random F.F

App1 2930.96 7183.43 10494.98 4722.38 1069.04 -3183.43 -6494.98 -722.38
App2 2899.09 7192.1 9290.20 5578.68 1600.91 -2692.1 -7591.61 -4790.2
App3 3798.41 7190.91 9907.91 12044.15 1201,59 -2190.91 -4907.91 -7044.15
App4 3785.32 7183.74 9515.52 12262.31 1352.4 -2993.12 -7029.42 -7323.56
App5 2264.64 7184.92 10371.83 3340.04 1735.36 -3184.92 -6371.83 659.96
App6 2205.33 7185.25 9317.8 3220.99 1294.67 -3685.25 -5817.8 279.01
App7 2151.98 7183.42 10568.67 4642.75 1848.02 -3183.42 -6568.67 -642.75
App8 2309.94 7203.69 9050.45 4885.57 1690.06 -3203.69 -5050.45 -885.57

Figure 4: Average Response time of applications.

Fig. 5 shows the number of services placed on
each level of the infrastructure. Overall, 1200 tasks
have been sent from sensors in the simulation. All
of the services are placed on the cloud when using
a cloud-only algorithm. Random and first-fit algo-
rithms have placed, respectively, 172 and 50 services
in the cloud. This is much higher than DSP, which
only placed one service in the cloud. Moreover, DSP
has placed 704 tasks in fog level 1 (FL1) and 495 tasks
in fog level 2 (FL2), which is higher than both first-fit
and random algorithms.

Figure 5: Number of services placed on each level of the
infrastructure (# Apps = 1200).

The observation in the previous paragraph is con-
firmed in Table 5, where a placement rate for each al-

gorithm in the different infrastructure levels is given.
We can clearly see that DSP (58.66% FL1 and
41.25% FL2) has placed 4.08% more services in the
two first levels (FL1 and FL2) than first-fit (75% FL1
and 20.83% FL2). DSP has also placed 14.25% more
services than random (56.08% and 29.58%) in FL1
and FL2 combined. It is also clear that DSP has the
least services placed on the cloud (0.08%) compared
to random (14.33%) and first-fit (4.16%).

Table 5: Service placement rate per infrastructure level.

Placement (%)
Algorithms FL1 FL2 Cloud

DSP 58.66 41.25 0.08
Cloud-Only 0 0 100

Random 56.08 29.58 14.33
F.F 75 20.83 4.16

Fig. 6 shows clearly that none of the applications
have been placed in the cloud by DSP with the ex-
ception of Application 4, which has placed 64 tasks
in level 1, 77 tasks in level 2 and 1 task in the cloud.
The other applications are predominantly placed by
DSP in the FL1 and FL2, with a higher placement ad-
vantage for FL1 (704 applications placed) over FL2
(495 applications placed).

Figure 6: Number of services placement of each application
on each level.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

450

Energy consumption is the sum of energy con-
sumed by fog nodes and the cloud for task placement.
Fig. 7 presents the total energy consumption for all
computational resources in DSP, cloud-only, random,
and first-fit algorithms. When using the DSP algo-
rithm, less energy is consumed by fog nodes (FL1
= 4.14 MJ and FL2 = 1.90 MJ) compared to the first
fit (FL1 = 4.22 MJ and FL2 = 1.90 MJ) and ran-
dom (FL1 = 4.09 MJ and FL2 = 2.01 MJ) algorithms.
Meanwhile, cloud-only consumption is the lowest in
both FL1 and FL2 compared to the other algorithms.

Figure 7: Energy consumption of fog devices for each algo-
rithm.

Finally, Fig. 8 illustrates how low the network us-
age is when using DSP compared to other algorithms.
This shows how efficient DSP is when it comes to net-
work bandwidth and data transfer efficiency.

Figure 8: Total Network Usage.

6 CONCLUSION

In this paper, we have proposed a Dynamic Service
Placement (DSP) algorithm in a real-time fog infras-
tructure. We formulated the DSP problem using In-

teger Linear programming (ILP) and solved it using
a heuristic algorithm. DSP process the tasks emit-
ted by applications one at a time, dynamically and in
real-time. The framework selects all the fog nodes
that satisfy the task’s requirements and then chooses
the node that minimizes the response time. The pro-
posed algorithm performance is evaluated according
to the QoS criteria and compared to other placement
policies such as First Fit, Random, and Cloud Only.
The results show that DSP satisfied all the application
deadlines compared with the other algorithms; the ap-
plications are generally placed in first and second lay-
ers, while the energy consumption and network usage
are lower than other algorithms.

REFERENCES

Apat, H. K., Nayak, R., Sahoo, B., and Mohanty, S.
(2022). Application placement in fog-enabled inter-
net of things (iot) healthcare system using body sensor
networks. In Handbook of Research on Mathematical
Modeling for Smart Healthcare Systems, pages 383–
408. IGI Global.

Azizi, S., Khosroabadi, F., and Shojafar, M. (2019). A
priority-based service placement policy for fog-cloud
computing systems. Computational Methods for Dif-
ferential Equations, 7(4 (Special Issue)):521–534.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012).
Fog computing and its role in the internet of things. In
Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16.

Farzin, P., Azizi, S., Shojafar, M., Rana, O., and Sing-
hal, M. (2022). Flex: a platform for scalable service
placement in multi-fog and multi-cloud environments.
In Australasian Computer Science Week 2022, pages
106–114.

Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., and Buyya,
R. (2017). ifogsim: A toolkit for modeling and
simulation of resource management techniques in
the internet of things, edge and fog computing en-
vironments. Software: Practice and Experience,
47(9):1275–1296.

Hassan, H. O., Azizi, S., and Shojafar, M. (2020). Prior-
ity, network and energy-aware placement of iot-based
application services in fog-cloud environments. IET
communications, 14(13):2117–2129.

Herrera, J. L., Galán-Jiménez, J., Bellavista, P., Foschini,
L., Garcia-Alonso, J., Murillo, J. M., and Berrocal, J.
(2021). Optimal deployment of fog nodes, microser-
vices and sdn controllers in time-sensitive iot scenar-
ios. In 2021 IEEE Global Communications Confer-
ence (GLOBECOM), pages 1–6. IEEE.

Khosroabadi, F., Fotouhi-Ghazvini, F., and Fotouhi, H.
(2021). Scatter: Service placement in real-time fog-
assisted iot networks. Journal of Sensor and Actuator
Networks, 10(2):26.

A Dynamic Service Placement in Fog Infrastructure

451

Naas, M. I., Parvedy, P. R., Boukhobza, J., and Lemarchand,
L. (2017). ifogstor: an iot data placement strategy
for fog infrastructure. In 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC),
pages 97–104. IEEE.

Natesha, B. and Guddeti, R. M. R. (2021). Adopting
elitism-based genetic algorithm for minimizing multi-
objective problems of iot service placement in fog
computing environment. Journal of Network and
Computer Applications, 178:102972.

Nezami, Z., Zamanifar, K., Djemame, K., and Pournaras, E.
(2021). Decentralized edge-to-cloud load balancing:
Service placement for the internet of things. IEEE Ac-
cess, 9:64983–65000.

Salaht, F. A., Desprez, F., and Lebre, A. (2020). An
overview of service placement problem in fog and
edge computing. ACM Computing Surveys (CSUR),
53(3):1–35.

Tavousi, F., Azizi, S., and Ghaderzadeh, A. (2022). A fuzzy
approach for optimal placement of iot applications in
fog-cloud computing. Cluster Computing, pages 1–
18.

Tran, M.-Q., Nguyen, D. T., Le, V. A., Nguyen, D. H., and
Pham, T. V. (2019). Task placement on fog computing
made efficient for iot application provision. Wireless
Communications and Mobile Computing, 2019:1–17.

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

452

