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Abstract: This work addresses the Bi-objective Mammography Unit Location-Allocation Problem. This problem con-
sists in allocating mammography units satisfying two objectives and respecting the constraints of device ca-
pacity for screenings and the maximum travel distance for the service. The first objective function maximizes
the coverage of exams performed by the allocated mammography devices, while the second function mini-
mizes the total amount of equipment used. We introduce a mixed-integer linear programming bi-objective
model to represent the problem and apply the Weighted Sum and Epsilon-constraint methods to solve it. The
Epsilon-constraint method was able to generate better Pareto fronts. The instances used for testing come from
real data from two Brazilian states obtained from the Brazilian Health Ministry.

1 BREAST CANCER IN
AMERICAS: HEALTH CARE
BUDGETS vs. HUMAN LIVES
AT STAKE

There were 4 million cancer cases in the Americas in
2020, and this disease was responsible for 1.4 million
deaths in these continents (PAHO, 2020). Also, ac-
cording to this report, breast cancer is the second lead-
ing cause of death among women. Almost 500,000
new breast cancer cases and more than 100,000 deaths
from breast cancer were registered in the Americas.

In Brazil, the situation is no different. In 2020,
there were an estimated 66,280 breast cancer cases,
representing an adjusted incidence rate of 43.73 cases
per 100,000 women (INCA, 2019), with 11.84 deaths
per 100,000 women (INCA, 2022).

When breast cancer is diagnosed in the early
stages, 95% of women affected survive (Witten and
Parker, 2018). On the other hand, mammography
screening is the primary way to detect early-stage
breast cancer (Xavier et al., 2016). Given this, the
Brazilian Ministry of Health recommends that women
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aged 50-69 should have the screening biannually
(Brasil, 2017). This institution also recommends that
20% of the female population aged 40-49 undergo
yearly screening.

Although Brazilian public and private health ser-
vices have a sufficient number of mammography
units, screening is not accessible to all women (Mi-
randa and Patrocinio, 2018; Amaral et al., 2017). A
limiting factor to accessing mammography screen-
ing is the determination of the Brazilian Ministry of
Health, which defines 60 km as the maximum dis-
tance a woman should travel (Brasil, 2017). In (Ama-
ral et al., 2017), the authors showed that some cities
have an oversupply of screenings, while others are
not served by any equipment within a 60 km radius.
A similar result is corroborated in (Rodrigues et al.,
2019), whose authors identified an unequal distribu-
tion of mammography devices in Brazil, with a sur-
plus of equipment in 17 states and a deficit in the
others (9 states and the Federal District). Although
other factors contribute to discouraging or even mak-
ing screening infeasible, these studies show that the
distance women should travel to undergo mammog-
raphy screenings plays a key role in access to it.

Many studies have proposed mathematical pro-
gramming formulations and heuristics to propose the
best location and allocation for mammography units
(Corrêa et al., 2018; de Campos et al., 2020; Souza
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et al., 2019; Souza et al., 2020; de Assis et al.,
2022). These studies aim to maximize the coverage
for screenings and present a tool to health managers to
support them in deciding the best location for mam-
mography units and their allocations (assignments),
i.e., the set of locations that each mammography unit
must serve. Although other studies address generic
facility location-allocation problems for health care,
no study was found in the literature to maximize cov-
erage and minimize the number of mammography
units needed for screenings. Reducing the number
of mammography units needed is essential, given the
high cost of these devices and the need for better
management of public health costs. In order to fill
this gap, we introduce the Bi-objective Mammogra-
phy Unit Location-Allocation Problem (BOMULAP)
in this article.

The main contributions of this work are the fol-
lowing:

i) Introducing of the BOMULAP aiming at maxi-
mizing the coverage for screenings and minimiz-
ing the infrastructure costs of health care;

ii) The implementation and comparison of two
well-known solution methods of multi-objective
optimization, the Weighted Sum Method and the
Epsilon-green Constraint Method, to solve the
BOMULAP;

iii) Application of the methodology to realistic cases
extracted from Brazilian public health service
databases.

The remainder of this article is organized as fol-
lows. Section 2 presents a literature review of the
main articles about the Mammography Unit Location
and Mobile Mammography Unit Routing problems
considering the Brazilian reality. In Section 3.1, we
introduce the problem under investigation. In Sec-
tion 3.2, the bi-objective mathematical programming
model is presented. Section 3.3 presents brief descrip-
tions of the proposed solution methods for solving
BOMULAP. In Section 4, the computational results
of the proposed methods are presented and discussed.
Finally, Section 5 presents the conclusions and future
work.

2 SURVEYING THE HISTORY
THUS FAR

In (Shariff et al., 2012), the authors tackle a health
care location-allocation problem from Malaysia.
They introduce a mathematical programming formu-
lation for the problem and then develop a Genetic Al-

gorithm (GA) to obtain good upper bounds in a rea-
sonable time. The analysis of the obtained results es-
tablishes the superior computational performance of
the Genetic Algorithm, which is able to find high-
quality solutions for all the instances on the test-bed.
On the other hand, the CPLEX commercial solver was
unable to reach good quality solutions for networks
displaying more than 809 nodes.

(Beheshtifar and Alimoahmmadi, 2015) handle a
multi-objective location-allocation problem for clinic
facilities. The authors propose four objective func-
tions for their mathematical program, based on the
well-known p-median problem, bringing the under-
lying assumption of full demand coverage. The first
objective function minimizes the sum of demand-
weighted distance costs. The second objective func-
tion minimizes the standard deviation of the distance
between the patients and the health care clinics. The
third objective function maximizes the suitability of
the selected locations for the new facilities. Finally,
the fourth objective function minimizes the costs of
acquiring land space and installing new health care
clinic facilities. The Non-dominated Sorting Genetic
Algorithm II (NGSA II) is used to yield the Pareto-
efficient front. The analysis of the obtained results
shows that it is possible to reduce the average distance
to provide access to health care services at the expense
of larger land acquisition costs, generally speaking.

In (Corrêa et al., 2018), the authors present four
formulations for the MULAP. The models are based
on the classical p-median problem. The second dif-
fers from the first in allowing violation of the maxi-
mum distance that a mammography device can be as-
signed to serve a locality. In the last two models, the
number of women traveling to be served is consid-
ered, and the maximum distance constraint in the last
one is relaxed. The authors tested the formulations
using the cities of 12 health regions that are up to 100
km away from the city of Ouro Preto. No feasible so-
lutions were found in the established processing time
in the formulations that impose maximum distance.
One of the reasons for this is that several cities in the
state of Minas Gerais are more than 60 km away from
those that host mammography devices.

In (Souza et al., 2019), the authors did a case study
of the MULAP considering the State of Rondônia,
Brazil. They present two mathematical program-
ming models based on the maximum coverage. The
first model considers that a mammography device can
only serve a city if it fully meets its demand. The
second model relaxes the constraint of fully meeting
the demand. They showed that the second formula-
tion better uses the devices’ screening capacity. The
authors suggest using mobile mammography devices
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in cities not served by fixed devices.
In (Sá et al., 2019), the authors did a case study

of the MULAP to the State of Espı́rito Santo, Brazil,
using the binary mathematical programming model
of Souza et al. (2019). They treated two scenarios.
In the first, the location of mammography devices al-
ready installed is not changed, while in the second
scenario, there is permission for free relocation of
these mammography devices. They analyzed the ac-
quisition of new equipment in these two scenarios and
showed how many new mammography devices would
be needed to cover all the demands for mammography
screenings in the state.

In (Souza et al., 2020), the authors did a case
study of MULAP in the state of Minas Gerais, Brazil,
which has the largest number of cities in Brazil. They
used the binary mathematical programming formu-
lation of (Souza et al., 2019). In addition, as MU-
LAP is NP-hard (Church and ReVelle, 1974), they
developed a Variable Neighborhood Search-based al-
gorithm (Hansen et al., 2017) to handle large in-
stances of MULAP, such as the one in this state of
the Brazilian federation. They showed that the pro-
posed VNS algorithm finds good-quality solutions in
reduced computational time.

A case study of MULAP in Minas Gerais and
Rondônia states is also done in (de Campos et al.,
2020). They used the relaxed formulation of (Souza
et al., 2019), which allows the demand of a city to be
partially covered by a host city, and also developed
a Simulated Annealing-based algorithm (Kirkpatrick
et al., 1983). The authors analyzed two scenarios to
determine the minimum amount of devices needed to
maximize the coverage for mammography screenings
in the Minas Gerais state, considering 6758 screen-
ings per year as the productivity of mammography
equipment. In the first scenario, the relocation of ex-
isting equipment is allowed, while in the second, this
relocation is not allowed. They showed that in the first
scenario, it is possible to cover 99.97% of the demand
in Minas Gerais without purchasing any new equip-
ment, while in the second scenario, it would be nec-
essary to purchase 77 devices to achieve this coverage
rate.

(Rosa et al., 2020a) included a new constraint
in the mathematical programming model of (Souza
et al., 2019) to treat MULAP. In this model, women
can only be served by cities within the same health
micro-region in which they reside. The authors also
analyzed the gradual acquisition of new devices to
maximize coverage by screenings. They showed that
with cities clustered into health micro-regions, the
number of equipment needed to maximize coverage
is higher than without this requirement. This result

shows that the existing clustering of cities may need
to be revised.

(Rosa et al., 2020b) introduced the Mammogra-
phy Mobile Unit Routing Problem (MMURP). The
problem consists of maximizing the demand met and
reducing the distance traveled by mobile mammog-
raphy units in Minas Gerais state. They proposed a
hierarchical constructive heuristic algorithm, wherein
a solution is considered better in the first level when
it meets a greater number of screenings. If two solu-
tions have the same number of screenings, the chosen
solution is the one with the shorter distance traveled.
The authors showed that in the region studied, which
involves 444 cities, it would be possible to provide
almost 360 thousand more mammography screenings
than is currently provided in the state.

(Rosa et al., 2021) approached the MMURP
through the Iterated Greedy algorithm (Stützle and
Ruiz, 2018) and named it Smart IG. The Randomized
Variable Neighborhood Descent (RVND) procedure
is executed to refine the solution. Of the 853 cities in
Minas Gerais state, 579 were analyzed. The results
showed that the developed algorithm found solutions
that fully meet the demand of the studied region, and
these results are superior to those obtained through
the constructive algorithm by its previous work (Rosa
et al., 2020b).

In (de Assis et al., 2022), the authors treated the
MULAP allowing the partial fulfillment of the de-
mands for screenings of the cities. They proposed an
algorithm based on the General Variable Neighbor-
hood Search (GVNS) (Hansen et al., 2017). The ini-
tial solution is built by a procedure based on the con-
struction phase of the GRASP metaheuristic (Festa
and Resende, 2018). They also introduced a new
representation for the problem solution, in which it
is possible to individualize the screenings performed
by each mammography device. They compared the
results of the proposed algorithm with those of the
Simulated Annealing by (de Campos et al., 2020) and
showed that GVNS obtained better solutions in some
instances.

In (de Freitas Almeida et al., 2022), the authors
deal with the location-allocation of Magnetic Reso-
nance Imaging (MRI) machines. The main objec-
tive is to maximize the coverage for MRI exams con-
sidering the new equipment acquisitions and equity
in regional service supply in Brazil. They propose
three mathematical programming formulations for the
problem. The first one aims to maximize the demand
covering; the second minimizes the cost of acquiring
new MRI machines. The third and final one aims to
minimize the traveled distance by the patients. Sev-
eral distinct scenarios are investigated for different
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numbers of new MRI units acquired. The analysis of
the obtained results shows that for full demand cov-
erage, a total of 812 new MRI machines would be
required, where 753 of those new MRI units would
be allocated to cities with no MRI machines avail-
able. The authors also consider addressing stochastic
demand components and decomposition methods as
solution strategies for future work.

3 MATERIALS AND METHODS

3.1 Problem Statement

The Bi-objective Mammography Unit Location-
Allocation Problem discussed here, denoted by BO-
MULAP, has the following characteristics:

• There is a set N of cities to be covered by mam-
mography screenings;

• There is a set of p mammography units to be allo-
cated to the set N;

• Each mammography unit has a capacity to per-
form Γ screenings annually;

• Each city j has a demand δ for mammography
screenings;

• Only cities with hospital infrastructure are candi-
dates to host mammography units;

• Each city that hosts a mammography machine can
only meet the demand of cities that are no more
than R km away from it;

• A city cannot be served by more than one host
city;

• A host city can only serve another city if it is able
to meet all of its demand.

The objectives are to maximize the coverage of
mammography screenings and minimize the number
of mammography units needed.

3.2 BOMULAP ILP Fomulation

Through equations (1) to (8), we introduce the bi-
objective integer linear programming formulation that
defines the BOMULAP. This formulation transforms
into an objective function, the constraint used in
(Souza et al., 2020) that limits the number of mam-
mography units.

Initially, we introduce the parameters and deci-
sion variables of the formulation.

Model Parameters:

di j : Distance from city i to city j;
δ j : Annual demand for mammography screen-

ings in city j;
Γ : Annual mammography screening capacity

of a mammography unit;
p : Maximum number of mammography units

allowed;

R : Maximum distance for service;
ξi : Parameter that assumes the value of 1 if the

city i has hospital infrastructure to host a
mammography device and 0 otherwise;

Si j : {(i, j) ∈ N×N | [(di j ∧ d ji)≤ R] ∧ ξi = 1}
is the adjacency set, filtered by the maxi-
mal service distance R and the infrastruc-
ture availability ξi.

Decision Variables:

xi j : 1 if women of city j are served by an
equipment located in city i and 0 otherwise,
∀(i, j) ∈ Si j;

yi : number of mammography units located in
city i, ∀i ∈ N | ξi = 1.

Problem Formulation:

max f1(x) = ∑
(i, j)∈Si j

δ j · xi j (1)

min f2(y) = ∑
i∈N | ξi=1

yi (2)

s.t.: ∑
(i, j)∈Si j

δ j · xi j ≤ Γ · yi, ∀i ∈ N | ξi = 1 (3)

∑
(i, j)∈Si j

xi j ≤ 1, ∀ j ∈ N (4)

xi j ≤ xii, ∀(i, j) ∈ Si j (5)
yi ≤ p · xii, ∀i ∈ N | ξi = 1 (6)
xi j ∈ {0,1}, ∀(i, j) ∈ Si j (7)

yi ∈ Z+. ∀i ∈ N | ξi = 1 (8)

The objective functions (1) and (2) aim at max-
imizing the total demand for mammography screen-
ings and minimizing the total number of mammogra-
phy units, respectively. Inequalities (3) are standard
bin-packing constraints ensuring that the capacity of
each mammography unit for annual screenings must
be uphold. Constraints (4) indicate that each city j
needs to be served by some mammography machine
installed in city i if the pair (i, j) is adjacent (service-
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able) or not to be served at all. Constraints (5) force a
mammography unit installed in city i to handle the lo-
cal demand at least, also working as a strong version
of the well-known fixed-charge constraints, strength-
ening the formulation. Inequalities (6) tie together
the mammography service availability to the alloca-
tion of mammography units in a given city i. Finally,
constraints (7) and (8) specify the decision variables’
feasible domains. Please, recall that despite the dis-
tance matrix di j is not directly used in the formula-
tion, this parameter is required to implement the adja-
cency set Si j, and therefore its definition is needed for
completeness.

3.3 Two Multi-Objective Competing
Philosophies

In this Section, the exact methods of multi-objective
optimization proposed for the solution of the BOMU-
LAP are presented.

3.3.1 The Epsilon-Constraint Method

The Epsilon-constraint method (Ritzel et al., 1994)
transforms a multi-objective problem into a mono-
objective problem. One objective is chosen to be opti-
mized, and the others are transformed into additional
inequality constraints in the model.

In the model discussed in this article, the objec-
tive function f1(x) described by Eq. (1) was chosen to
be maximized while the f2(y), described by Eq. (2),
was added as a constraint in the model, ∑i∈N yi ≤ p.
Therefore, the formulation to be solved for every se-
lected value of p becomes:

max f1(x) = ∑
(i, j)∈Si j

δ j · xi j (9)

Subject to (3)-(8) and:

∑
i∈N | ξi=1

yi ≤ p (10)

where p is then prescribed from 1 to 100 in order to
cover the full demand for mammography screenings
and build the desired Pareto front.

3.3.2 The Weighted Sum Method

The Weighted Sum Method (WSM) (Zadeh, 1963)
consists of assigning weights to the objective func-
tions of a multi-objective problem, thus transforming
it into a single-objective problem. The sum of all
weights must be equal to 1.

Hence, for this approach, the objective functions
(1) and (2) are linearly combined with the aid of a
weight λ ∈ [0,1], resulting:

max λ (
1

∑ j∈N δ j
) f1(x)− (1 − λ)

(
1
p

)
f2(y)

(11)

Function (11) is then maximized after the proper pre-
scribing of λ, in order to yield the Pareto efficient
front.

4 COMPUTATIONAL
EXPERIENCE: WHY ALL THIS
EXTRA BURDEN PAYS OFF

4.1 A Realistic Test-Bed Based on
Real-World Problems

In order to test the two solution methods, we used the
instances related to the states of Espı́rito Santo (ES)
and Rondônia (RO) available in (Sá et al., 2019) and
(Souza et al., 2019), respectively. Table 1 presents
the main characteristics of these instances. In this
table, the columns State, nC, p, δ, R, and Γ repre-
sent, respectively, the State of the Brazilian federa-
tion, its number of cities, the number of mammog-
raphy units existing in this State, the existing demand
for mammography screenings, the maximum distance
allowed between an equipment host city and the cities
it serves, and the annual capacity of mammography
screenings for each device.

Table 1: Instance Characteristics.

State nC p δ R Γ

ES 78 30 262732 60 5069
RO 52 8 120636 60 5069

For the test environment, AMPL software with Cplex
20.1.0.0 was used to run the two solution methods
proposed in the previous section. These methods
were tested on a computer equipped with 1 Intel(R)
Core(TM) i7-10750H CPU @ 2.60GHz (12 threads,
fully utilized), 16 GB RAM and Windows 11 Home
system.

4.2 Analyzing the Obtained Results

For the generation of the Pareto front by the Weighted
Sum Method, we ran the model 100 times, adding
∆λ = 0.01 to the value of λ at each run, starting it with
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the value λ = 0. In turn, to generate the Pareto front
by the Epsilon-constraint method, we also ran the
model 100 times for the ES and RO instances, adding
in one unit the value of p at each execution and start-
ing p with the value 1. We performed the executions
until the gap of 1%. The data of the instances of the
ES and RO states were obtained through the Brazil-
ian government’s website (DATASUS, 2021) and the
Google Maps API, considering travel by car.

Figure 1(a) and Figure 2(a) show the Pareto
fronts of BOMULAP generated by the Weighted Sum
Method in the ES and RO instances, respectively. In
these figures, the horizontal axes represent the num-
ber of allocated mammography units, and the vertical
axes represent the total demands met. In turn, Fig-
ure 1(b) and Figure 2(b) illustrate the Pareto fronts of
BOMULAP by the Epsilon-constraint method.

(a) Weighted Sum Method.

(b) Epsilon-constraint method.

Figure 1: Pareto fronts for the ES instance.

It is observed that after a given number of installed
mammography devices, increasing them is no longer
worthwhile. In fact, even though there is a demand to
be met, the infrastructure and maximum distance con-
straints prevent further improving the maximal cover-
age, despite the eventual availability of mammogra-
phy units. An alternative to overcome this situation is
integrating the MULAP with the MMURP.

Regarding the two competing multi-objective
philosophies, the Weighted Sum scheme is particu-
larly vulnerable to our way of handling the trade-offs

(a) Weighted Sum Method.

(b) Epsilon-constraint Method.

Figure 2: Pareto fronts for the RO instance.

between maximum coverage and infrastructure de-
ployment since this scheme prefers not to spend any
budget unless the concerns of unattended demands
are relatively higher. On the other hand, the Epsilon-
Constraint scheme can always yield some coverage,
even though a small number of mammography units
is allowed. Therefore, for the features of our specific
application, the Epsilon-Constraint technique is cer-
tainly preferable when compared to the devised al-
ternative since it is capable of defining the efficient
front with superior resolution, favoring an enhanced
decision-making.

5 INSIGHTS AND UPCOMING
WORK

This paper presents the Weighted Sum and Epsilon-
constraint methods for solving BOMULAP. In all in-
stances, the Epsilon-constraint method provides bet-
ter Pareto fronts than the Weighted Sum method.

The results presented in this paper can assist
health managers in their decision-making, such as de-
ciding where to relocate existing mammography de-
vices and/or purchase new ones.

Future work intends to apply other exact methods,
like the Parallel Partitioning Method (Lemesre et al.,
2007), and solve instances from other Brazilian states.
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Since BOMULAP is NP-hard, developing heuristic
methods, such as Non-dominated Sorting Genetic Al-
gorithm II (NSGA-II) (Deb et al., 2002), to deal with
large instances of the problem is another suggestion.

ACKNOWLEDGMENTS

The authors are grateful for the support provided
by the Universidade Federal de Ouro Preto, the
Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior - Brazil (CAPES) - Finance Code 001,
CNPq (grants 428817/2018-1, 303266/2019-8, and
307853/2021-7), and FAPEMIG (grant PPM CEX
676/17).

REFERENCES

Amaral, P., Luz, L., Cardoso, F., and Freitas, R. (2017).
Distribuição espacial de equipamentos de mamografia
no Brasil. Revista Brasileira de Estudos Urbanos
e Regionais (RBEUR), 19(2):326–341. Available at
https://doi.org/10.22296/2317-1529.2017v19n2p326.

Beheshtifar, S. and Alimoahmmadi, A. (2015). A multiob-
jective optimization approach for location-allocation
of clinics. International Transactions in Operational
Research, 22(2):313–328. Available at https://doi.org/
10.1111/itor.12088.

Brasil (2017). Critérios e parâmetros assistenciais para o
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V. S. (2022). An optimization model for equitable
accessibility to magnetic resonance imaging technol-
ogy in developing countries. Decision Analytics Jour-
nal, 4:100105. Available at https://doi.org/10.1016/j.
dajour.2022.100105.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Com-
putation, 6(2):182–197. Available at https://doi.org/
10.1109/4235.996017.

Festa, P. and Resende, M. G. C. (2018). Grasp. In
Martı́, R., Pardalos, P. M., and Resende, M. G. C.,
editors, Handbook of Heuristics, chapter 16, pages
465–488. Springer, Cham, Switzerland. Avail-
able at https://link.springer.com/referenceworkentry/
10.1007/978-3-319-07124-4 23.
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mamografia. In Anais do LIII Simpósio Brasileiro de
Pesquisa Operacional (SBPO), volume 53, João Pes-
soa (PB). SOBRAPO, Galoá. Available at encr.pw/
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Sá, M., Rosa, P., Paiva, J., Souza, M., and Penna, P. (2019).
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40(110):20–35. Available at https://doi.org/10.1590/
0103-1104201611002.

Zadeh, L. (1963). Optimality and non-scalar-valued per-
formance criteria. IEEE Transactions on Automatic
Control, 8(1):59–60. Available at https://doi.org/10.
1109/TAC.1963.1105511.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

194


