Analyzing Software Architecture Documentation Models According to

Keywords:

Abstract:

Agile Characteristics

Leonardo Barreto and Tayana Conte

Institute of Computing, Federal University of Amazonas, Manaus, Brazil

Software Architecture, Agile Architecture, Architecture Documentation.

Background: Software companies that use agile practices and methods usually postpone architecture
design activities in favor of accelerated development and idea validation, especially in uncertain and
dynamic contexts. However, this attitude leads to the accumulation of different types of technical debt,
including architectural and documentation debt. As the company evolves, the architecture created during
development becomes complex and hard to maintain, affecting the company’s performance, the product’s
quality, and the knowledge transfer. Aim: Support the software architecture planning and documentation by
verifying the feasibility of software architecture description approaches in the context of agile development.
Method: We evaluated six approaches using the DESMET Feature Analysis method, with features related
to implementation cost, flexibility, adaptation to dynamic requirements, usefulness, description consistency,
decision analysis, and system modularity. Results: Two approaches had the best scores, with a minor
percentage difference between them. These results are due to the low implementation cost of the two
approaches, the factor that most influenced the score. Conclusions: The results provide evidence about the
feasibility of applying the studied approaches, in agile contexts, besides reducing the number of possible

alternatives for conducting experimental studies in this context.

1 INTRODUCTION

The software development process has changed over
the years. Today, new software companies compete
for market share by value delivery to customers
through the launch of innovative high-tech products,
using agile methods and practices (Kuhrmann et al.,
2021). Most of these companies launch their
solution idea to the market early to collect feedback
from potential users. In this context, product
ideas and features change constantly, as well as the
requirements it must meet (Klotins et al., 2019b).
These companies spend resources and time on fast
prototype development and early product versions.
Quality-related aspects, such as architecture planning
and automated tests, have low priority due to the
dynamic and uncertain context those companies are
in (Giardino et al., 2016). They also do not consider
recording knowledge about the product so valuable
due to constant changes altering or discarding the
recorded knowledge leading to resources and time
waste (Giardino et al., 2016). Furthermore, these
companies consider documentation waste when it
does not add value to the end product and measure

Barreto, L. and Conte, T.
Analyzing Software Architecture Documentation Models According to Agile Characteristics.
DOI: 10.5220/0011852300003467

the productivity as the amount of working software,
turning documentation into a counter-productive task
(Theunissen et al., 2022).

However, when the company grows and scales
its product, it seeks to attract more investment,
hire more employees, and define more organized
development processes (Klotins et al., 2019b). The
architecture developed was not optimally planned,
and its knowledge, previously restricted to the
company’s founders, needs to be maintained by
the new team members (Giardino et al., 2016).
Additionally, the high amount of tacit knowledge
makes it difficult to make decisions related to
software architecture (Dasanayake et al., 2015),
and it can create discrepancies between what the
development team thinks about the system and how
it works (Klotins et al., 2018).

In this sense, this research aims to verify,
through a Feature Analysis (Kitchenham et al., 1996),
the feasibility of applying software architecture
documentation approaches in agile contexts. We
evaluated the approaches according to relevant
characteristics of software companies working in
dynamic contexts, using agile practices or methods,

75

In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 2, pages 75-85

ISBN: 978-989-758-648-4; ISSN: 2184-4992

Copyright (© 2023 by SCITEPRESS — Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

like software startups. As a contribution, this paper
provides evidence about the evaluated approaches
and narrows down the alternatives for software
architecture documentation in agile contexts.

We divided the paper as follows: Section 2
presents the relevant theoretical background for this
study; Section 3 describes the methodology; Section
4 presents the results; Sections 5 and 6 contain the
discussion about the results and the limitations of the
study, respectively, and we describe the conclusions
in Section 7.

2 BACKGROUND

2.1 Agile Software Development

The Agile Manifesto (Beck et al., 2001) guides
systems development to satisfy customers with
rapid and continuous value delivery. Dynamic
requirements are accepted and incorporated into
software development, and the progress metric is the
amount of software working. Some agile practices
are iterative and incremental development, with new
versions at short intervals and refactoring code from
previous versions (Yang et al., 2016). Additionally,
some methods aggregate these practices and help in
the organization of the development process, such
as Scrum, with sprints, to build incremental releases
into one or two-week intervals, daily meetings
for progress monitoring (Schwaber, 1997) and XP,
through pair programming, continuous integration
and refactoring and some other practices (Beck,
1999).

We can find the agile context in many companies,
such as software startups (Klotins et al., 2021), due
to the pressure of time-to-market, the need to acquire
customers, and the uncertainty about the product’s
functionality and target audience. Pantiuchina
et al. (2017) also state that software startups apply
agile practices aimed at the speed of product
delivery, such as frequent releases and short-term
planning. However, quality-related practices, such as
refactoring and automated testing, are neglected.

2.2 Agile Software Architecture and
Documentation

ISO 42010:2022 describes software architecture as
“the set of fundamental concepts or properties of
a system, composed of its elements, relationships,
and principles of design and evolution” (International
Organization for Standardization, 2022).

76

Agile software architecture satisfies this definition
and responds better to changing requirements,
external factors, and uncertain contexts because it is
easier to modify in an iterative, incremental manner
(Waterman et al., 2015). Some strategies for creating
agile architectures are to design just what is essential
for the iteration, delay decision-making, accept an
emergent architecture, and only plan the next iteration
(Waterman et al., 2015).

Additionally, finding the balance between prior
architecture planning and emergent architecture is a
critical problem because professionals should make
important decisions early, allowing the product to
evolve and adapt (Wohlrab et al., 2019).

In this process, the system information and
architecture decisions are available. However,
companies do not value architecture documentation
practices because, in their vision, they do not
add value to the end product (Theunissen et al.,
2022). The short-term focus also forces the
team to focus on developing and maintaining the
system (Theunissen et al., 2022). Professionals
use informal communication and source code
descriptions, hindering knowledge transfer, making
it difficult to understand the system, especially for
new members (Theunissen et al., 2022), and to make
decisions about the architecture (Dasanayake et al.,
2015).

Wohlrab et al. (2019) seek to solve the problems
cited above by improving the consistency and
usefulness of architecture descriptions with the
following guidelines:

e Establish purposes and audiences for the
descriptions, delimiting the levels of abstraction
and the elements present in it.

e Separate the current architecture and future
versions to facilitate the transition and the
understanding of changes’ impact.

* Document the minimum of elements of the future
architecture, with only the most relevant that
affect different parts of the company.

e Team evaluates architectural decisions before
implementation.

¢ Integrate architects into the different teams to
collect feedback, identify inconsistencies, and
capture emerging aspects of the architecture as the
system evolves.

3 METHODOLOGY

We performed a DESMET Feature Analysis (FA)
to verify the feasibility of software architecture

Analyzing Software Architecture Documentation Models According to Agile Characteristics

documentation approaches in agile contexts.
DESMET is a methodology for evaluating software
engineering methods and tools proposed by
Kitchenham et al. (1996). Examples of using
DESMET Feature Analysis to evaluate techniques
are the work of Parizi et al. (2020), in which the
authors compared the proposed tool’s features with
other related tools using DESMET, and Marshall
et al. (2014), where the authors compared, using
DESMET, four tools that support the Systematic
Review process to evaluate them. We chose this
technique due to the restriction of time and resources
for experimentation or questionnaire application on
the six approaches in one company, as recommended
by Kitchenham et al. (1996). The DESMET Feature
Analysis requires a previously defined set of relevant
features for a target audience. The steps for its
realization involve candidates selection, features,
subfeatures, weights and importance levels definition
for each Feature Set, and candidates scoring using
judgment scales.

3.1 Selected Candidates for Evaluation

We selected the approaches after an exploratory
review in TOSEM, JSS, TSE, IST, and TOIS
journals, searching for articles that present software
architecture description approaches. Among the
articles found, Hofmeister et al. (2007) present
a framework for building architecture description
models derived from five description approaches:
4+1, Siemens’ 4 Views, Attribute Driven Design
(ADD), BAPO/CAFCR, and Architecture Separation
of Concerns (ASC). The first four are present in the
Feature Analysis, and we did not include ASC due
to the absence of the original article, and it is not
possible to evaluate it.

Yang et al. (2016) present a mapping between
agile methods and software architecture. One of the
articles selected by the authors describes an approach
that met the inclusion criteria, the C3A Agile
Architecture, which we also evaluated. Finally, we
performed a grey literature search to find approaches
not described in articles published in the journals
explored earlier. In this way, we found the C4 Model
(Brown, 2022) approach and used it for evaluation.
We listed the evaluated approaches below and further
described them in Section 4.

Siemens’ 4 Views. The approach proposed by Soni
et al. (1995) has four main views: conceptual,
module, execution, and code, describing elements,
behaviors, and technologies used in the system.

Kruchten’s 4+1. The 4+1 approach contains five
views of a system’s architecture, each related to
different aspects of the system, like its structure or
behavior. The views present are logical, process,
development, physical, and scenario (Kruchten,
1995).

BAPO/CAFCR. The BAPO/CAFCR approach has
five main views about different aspects of the system:
business, application, functional, conceptual, and
realization. It also has variations for the views, which
role is to deal with usage scenarios (America et al.,
2003).

Attribute Driven Design. The Attribute Driven
Design approach has several recursive stages, done
iteratively. The model focus on the quality attributes
relevant to the stakeholders and the architecture.
The views generated are the module, connector-
component, and allocation views. (Wojcik et al.,
2006).

C3A Agile Architecture. This approach has two
mandatory levels of abstraction for the architecture
and its separation into a reference version, which
deals with major versions of the system, and an
implementation version, which deals with future
iterations (Hadar and Silberman, 2008).

C4 Model. The C4 approach has four main views,
consisting only of boxes and lines that can represent
any element. The views are system context,
containers, components, and code. Besides these, the
author presents other complementary views, such as
the dynamic view and the development view (Brown,
2022).

3.2 Features, Weights, and Importance
Levels Definition

In DESMET, it is necessary to define each set of
features (Feature Set — FS) and their importance
weight (IW). We defined and revised these weights
iteratively, seeking adequacy to the context under
study. In this study, the weights describe the relevance
of the FS for agile contexts and based on (Marshall
et al., 2014), the sum of the FS weights was equal to
1.0. Table 1 presents the FS with the description and
weights associated with each.

We derived the features and importance weights
from characteristics described in the literature about
agile software development (Paternoster et al.,
2014; Giardino et al., 2016; Klotins et al., 2019a;

77

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

Theunissen et al., 2022), agile software architecture
(Waterman et al.,, 2015) and consistency and
usefulness of architecture descriptions (Wohlrab
etal., 2019).

The FS related to documentation (FS1 -
IWrg, = 0.15) is intended to evaluate the support for
recording knowledge about the software architecture
provided by the candidate approaches. This set
was also constructed to verify that the evaluated
approach meets the criteria for a useful and consistent
description (Wohlrab et al., 2019), in addition to
the guidelines for building an agile architecture
(Waterman et al., 2015): minimizing the number
of planned elements in the architecture (FS1-02),
the separation of audiences and purposes of the
architecture views (FS1-03), and the differentiation
between current and future instances of the
architecture (FS1-04).

FS2 (IWrs, = 0.05) comprises the ability to
analyze architectural decisions through the candidate
approach, which includes recording the decisions
made in artifacts and the reasoning performed
during the decision-making. This FS was chosen
to meet a criterion proposed by Wohlrab et al.
(2019), to create useful and consistent descriptions.
Additionally, agile companies postpone architectural
decision-making as long as possible, due to the
short-term focus, changing context, new objectives
and new team members (Theunissen et al., 2022).
However, the required and created knowledge for
those goals disappears over the following iterations.
Thus, facilitating analysis and decision-making in the
early stages can contribute to the product evolution,
reducing the debt that will accumulate.

FS3 (IWgs, = 0.10) is intended to evaluate
candidates on their ability to design modular systems.
This Feature Set was defined because modular
construction of systems is a characteristic found in
agile contexts, by allowing the removal or alteration
of functionality, in a context of uncertain needs
(Paternoster et al., 2014).

The fourth Feature Set (FS4 — IWpg, = 0.35)
evaluates flexibility and adaptability to changing
requirements, a characteristic very present in agile
contexts (Giardino et al., 2016).

Finally, FS5 (FS05 — IWgs, = 0.35) evaluates the
cost of applying the approaches, measured by the
number of mandatory tasks to design the architecture.
We defined this Feature Set because time is one of the
most relevant resources for agile companies (Giardino
et al., 2016). Furthermore, because working software
is more important than documentation for these
companies, this task can not take too much time and
resources (Theunissen et al., 2022).

78

Development time and adaptation to dynamic
requirements are of great importance for agile
software companies (Giardino et al., 2016; Klotins
et al., 2019a,b). Therefore, the FS related to them
(FS4 and FS5) has an importance weight equal to
0.35, higher than the weight of the other FS. Since
modular development (FS3) is a more encountered
aspect than architectural decision-making (FS2), the
weight of FS3 (0.10) is greater than that of FS2 (0.05).
The weight of FS1 (0.15) is higher because it has
more important subfeatures, such as the presence of
few elements in the initial planning (FS1-02), ideal in
the context of dynamic requirements.

We also need to define the Importance Level
(IL) of each subfeature, inside the Feature Sets.
It contemplates the relevance of the presence of
a subfeature in the evaluated tool, for the target
audience. The ILs have a multiplier value, used
in the calculation of each candidate’s score. The
levels are 4-Mandatory, 3-Highly Desirable, 2-
Desirable, and 1-Interesting. For example, we
defined the subfeature FS4-01 (“The approach must
be flexible and adaptable to changing requirements
and architectural decisions.”) as mandatory, then it
has ILFs4,()1 =4.

3.3 Candidates Evaluation

To evaluate the candidate approaches (Subfeature
judgment — SFJ;) according to the defined features, it
is necessary to define judgment scales. In this study,
we used two scales: for FS1, FS2, FS3 and FS4, the
scale is:

* Yes - score 1, if the subfeature is completely met
by the approach.

e Partially - score 0.5, if the subfeature is not
completely present or is implemented differently
by the candidate.

¢ No - score 0, if the subfeature is not met.

For FS5, we assigned the score comparatively
among the candidates, with scores from 1 to 6. We
ordered the approaches in ascending order according
to the number of mandatory tasks. We scored 6 for
first place, 5 for the second, and so on. In the case of
a tie, the candidates had the same evaluation. In this
way, the approach with the fewest tasks would get the
best score. When the approach does not present the
tasks, we counted the number of mandatory views,
presented by the authors of the candidate approach.

The Feature Set’s maximum score (MSrgg) is the
sum of the maximum values of its subfeatures. For
example, FS1 has four subfeatures. FS1-01 was rated
as Desirable (ILrs1,, = 2). FS01-02 was rated Highly

Analyzing Software Architecture Documentation Models According to Agile Characteristics

Table 1: Feature Sets and subfeatures evaluated in the FA.

D Feature Set SF Description Importance Level (IL) Importance Weight (IW)
The approach should support the registration of knowledge about the system architecture. Desirable (2)

Es1 Documentation The approach should allow the documentation of a small amount of elements in the initial planning. Highly Desirable (3) 0.15
The approach should have different descriptions of the architecture for different audiences and purposes. Interesting (1) :
The approach must be able to separate current and future architectures. Interesting (1)

FS2 Decision Rationale The approach should facilitate the analysis of architectural decisions. Interesting (1) 0.05

FS3 System The approach must allow modularity of the system architecture. Desirable (2) 0.10

FS4 Requirements The approach must be flexible and adaptable to changing requirements and architectural decisions. Mandatory (4) 0.35

FS5 Cost The approach should allow the architecture to be built with the least amount of mandatory tasks. Mandatory (4) 0.35

Desirable (ILrs1y,, = 3). The next two subfeatures
were rated as Interesting (/Lrs1,; = ILrsi,, = 1). In
this case, it will be MSpg; = (2x 1)+ (3x 1)+ (1 x
D+(1x1)=7.

The Feature Set x score (% F Sf“” ¢) and the overall
score (OS) of the applicants are calculated using the
equations 1 and 2.

%Scorerps, =

(D

0S =Y (%Scorers, x IWrs,))

The first author documented a system using all
approaches, to understand their application. Then
the first author evaluated each approach, and all the
authors discussed the scores.

4 RESULTS

In this section, we describe and justify the results of
the Feature Analysis, using the information present
in the seminal papers for each candidate approach.
They can also be found in the tables at the end of each
approach.

Siemens’ 4 Views. Siemens’ 4 Views approach
(Table 2) supports architecture documentation
(Scorepsi—o1 = 1) but does not discuss how many
elements should be present in the initial architecture
planning and design (Scorersi—o2 = 0) (Soni et al.,
1995). According to the authors, different teams
(software architects, developers, operational staff,
and others) use the four views because they address
the results of decisions influenced by organizational
and technical factors (Scoreps;—o3 = 1). Finally, the
approach does not provide any separation between
current and future architecture (Scorepsi_gs = 0),
it does not discuss how to document architectural
decisions (Scorersy—o; = 0) or how to analyze a
decision-making process.
This approach allows
a modular architecture
decomposition and layering.

the construction of
through functional
The functional

decomposition captures the system’s distribution
among modules, subsystems, and abstract units
and the relationships between components through
interfaces that can be exported and imported. The
layered layout reflects the design decisions based on
the import and export relationships, the constraints
created, and the reduction and isolation of internal
and external dependencies (Scorersz—o1 = 1).

The authors state that the execution view tends
to be modified the most among the others due to
the need to support software and hardware evolution
(Scorepsa—o1 = 1). The approach does not describe
tasks to create the architecture descriptions. In this
case, we counted the proposed mandatory views
(four). On the scale adopted for FSS, we scored the
approach (Scorerss—o1) as described below.

x4 20

Scorepss_o1 =35 ... %Scorerss =

Table 2: FA results for the Siemens 4 Views approach.

S4v

Importance Max. Subfeature Feature Set
Weight ~ Score Judgement Score

Feature FS Importance Subfeature G Score
0 €FS,

Set Weight D aw) (MS) (SFJ) (Scorers,)
FS1-01 2 1
Fsi 0.15 o 3 7 9 300 2.86%
FS1-04 i 0
Fs2 0.05 FS2.01 1 1 0 0.00 0.00%
FS3 0.10 FS3-01 2 2 i 200 100.00%
FS4 0.35 FS4-01 4 4 1 4.00 100.00%
FSs 035 F55-01 4 2 5 2000 83.33%
Overall Score (0S) _ 80.60%

Kruchten’s 4+1. The 4+1 approach (Table 3)
supports the documentation of the system architecture
(Scorepsi—o1 = 1) based on scenarios that cyclically
generate the views for small sets (Scorepsi—g2 =
1). Then the artifacts are validated by stakeholders,
and the cycle repeats, with the scenarios not yet
addressed (Kruchten, 1995). Each view has different
purposes and audiences (Scorersi—o3 = 1): system
engineers use the Physical and Process views. End-
users, customers, and data experts use the Logic view.
Project managers and the implementation team see
the system through the Development view.

As for the separation of current and future
architecture instances, the author does not describe

79

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

any approach to this (Scorepsi—_osa = 0) (Kruchten,
1995).

The scenario view combines the other views and
assists in the design validation for a given scenario.
The design guidelines document stores the relevant
decisions made, the architectural objectives, the
scenarios, and the quality attributes, among other
aspects of the system (Scorers»—o1 = 1) (Kruchten,
1995).

The 4+1 approach allows the description of
modular architectures through the development view,
which contains the modular organization of the
system (Scoreps3_o1 = 1). This view organizes
subsystems into a hierarchy of layers, each providing
a well-defined interface for communication with
higher layers.

The authors guide the approach’s usage iteratively
because, after the first views, professionals know little
to validate the architecture. At each iteration, it
will be possible to insert or remove elements of the
architecture and to accommodate changes that arise
for whatever reason (Kruchten, 1995) (Scorepss—o01 =
1).

Finally, the approach captures the most
important functionalities in scenarios. In this
sense, the approach describes four steps to build the
architecture:

1. Define from a small set of scenarios based on their
risks and importance.

2. Create abstractions that address the scenarios
(classes, subsystems, and others).

3. Lay out the architectural elements in the four main
views.

4. Implement, test, and validate the system,
detecting flaws to correct.

BAPO/CAFCR. The BAPO/CAFCR approach
(Table 4) (America et al., 2003) allows the
architecture construction (Scorersi—o1 = 1) through
five views, using only the main scenarios to build
the initial planning (Scorersi—o» = 1). The business
view addresses the proposed value to customers,
their motivations, and their needs. The application
view describes the system’s usage scenarios through
activity flows, quality requirements, and domain
models. The functional view describes the system’s
properties using, for example, a list of important
system features or a matrix that maps them to the
cost of implementing them. The conceptual view
documents the essential concepts of the system to
show the parts of the system and how they cooperate,
as well as the design patterns and principles that
govern development. Finally, the realization view
contains the technologies used to implement the
designed system aimed at the development team
(Scorepsi—o3 = 1).

The approach does not distinguish between
current and future architectures (Scorepsi_gs = 0).
The five main views and their variations help
the architectural decision analysis at any point in
the architecture design (Scorerso—o1 = 1). The
conceptual view describes modular systems, with
the elements and their relationships presented in the
system decomposition (Scorepsz—g; = 1).

The variations presented deal with different
system usage scenarios, contain emerging
requirements, and represent future (or new) impacts
on the architecture. Changes in the architecture
should be treated as new scenarios and modeled as
existing scenarios (Scorepss—o1 = 1). The authors do
not define tasks to build the architecture (FS5-01). In
this case, we counted the mandatory views presented.
On this approach, there are five views (business,

On the scale adOPted for FS5, we scored application, functional, conceptual, and realization).
(Scorerss—o1) as described below. On the scale adopted to evaluate SF5-01, the CAFCR
S5x4 20 approach had the Scorerss_o; calculated as described
Scorepgs_o1 =5 .". %Scorepss = —— = — = 83.33% below.
24 24
4x4 16
Scorepss_o1 =4.". %Scorepss = —— = — = 66.67%
Table 3: FA results for the 4+1 approach. 24 24
4+1
Feature FS Importance Subfeature 1MPOTtance Max. Subfeature Feature Set Table 4: FA results for the BAPO/CAFCR approach.
eg ure wp}n;]ance " le[:; ure Weight Score Judgement Score YoScorers,
et cight aw) MS) (SFL) (Scorers,) CAFCR
FS1-01 2 1 N o y Importance Max. Subfeature Feature Set
Feati FST tal Subfeat ;.
Fsi 0.15 e 3 7 | 6.00 85.719% St et ":le";s})“ ?ﬁgsr;" JuEisg;;l?;nt (sif:]er:&) %Scorers,
FS1-04 ! 0 . FS1-01 2 1
FS2 0.05 FS2-01 1 1 1 1.00 100.00% Esi o1 FS1-02 3 5 1 6.00 85.71%
Fs3 0.10 FS3-01 2 2 1 2.00 100.00% F51-03 1 1
FS1-04 1 0
FS4 0.35 FS4-01 4 4 1 4.00 100.00%
FS2 0.05 FS2-01 1 1 1 1.00 100.00%
FSs 0.35 FS5-01 4 24 5 20.00 83.33%
FS3 0.10 FS3-01 2 2 1 2.00 100.00%
Overall Score (OS) 92.02%
FS4 0.35 FS4-01 4 4 1 4.00 100.00%
4

80

FS5 0.35 FS5-01 24 4 16.00 66.67%

Overall Score (OS) 86.19%

Analyzing Software Architecture Documentation Models According to Agile Characteristics

Attribute Driven Design. The Attribute
Driven Design (ADD) approach (Table 5)
helps in documenting the system architecture
(Scorepsi—o1 = 1), focusing on quality attributes.
Scorepsi_op = 0.5 because the stakeholders must
prioritize all requirements before the architecture
design begins. However, the authors also state that
this is hardly possible and recommend that the
architect work with the requirements he has at hand
(Wojcik et al., 2006). During the architecture design,
users create three views with different purposes
but without defined audiences. Thus, SF1-03 is
partially satisfied and thus Scoreps;—g3 = 0.5. The
module view is for documenting the static system’s
properties. The component-connector view is
concerned with the system’s execution behavior.
The allocation view maps the software elements to
the hardware components. The approach does not
have a separation of current and future architecture
(Scorepsi—o4 =0).

The approach has a step-by-step approach to
building the software architecture, and from the
fourth stage, the authors state that design decisions
start (Scorersa—o1 = 1). They involve the choice
of system design concepts, elements, allocated
resources, internal and external dependencies, and
the validation of quality attributes. ADD allows the
construction of modular systems (Scoreps3_o; = 1)
in the module view, which contains the system’s
elements. Users of ADD should address flexibility
and adaptation to design changes at the end of
each task. They must analyze to verify if the
system’s architecture is according to the planned
and, if necessary, change and refine the generated
architecture (Scorerss_o1 = 1).

About the cost of the ADD approach, it has eight
stages in each iteration. These are

1. The stakeholders prioritize all the requirements.

2. Confirm that there is enough information to build
the architecture and rank all requirements in order
of importance for the stakeholders.

3. Choose and decompose a system element
according to the need.

4. Identify the requirements that drive the
development and rank them according to
their impact on the architecture and importance
to the stakeholders.

5. Choose a design concept that satisfies the
architectural drivers and evaluate and resolve
inconsistencies in the design concept.

6. Instantiate architectural elements and allocate
responsibilities in a module, component-
connector, and allocation views.

7. Exercise the functional requirements instantiated
in step VI, noting the inputs and outputs of the
elements and documenting the interface for each
element.

8. Verify and refine the requirements.

Because it was the approach with the most tasks,
on the scale adopted for the SF5-01, we scored it with
the lowest value.

2x4 _ 8 33339

Scorepss—o1 =2 .. %oScorepss = T

Table 5: FA results for the ADD approach.

ADD

Importance Max. Subfeature Feature Set

Feature FS Importance Subfeature

Set Weight \Y[e\if’];t ?ﬁ); JuEng;‘r;?;nt (sf:::es\) YoScorers,
FSI-01 2 1

Esi 0.1 o 3 7 o3 400 57.14%
FS1-04 1 0

Fs2 0.05 FS52:01 i i i 1.00 100.00%

FS3 0.10 FS3-01 2 2 1 200 100.00%

Fs4 0.35 Fs4-01 4 4 i 400 100.00%

4

24 2 8.00 33.33%
Overall Score (OS) 70.24%

FS5 0.35 FS5-01

C3A Agile Architecture. The C3A (Table 6) serves
to build the architecture (Scorepsi_g1 = 1) of the
system in agile contexts, with a minimum amount
of elements (Scorepsi_gp = 1). There are two
main views: the reference architecture (RA), which
shows a system’s overview, with the main modules
and their components, and the implementation
architecture (IA), describing the changes in the
architecture for new and minor versions, as well
as more details on how to develop the system.
The reference architecture contains the architecture
layers, with level 0 and level 1 elements, the
visionaries elements, and, optionally, deeper levels of
elements. Business analysts use the business layer to
record the system’s integration with external systems.
Software architects and project managers describe the
interfaces between systems and users in the functional
layer. Software architects use the system architecture
layer to comprise the system’s internal parts and
implement the functionality described in the previous
layer (Scorepsi—o3 = 1). The C3A approach has
a clear separation between the current architecture
(Scorepsi—os = 1), represented by the RA, and future
versions, projected in the IA.

The approach’s users must create a contract
for each level 0 and level 1 element to register the
architectural decisions, with relevant information to
help in the analysis of the decisions: Name, Owners,
Responsibilities, Dependencies, Implementation,
API, Data structure, Technologies, among
others (Scorersr—g1 = 1). The Reference and

81

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

Implementation architectures enable the construction
of modular systems containing the level 0 and
1 elements, called modules and components,
respectively. The system is described in its main
modules and decomposed into smaller components,
which further explain the system’s operation
(Scorersz—o1 = 1).

The approach has visionary or strategic
components representing new features or changes,
which may or may not be added to the system. Their
presence helps align the position and value of the
new features with the overall system’s architecture
and the likely impact caused. These components are
only added to the RA when they are deemed mature
by the team (Scorerss—o1 = 1).

The step-by-step described to build the
architecture has six steps (Hadar and Silberman,
2008):

1. Collect architectural documents, technical
publications, manuals, and tacit knowledge,
and capture the first architecture in a reference
architecture, with the definition of level 0
components.

2. Validate the design created so far, detailing
the status of the modules of future reference
architectures while maintaining the current one
to prevent it from being impacted by uncertain
components.

3. For each level 0 module, define the level
1 components and implement the incremental
releases of the RAs.

4. Map or provide gap analysis between the
upcoming releases and the current architecture,
and adjust the TA without impacting the RA. If
not possible, mitigate the impact on the RA.

5. Modify minor release schedules to fit the current
architecture, then execute and implement the TA.

6. Estimate the effects of the IA on the next release
of the RA, propagating the gaps found in the last
IA. If necessary, return to step I. Otherwise, return
to step IV.

In the ranking adopted to score each candidate’s
FS5-01, C3A had the Scorepss_g; calculated as
described below.

x4 12

Scorepss_o1 =3.". %Scorepss =

C4 Model. The C4 approach (Table 7) allows the
documentation of the system architecture through
four main views (Scorepsi_g1 = 1). With a small
set of information, it is possible to build the context

82

Table 6: FA results for the C3A approach.
C3A

Importance Max. Subfeature Feature Set

Feature FS Importance Subfeature

o] =

FS4 0.35 FS4-01
FS5 0.35 FS5-01

4.00 100.00%
3 12.00 50.00%
Overall Score (OS) 82.50%

Set Weight D ‘Yf"f,'}" ?]‘V‘['qrf J“zg?;}‘??"‘ (Sf(fr"::a) TeScorers,
FS1-01 2 1
Fs1 0.15 o : 7 X 7.00 100.00%
FS1-04 i I
Fs2 005 FS2-01 i i 1.00 100.00%
Fs3 0.10 F53-01 2 I 200 100.00%
4 i
4

2
R

and container views, generating an initial summary
system’s design with the main actors and components
(Scorepsi—g2 = 1).

The views have different audiences and purposes
(Scorepsi—o3 = 1): the context view involves only the
system in question, the external systems, and other
actors that interact with it, used by external people
or members of the development team; the container
view contains the system’s subsystems, main parts
and the actors that interact with them, used by the
development team, operational people and software
architects; the component and code views are more
technical and describe the elements that make up the
containers, and descriptions in lines of code or UML
diagrams with the system implementation, aimed at
developers and software engineers.

The approach does not distinguish between
current architecture and future architectures
(Scorersi—oa = 0) and does not propose any

method for analyzing architectural decisions
(Scorepsy—o1 = 0).
C4 allows the construction of modular

architectures with the container view (Scorepsz g1 =
1), describing the modules (subsystems) of the
system, their relationships to each other, and the
actors. Similarly, users can break the containers
into smaller modules called components. The author
states that each diagram will change at different
speeds (Scorersa—o1 = 1), with the component view
changing the most as the team adds or removes these
elements.

There are no defined tasks to build the
architecture. In this case, we counted the mandatory
views. The approach has four views, but the author
states that only the context and container views
are necessary and will be used in most companies
and systems Brown (2022). On the scale used to
evaluate FS5-01, C4 had the Scorepss_g; calculated
as described below.

x4 24

Scorepss_o1 = 6.". %Scorerss =

Analyzing Software Architecture Documentation Models According to Agile Characteristics

Table 7: FA results for the C4 approach.

Cc4

Feature FS Importance Subfeature Importance Max. Subfeature Feature Set

T e e TR o e S s
FS1-01 2 1

Fsi 0.5 e 3 7 | 6.00 85.71%
FS1-04 I 0

FS2 005 FS2-01 i I 0 0.00 0.00%

Fs3 0.10 FS3-01 2 2 i 200 100.00%

Fs4 035 FS4-01 4 4 i 400 100.00%

FSS 035 FS5-01 4 2 6 2400 100.00%

Overall Score (OS) 92.86%

Table 8: Ranking of the evaluated approaches.

Ist 2nd 3rd 4th Sth 6th
Approach C4 4+1 CAFCR | C3A S4v ADD
Overall Score (0OS) | 92,86% | 92,02% | 86,19% | 82,50% | 80,60% | 70,24%

S DISCUSSIONS

Giardino et al. (2016) report that accelerated
development causes startups and small companies
that adopt agile practices to postpone planning and
quality activities. Theunissen et al. (2022) also
state that the short-term focus is an obstacle to
documenting knowledge in agile contexts because
professionals can code or maintain the system without
registering decisions, rationale, and other aspects.

In this sense, it is possible to consider an
approach that allows architecture construction and
documentation in a little information context, with
dynamic and uncertain requirements, under time-to-
market pressure as a good solution for agile software
companies.

As seen in Table 8, the best-rated approaches that
perhaps fit the above definition are the C4 (OS =
92.86%) and 4+1 (OS = 92.02%) approaches, and the
percentage difference between them is insignificant.
Thus, the order between them can change through
further analysis.

Generally, most approaches allow the description
of the architecture with few elements. However, ADD
is the only approach that requires the elicitation of all
system requirements before the architecture design.
Still, the authors also state that this context is almost
unachievable (Wojcik et al., 2006).

Regarding purposes and audiences separation for
the designed visions, most approaches explain which
stakeholders benefit from each view and the system
elements in each. We highlight CAFCR, C4, and 4+1
because they describe both abstract and more specific
visions.

The Commercial view (America et al., 2003) and
the Context view (Brown, 2022) aim at a general
audience, with few internal and technical elements,
describing the motivations and needs of the users,
as well as the main system’s elements and parts

that interact with it. In the 4+1 (Kruchten, 1995)
approach, the views detail different aspects of the
system that, in the scenario view, are integrated
to describe and validate how the system will meet
different system usage scenarios.

The ADD (America et al.,, 2003), C3A Agile
Architecture (Hadar and Silberman, 2008), and 4+1
(Kruchten, 1995) approaches stand out regarding
architectural decision analysis. The former (America
et al., 2003) proposes to validate what has been
designed, against system and stakeholder needs, in
half of the tasks required to build the architecture. The
C3A (Hadar and Silberman, 2008) suggests creating
contracts for the system elements with relevant
information from the modules and components. The
4+1 (Kruchten, 1995) also guides the creation of a
document called Design Guidelines, containing the
major decisions made.

All the evaluated approaches provide means of
building modular architectures for systems. Contracts
and diagrams describe the system’s elements with
generic boxes and arrows or in UML language.
We highlight Siemens’ 4 Views (Soni et al., 1995)
and 4+1 (Kruchten, 1995) approaches, which in
1995 already had the architecture description of
system modules. The first approach allows this
description through functional decomposition and
layered organization, while the second approach
organizes the modules in the logical view of the
architecture.

Regarding flexibility and the ability to adapt
the architecture to possible changes, all approaches
proved to be capable of being modified. = The
approaches C3A (Hadar and Silberman, 2008) and
CAFCR (America et al., 2003) have similar ways
of changing the system architecture. The first has
an implementation architecture containing visionary
components, whose function is to describe new
functionalities or changes, evaluated as to the impact
on the architecture until they reach maturity for
inclusion in the reference architecture. The CAFCR
proposes the use scenarios to store the emerging
requirements and represent future or new impacts on
the architecture.

Regarding the implementation cost, we evaluated
ADD and C3A as the most expensive. ADD has
eight main steps (Wojcik et al., 2006) and C3A (Hadar
and Silberman, 2008) have six tasks involving, for
example, collecting information about the system and
its functionalities, defining the first versions of the
architecture, detailing and combining the planned
future modules with the current version of the system.

83

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

6 LIMITATIONS

The limitations of this study are the choice of the
evaluated features, the weight definition, and each
candidate’s cost evaluation. The risk generated by
these limitations is that the weights used may not
reflect the true importance of the factors, and the
results cannot be generalized. To minimize this risk,
we extracted the features and weights used from the
characteristics reported in the literature by the work
performed with interviews and surveys in the context
of agile development.

Additionally, we can relate the cost of
implementing an approach to the complexity of
each task. However, its measurement may differ
depending on who performs the task. Therefore, we
only used the number of required tasks to evaluate
this aspect more objectively. Still, we could not
measure the number of mandatory tasks (FS5) of all
candidates due to the absence of this information in
the original articles. We used only the number of
mandatory views to circumvent this problem since
they are the artifacts to be generated and the task to
which the team will allocate their effort.

7 CONCLUSIONS

Although agile companies value working software
over system documentation, it can help with product
evolution and quality improvement in future releases.
In this sense, we evaluated six software architecture
documentation approaches in agile contexts through
a DESMET Feature Analysis process, defining a set
of features the approaches must possess according to
the agile software development context described in
the literature.

The C4 (Brown, 2022) and 4+1 (Kruchten,
1995) approaches obtained the highest scores and
may be the best recommended for application
in agile companies. These companies can use
the C4 approach to register an initial software
architecture, including relevant actors, subsystems,
and components, evolving it in release cycle
iterations. They can also use the 4+1 approach
to document physical aspects, system behavior, use
scenarios, or code organization.

In the future, we will use these two approaches
in experimental studies with industry professionals to
collect participants’ perceptions about the approaches
and to evaluate the results presented in this paper.
We appreciate the reviewers’ suggestions and added
a study about the correlation between development
tools and agile architecture to future work plans.

84

ACKNOWLEDGEMENTS

We thank the financial support granted by Research
and Development (R&D) project 001/2020, signed
with Universidade Federal do Amazonas and FAEPI,
Brazil, which has funding from Samsung, using
resources from the Informatics Law for the Western
Amazon (Federal Law No. 8.387/1991) and its
disclosure is following article 39 of Decree No.
10.521/2020. We also thank the support provided by
Universidade Federal do Amazonas (UFAM), CAPES
- Financing Code 001, CNPq process 314174/2020-
6, FAPEAM process 062.00150/2020, Sdo Paulo
Research Foundation (FAPESP) process 2020/05191-
2, and the USES research group.

REFERENCES

America, P, Rommes, E., and Obbink, H. (2003). Multi-
view variation modeling for scenario analysis. In
International Workshop on Software Product-Family
Engineering, pages 44-65. Springer.

Beck, K. (1999). Embracing change with extreme
programming. Computer, 32(10):70-77.

Beck, K., Beedle, M., van Bennekum, A., Cockburn,
A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., Kern, J,
Marick, B., Martin, R. C., Mellor, S., Schwaber, K.,
Sutherland, J., and Thomas, D. (2001). Manifesto for
agile software development.

Brown, S. (2022). The C4 model for visualising software
architecture. Leanpub.

Dasanayake, S., Markkula, J., Aaramaa, S., and Oivo,
M. (2015). Software architecture decision-making
practices and challenges: an industrial case study.
In 2015 24th Australasian Software Engineering
Conference, pages 88-97. IEEE.

Giardino, C., Paternoster, N., Unterkalmsteiner, M.,
Gorschek, T., and Abrahamsson, P. (2016). Software
development in startup companies: The greenfield
startup model. IEEE Transactions on Software
Engineering, 42(6):585-604.

Hadar, E. and Silberman, G. M. (2008). Agile architecture
methodology: long term strategy interleaved with
short term tactics. In Companion to the 23rd
ACM SIGPLAN Conference on Object-oriented
Programming Systems Languages and Applications,
pages 641-652.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink,
H., Ran, A., et al. (2007). A general model
of software architecture design derived from five
industrial approaches. Journal of Systems and
Software, 80(1):106-126.

International Organization for Standardization (2022).
Software, systems and enterprise — architecture
description. Standard Iso/iec/ieee 42010:2022,

Analyzing Software Architecture Documentation Models According to Agile Characteristics

International
Geneva, CH.

Kitchenham, B., Linkman, S., and Law, D. (1996).
DESMET: A method for evaluating software
engineering methods and tools. Technical report,
Department of Computer Science, University of
Keele, Keele, Staffordshire, ST5 5SBG, U.K.

Klotins, E., Unterkalmsteiner, M., Chatzipetrou, P,
Gorschek, T., Prikladnicki, R., et al. (2018).
Exploration of technical debt in start-ups. In
2018 IEEE/ACM 40th International Conference on
Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), pages 75-84. IEEE.

Klotins, E., Unterkalmsteiner, M., Chatzipetrou, P,
Gorschek, T., Prikladnicki, R., et al. (2019a). A
progression model of software engineering goals,
challenges, and practices in start-ups. IEEE
Transactions on Software Engineering.

Klotins, E., Unterkalmsteiner, M., Chatzipetrou, P.,
Gorschek, T., Prikladnicki, R., et al. (2021). Use of
agile practices in start-up companies. e-Informatica
Software Engineering Journal, 15(1).

Klotins, E., Unterkalmsteiner, M., and Gorschek, T.
(2019b). Software engineering in start-up companies:
An analysis of 88 experience reports. Empirical
Software Engineering, 24(1):68-102.

Kruchten, P. B. (1995). The 4+1 view model of architecture.
IEEE Software, 12(6):42-50.

Kuhrmann, M., Tell, P, Hebig, R., Kliinder, J., Miinch, J.,
Linssen, O., Pfahl, D., Felderer, M., Prause, C. R.,
MacDonell, S. G., et al. (2021). What makes agile
software development agile? I[EEE Transactions on
Software Engineering, 48(9):3523-3539.

Marshall, C., Brereton, P., and Kitchenham, B. (2014).
Tools to support systematic reviews in software
engineering: a feature analysis. In Proceedings of
the 18th International Conference on Evaluation and
Assessment in Software Engineering, pages 1-10.

Pantiuchina, J., Mondini, M., Khanna, D., Wang, X.,
and Abrahamsson, P. (2017). Are software startups
applying agile practices? the state of the practice
from a large survey. In International Conference
on Agile Software Development, pages 167-183.
Springer, Cham.

Parizi, R., da Silva, M. M., Couto, I., Marczak, S., and
Conte, T. (2020). A design thinking techniques
recommendation tool: An initial and on-going
proposal. In Viana, D. and Schots, M., editors,
19th Brazilian Symposium on Software Quality, SBQOS
2020, Sdo Luts, Brazil, December, 2020, page 36.
ACM.

Paternoster, N., Giardino, C., Unterkalmsteiner, M.,
Gorschek, T., and Abrahamsson, P. (2014). Software
development in startup companies: A systematic
mapping study. Information and Software Technology,
56(10):1200-1218.

Schwaber, K. (1997). Scrum development process. In
Business Object Design and Implementation, pages
117-134. Springer.

Organization for Standardization,

Soni, D., Nord, R. L., and Hofmeister, C. (1995). Software
architecture in industrial applications. In 1995 17th
International Conference on Software Engineering,
pages 196-196. IEEE.

Theunissen, T., van Heesch, U., and Avgeriou, P. (2022).
A mapping study on documentation in continuous
software development. Information and Software
Technology, 142:106733.

Waterman, M., Noble, J., and Allan, G. (2015). How much
up-front? a grounded theory of agile architecture. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 347-357.
Ieee.

Wohlrab, R., Eliasson, U., Pelliccione, P., and Heldal, R.
(2019). Improving the consistency and usefulness of
architecture descriptions: Guidelines for architects.
In 2019 IEEE International Conference on Software
Architecture (ICSA), pages 151-160. IEEE.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson,
P, et al. (2006). Attribute-driven design (ADD),
version 2.0. Technical report, Software Engineering
Institute, Carnegie-Mellon University.

Yang, C., Liang, P, and Avgeriou, P. (2016). A
systematic mapping study on the combination of
software architecture and agile development. Journal
of Systems and Software, 111:157-184.

85

