
On-Premise Internet of Things (IoT) Data Storage:
Comparison of Database Management Systems

Anna Wolters a, Mevludin Blazevic b and Dennis M. Riehle c

Institute for IS Research, University of Koblenz, Universitätsstraße 1, Koblenz, Germany

Keywords: Internet of Things, Big Data, Database Management System, Time-series Database.

Abstract: The Internet of Things (IoT) connects millions of devices, leading to the production of vast amounts of data.
For such data to be of value, efficient and effective data storage is of utmost importance. In this paper, we
present a comparison of on-premise database management systems in the context of the IoT. We perform a
market analysis on relational, Not Only SQL (NoSQL), and time-series database systems as well as a require-
ment analysis in order to comprehensively compare database systems based on functional and non-functional
criteria. After an initial selection, we compare MySQL, PostgreSQL, Cassandra, MongoDB, InfluxDB, and
QuestDB. As a result, we provide a best practice guide to support the decision-making on which database to
select for an IoT use case.

1 INTRODUCTION

Connected objects in the Internet of Things (IoT) pro-
duce vast amounts of data, making the data itself one
of the essential elements in the IoT (Nasar & Kausar,
2019). The increasing amounts of data generated in
the IoT create the challenge of storing the data effi-
ciently, which is essential to ensure better decision-
making based on the data. IoT data is generated
mainly by IoT sensors which collect environmental
data (Rayes & Salam, 2017). These data sets are too
large to be analyzed with classic data-processing soft-
ware and “have entered the common language with
the term Big Data” (Sestino et al., 2020, p. 1). More-
over, IoT data and Big Data are equal in their em-
phasis on information that is rich in volume, velocity,
and variety and therefore requires innovative forms of
processing (Lycett, 2013; Sestino et al., 2020).

The characteristics that Big Data and IoT have in
common, impose requirements for the database sys-
tem. Those include technical requirements to, for in-
stance, support heterogeneous sensor infrastructures
(Amghar et al., 2018), as well as other factors such as
data security, query speed, reliability, pricing, main-
tainer, business model (on-premise, cloud), licensing
model, support, API, and interfaces (Beynon-Davies,
2017; Rautmare and Bhalerao, 2016). This makes the
selection of the right database system solution chal-

a https://orcid.org/0000-0002-4075-5737
b https://orcid.org/0000-0003-0347-7392
c https://orcid.org/0000-0002-5071-2589

lenging, as different requirements and contextual in-
formation are needed to find the right balance be-
tween costs and benefits.

In this paper, we present a best practice guide for
selecting a suitable database system for storing IoT
data on-premise. We perform a comprehensive com-
parison of available database systems by identifying
functional and non-functional criteria to guide our se-
lection process. In total, we compare six database sys-
tems, two of which are relational, two Not Only SQL
(NoSQL), and two time-series databases.

The remainder of the paper is structured as fol-
lows. In Section 2 we provide background informa-
tion on the IoT and Big Data, as well as database sys-
tems. Section 3 presents the research method applied.
Next, we perform a market and requirement analysis
in Section 4. The final set of selected databases is
compared in more detail in Section 5. We discuss and
conclude our findings in Section 6.

2 BACKGROUND

2.1 Internet of Things and Big Data

Since its first appearance, many definitions for IoT
were established which can be found in scientific and
non-scientific literature (e.g., Baiyere et al., 2020;
Chui et al., 2020; ITU-T, 2011; Miorandi et al., 2012;
Rayes & Salam, 2017). Mostly, these definitions have
the interrelationship between sensors and physical ob-
jects in common. IoT can be defined as a “system

140
Wolters, A., Blazevic, M. and Riehle, D.
On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems.
DOI: 10.5220/0011851200003482
In Proceedings of the 8th International Conference on Internet of Things, Big Data and Security (IoTBDS 2023), pages 140-149
ISBN: 978-989-758-643-9; ISSN: 2184-4976
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



of interconnections between digital technologies and
physical objects that enable such (traditionally mun-
dane) objects to exhibit computing properties and in-
teract with one another with or without human inter-
vention” (Baiyere et al., 2020, p. 557). Another def-
inition focuses on IoT applications and information
technology, whereupon IoT is the “interconnection of
sensing and actuating devices providing the ability to
share information across platforms through a unified
framework, developing a common operating picture
for enabling innovative applications” (Gubbi et al.,
2013). This can be achieved by pervasive sensing and
data processing using cloud infrastructures as a uni-
fying architecture. IoT sensors generate a variety of
different data that differs from data from traditional
Information Systems (IS). One approach in describing
IoT data is the distinction between the origins of data
that is processed by computers. IoT data is generated
mainly by IoT sensors which collect environmental
data (Rayes & Salam, 2017). Moreover, IoT enables
different physical devices to connect to the Internet
and engage in data exchange. These datasets are too
large to be analyzed with classic data-processing soft-
ware and can be seen as a subcategory of “Big Data”
(Sestino et al., 2020).

The term Big Data refers to the generation of
large amounts of structured and unstructured data.
Big Data is usually associated with real-time analysis,
which distinguishes it from traditional datasets (Chen
et al., 2014). Originally, Big Data was defined by
the 3 V’s: volume, velocity, and variety (Strohbach et
al., 2015), while further characteristics such as value,
veracity, and visualization can be considered as well
(Chen et al., 2014; Strohbach et al., 2015). IoT is con-
sidered to be one of the most promising drivers of Big
Data expansion, due to the increasing availability of
connected sensor devices in companies that generate
a vast amount of data (De Mauro et al., 2015).

2.2 Database Systems

When discussing and comparing database systems in
more detail, the CAP theorem and ACID properties
must be considered. Both ideas describe character-
istics of distributed systems, and the ACID proper-
ties particularly focus on transactional databases. The
CAP theorem contains the characteristics of consis-
tency, availability, and partition tolerance. According
to the theorem, a distributed system is only able to ful-
fill two of these properties . The ACID properties are
atomicity, consistency, isolation, and durability (El-
masri & Navathe, 2016, pp. 754-755).

In recent years, database or storage model tech-
nologies have evolved and improved significantly. In

our research, we focus on relational, NoSQL, and
time-series database systems.

The idea of a relational data model was introduced
by Codd (1970) in 1970. In a relational database,
data is structured in the form of tables that are eventu-
ally connected to each other using unique identifiers
as reference keys (Elmasri & Navathe, 2016, p. 73),
and the data is accessed using Structured Query Lan-
guage (SQL) (Elmasri & Navathe, 2016, p. 59). Re-
lational databases provide a very simple data struc-
ture as well as data access. With the concept of data
normalization, data is structured clearly and data con-
sistency is improved (Elmasri & Navathe, 2016, pp.
501 ff.). However, relational databases are not able to
store more complex data formats, such as documents.

Compared to relational database systems, NoSQL
databases provide flexible and schema-less data mod-
els (Fatima & Wasnik, 2016), but do not provide
the ACID characteristics characteristics (Chauhan &
Bansal, 2017). However, it adheres to BASE, which
means basically available, soft state, and eventually
consistent (Chauhan & Bansal, 2017). There exist
four categories of NoSQL databases: key-value store,
column-oriented database, document database, and
graph database. Besides a more flexible data model,
NoSQL databases also support horizontal scaling,
while relational databases can only be scaled verti-
cally (Chauhan & Bansal, 2017).

In IoT, time-series databases are very prominent,
since IoT data usually contain a timestamp for every
data point, which might be used to index the data.
Time-series databases are insert-heavy, while there
is no update operation as it is the case for relational
and NoSQL databases (Mostafa et al., 2022). The
time-based storage enables easier analysis of trends
and changes in data over time. Additionally, query-
ing and fetching data from a time-series database is
usually very efficient (Musa et al., 2019). Time-series
databases do not necessarily adhere to the ACID prop-
erties. Because of the continuous collection of new
data, durability, and strong consistency do not have
to be ensured. InfluxDB, a prominent time-series
database, for instance, supports eventual consistency
(Musa et al., 2019).

3 RESEARCH METHOD

In this research, we apply Design Science Re-
search (DSR) based on the Design Science Research
Methodology (DSRM) proposed by Peffers et al.
(2007). As given by Peffers et al. (2007), artifacts can
be “constructs, models, methods, or instantiations”
(Peffers et al., 2007), making the knowledge contribu-

On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems

141



tion of DSR versatile (Gregor & Hevner, 2013). In our
research, the final artifact is a best practice guide to
assist decision-makers in selecting the most appropri-
ate database system for IoT use cases. Aligned with
the understanding of an artifact in DSR, we present
a more abstract artifact similar to design principles or
implicit technological rules (Gregor & Hevner, 2013).

Our research follows the six phases proposed in
the DSRM: Based on these phases, our research is
structured as follows:

Problem Identification. Storing IoT data is a chal-
lenging task since IoT devices produce vast
amounts of data – Big Data – which must be
stored and processed efficiently. Choosing the
right database is just as challenging as there ex-
ists a large variety of database systems. Deciding
on which system to use requires a comprehensive
overview of available systems and their strengths
and weaknesses.

Objectives. The aim of this research is a compari-
son of available database systems regarding their
functionality in the context of IoT. Requirements
are collected based on related research, market re-
search, and given restrictions on the scope of the
study.

Design and Development. Initially, a market and
requirement analysis is performed to identify
database systems for a detailed comparison. The
selected database systems are installed and tested
on-premise to collect data on their performance.

Demonstration. Results of the tests are consoli-
dated, compared, and displayed in an understand-
able format.

Evaluation. Resulting data is evaluated regarding the
predefined criteria representing the systems’ suit-
ability for IoT use cases.

Communication. The research findings on the suit-
ability of specific database systems for storing and
processing IoT data are provided.

4 MARKET AND REQUIREMENT
ANALYSIS

4.1 Market Analysis

For the initial selection of databases, we performed
a market analysis. Since there exists a plethora of
database systems, a collection of the information on
all database systems seems impossible. Still, we

aimed for a comprehensive overview of available sys-
tems and collected information on 50 systems in to-
tal. At this stage of our research, we first tried to
gather all popular database systems without applying
exclusion criteria. For each selected database sys-
tem we collected information on its name, type (re-
lational, NoSQL, or time-series), the maintainer, li-
cense, as well as stable release, latest version, and
first release. Additionally, we state the operating sys-
tems that the system can be installed on (i.e., Win-
dows, Linux, and MacOS). Since our research focuses
on on-premise database systems, we also check the
business model, i.e., if the systems can be installed
on-premise or if they are only hosted as a cloud ser-
vice. To be able to properly compare non-functional
requirements of the database systems, we decided to
use Docker1 to ensure a comparable setup. Although
a native installation might be slightly faster compared
to using Docker, trough the lack of virtualization, we
used Docker to ensure that the technical conditions
are uniform across all experiments. This allows us to
assess the performance of the analyzed database sys-
tems. We selected Docker as it is one of the state-of-
the-art container-based technologies, providing an ef-
ficient and scalable foundation for distributed applica-
tions. As such it is widely applied for IoT applications
in practice (Alam et al., 2018). Hence, the last crite-
rion included in the market analysis is the availability
of a Docker image. We only considered Docker im-
ages that are marked as official on Docker hub or are
provided by a verified publisher. To limit the scope of
our research, we solely focus on relational, NoSQL,
and time-series databases and created a comprehen-
sive long list.

We collected information on 15 relational, 15
NoSQL, and 20 time-series databases and ordered
them by their popularity. We applied a popularity
ranking published and maintained by solid IT gmbh
(2022), who define a popularity score for roughly 400
different database systems. The underlying method
is based on six parameters, which are the number
of mentions on websites based on the query results
from Google and Bing, general interest as measured
by search frequency based on Google Trends, fre-
quency of online discussions about the system based
on primarily IT-related forums such as Stack Over-
flow, number of job offers that mention the database
systems based on the job search engines Indeed and
Simply Hired, number of LinkedIn profiles that state
the database system as a skill, and the systems’ rel-
evance on social media as represented by Twitter
tweets mentioning the system.

The resulting long list of database systems is de-

1https://www.docker.com/

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

142



picted in appendix A.1. Next, we apply the col-
lected information to create a short list of six database
systems that are then used for our detailed compar-
ison. For our research, we make the initial restric-
tions, that we only consider two systems per category
and additionally, only consider open-source and on-
premise databases that can be installed via Docker on
an Ubuntu2 system. We considered the criteria in the
following order: business model (on-premise or cloud
solution), license, availability of Docker image, fur-
ther criteria, and popularity.

From the set of relational databases, five were
excluded because they are only hosted as a cloud
service (Microsoft Azure, Snowflake, Databricks,
Google Big Query, and Amazon Redshift). Six fur-
ther databases could not be considered because they
are not open-source systems (Oracle, Microsoft SQL
Server, IBMDB2, Microsoft Access, Teradata, and
FileMaker). From the remaining four, one system
(SQLite) does not provide an official Docker image,
thus the set of databases was reduced to the systems
MySQL, PostrgreSQL, and Maria DB. Since we only
wanted to select two systems from each category, we
excluded Maria DB in the final step because it is less
popular.

For the set of NoSQL database systems, we were
able to exclude seven systems because they are cloud-
only, and thus do not meet the scope of our re-
search (Amazon Dynamo DB, Microsoft Azure Cos-
mos DB, Firebase Realtime Database, CouchBase,
Google Cloud FireStore, Microsoft Azure Table Stor-
age, and Google Cloud Bigtable). One of the remain-
ing eight systems could also not be considered due to
a commercial license (Datastax Enterprise). Based on
the popularity, we selected MongoDB and Cassandra
as final candidates for our requirement analysis. Not
chosen because of their lower popularity were Re-
dis, Hbase, Memcached, CouchDB, and Neo4j. Be-
sides, Redis and Memcached aim at different targets,
i.e., they are primarily designed for key-value storage,
which does not fit our research goal.

From the set of 20 time-series databases, 3 were
excluded because they cannot be installed on-premise
(Fauna, TD Engine, and Amazon Timestream). An
additional set of 5 database systems only have a com-
mercial license, and thus could not be considered here
(Kdb+, Dolphin DB, eXtremeDB, IBM Db2 Event
Store, and Raima Database Manager). In the next
step, we identified that 9 systems did not provide
an official Docker image (Graphite, Timescale DB,
Apache Druid, RRD Tool, Open TSDB, Grid DB,
KairosDB, Victoria Metrics, and Apache IOTDB).
The final set of tables consisted of InfluxDB,

2https://ubuntu.com/

Prometheus, and QuestDB, but since Prometheus is
rather used for monitoring purposes, we excluded it
here, so we selected InfluxDB and QuestDB as time-
series databases for our requirements analysis. In-
fluxDB is already a very well-established database
in the field of IoT, while QuestDB is still fairly new
since it was first released in 2016.

4.2 Requirement Analysis

For the comparison of our final set of databases, we
identified functional and non-functional requirements
that are important criteria to consider when select-
ing a suitable database for a given context. As func-
tional requirements, we consider the following crite-
ria proposed by Bader et al. (2017): (i) distribution
or clusterability, (ii) availability of (a) basic and ag-
gregate and (b) advanced functions, (iii) granularity
and downsampling, (iv) interfaces and extensibility
and (v) support and license.

For the distribution and clusterability criteria, we
consider the CAP theorem, scalability, and load bal-
ancing. In the IoT, consistency is the least important
characteristic from the CAP theorem since eventual
consistency is sufficient as data is collected continu-
ously. The focus is therefore on high availability and
partition tolerance. Due to the large amounts of data,
storage and performance should be scalable to meet
the criteria of an IoT application. For further effi-
ciency, load balancing should be included to evenly
distribute the workload in a distributed system (Bader
et al., 2017).

As basic functions we consider inserting, reading,
scanning, updating, and deleting the data, while aver-
aging, summing, counting, and identifying the maxi-
mal or minimal value are the aggregate functions we
tested. Further, to compare advanced functions we
compare continuous calculation, tags, long-term stor-
age, and matrix time series. Matrix time series de-
scribes that multiple timestamps can be entered per
item (Bader et al., 2017).

In order to compare granularity and down-
sampling, four criteria are considered: support of
down-sampling, the smallest sample interval, the
smallest granularity for storage, and the smallest
guaranteed granularity for storage. Most databases
support down-sampling, i.e., when executing queries
the results can be fitted for outputs with longer time
frames. Two timestamps must be defined, as well as
data for short time intervals within the wider time in-
tervals. The shorter time interval is also referred to
as the sampling interval. Granularity describes the
smallest gap feasible between two timestamps, i.e.,
the degree of detail in data that can be stored. If

On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems

143



a system stores data in finer granularity than is se-
curely guaranteed, data could be aggregated or might
get lost. For our comparison, we consider the small-
est sample interval, the smallest granularity for stor-
age, and the smallest guaranteed granularity for stor-
age (Bader et al., 2017).

In the next category, interfaces and extensibil-
ity, we consider collecting consisting interfaces and
checking for client libraries and plugins. As inter-
faces, we consider both, graphical and non-graphical
interfaces that are provided for a specific database
system. Client libraries support handling network
management and accessing the data. The function-
ality of the database system may be increased with
plugins (Bader et al., 2017).

To study support and license, we check for long-
term support (LTS) of stable versions, commercial
support, and free licenses (Bader et al., 2017).

Next to functional requirements, we also con-
sider non-functional requirements for our compari-
son. First, we study the databases’ efficiencies when
loading data. We load the data in batches and increase
the batch size in powers of 10. The resulting met-
ric represents the average number of data instances
loaded per unit of time (Hao et al., 2021).

Second, the query latency, i.e., the amount of time
needed to execute a query, is tested. We rely on the
research by Liu and Yuan (2019) as we apply their
defined query types. The resulting metric per query is
the average response time. We slightly adapted the ten
queries presented by Liu and Yuan (2019) to better fit
our research scope and data structure, since Liu and
Yuan (2019) solely focus on time-series databases.

5 COMPARISON OF DATABASES

5.1 Data Collection and Installation

To adequately compare the functionalities of the
database systems, we rely on large datasets. For
our research, we utilize three different data sources.
First, the majority of the data is fetched from The
Things Network (TTN)3, collecting data that is gen-
erated by end devices installed and configured by the
research group. Using a workflow created in Node-
RED4 we track every new data point from the col-
lection of devices from TTN and store the data in a
MySQL database, which is only used to easily store
the data during the data collection. Second, we use
further data that is generated by weather sensors in-

3https://www.thethingsnetwork.org/
4https://nodered.org

stalled at the University of Koblenz. This data can
be accessed by an Application Programming Inter-
face (API) endpoint and is periodically saved in the
MySQL database as well. Last, we artificially create
data from the two previous data sources to further ex-
tend the size of the dataset. In total, we were able to
collect and generate around 10 million data points.

The data consists of five attributes: a unique iden-
tifier for each data point, a timestamp, an identifier
referencing the sensor that generated the data, the type
of measurement, and the measured value.

In order to test the database systems, we install
the corresponding Docker image of each system on
an Ubuntu machine. Using a unified setup for each
database system ensures a fair comparison of the non-
functional requirements of the database systems. For
each database system, we used the latest version of the
Docker image that was available at the time the paper
was written. Our evaluation is written in Python, us-
ing Python client libraries for each database system.

5.2 Comparison

5.2.1 Functional Requirements

The results of the comparison of functional require-
ments can be found in appendix A.2. First, we stud-
ied three criteria related to distributed systems. We
were able to conclude that both relational databases
favored consistency and availability over partition tol-
erance. The NoSQL database Cassandra, however, fa-
vors partition tolerance over consistency, while Mon-
goDB guarantees consistency over availability. Sim-
ilar to Cassandra, InfluxDB focuses on availability
over consistency, while QuestDB favors consistency
over availability. Both relational databases do not
support scalability or load balancing. Additionally,
compared to other time-series databases, the open-
source version of InfluxDB is not scalable.

All databases support the basic and aggregate
functions that were checked in our research. Conclud-
ing, since all the databases provide aggregate func-
tions, they also fulfill the continuous calculation cri-
teria. Only InfluxDB supports tags, and only the re-
lational databases do not support long-term storage.
As time-series databases use the timestamp as the pri-
mary key, they do not allow for matrix time series,
while the other database systems do.

All databases support down-sampling without re-
strictions. Additionally, all support a minimum time
range of one millisecond.

Each database provides an API to access the data.
In addition, they all provide client libraries and plug-
ins to connect to the database via multiple program-

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

144



Table 1: Comparison of Data Loading (in sec.).

Database 100 101 102 103 104 105 106 107

MySQL 0.311 2.359 24.570 253.74 2476.4 - - -
PostgreSQL 0.102 0.083 0.158 0.859 15.436 37.727 276.273 3086.24
Cassandra 0.034 0.626 3.131 29.807 247.68 2421.68 - -
MongoDB 1.110 1.123 4.479 40.033 450.10 3844.97 24127.58 -
InfluxDB 1.714 1.479 12.222 119.83 1263.70 12273.91 - -
QuestDB 0.251 0.190 0.285 0.315 0.316 2.0347 19.161 272.30

ming languages. Most of them also support a free
open-source interface for querying and visualizing
data. Detailed information on the provided APIs can
be found in appendix A.2.

For the last subgroup of functional requirements,
we collected information on the current stable ver-
sion, if they have commercial support, and the license.
We provide that information to give an understand-
ing of how active the development of all the selected
databases is.

5.2.2 Non-functional Requirements

The test of the non-functional requirements is divided
into two parts. First, we measured the data inges-
tion time using the data that was collected from the
different sensor sources. This measurement should
represent the behavior of the databases when faced
with inserting large amounts of IoT data. From the
results in table 1, we can conclude that QuestDB is by
far the fastest database when inserting data. During
the test, we noticed that some databases crash when
the amount of data points inserted is too large. Only
QuestDB and PostgreSQL were able to cope with
the entire set of ten million data instances. MySQL
was the slowest database system and additionally also
crashed first after inserting ten thousand data points.
To our surprise, InfluxDB showed a low performance.

Second, we studied the query latency using ten
thousand data points from the dataset. We needed
to reduce the entire dataset to ten thousand because
MySQL was not able to cope with more data. Thus,
to ensure a fair comparison, we reduced the dataset.
The results are depicted in table 2. In total, we ex-
ecuted 10 queries (Q1 - Q10) according to Liu and
Yuan (2019):

Q1: Exact Point Query. A particular data instance
was fetched from the databases based on speci-
fied matching criteria. The relational databases
performed well, which can be explained by their
indexed primary key. Overall, Cassandra showed
the best performance followed by PostgreSQL
and QuestDB.

Q2: Time Range Query. For this query, a time
range for the data that needs to be fetched was

specified. Similarly, as for the first query, Cas-
sandra showed the best performance followed by
QuestDB. Here MongoDB showed the worst per-
formance, i.e., being the slowest database the
fetch the data.

Q3: Time Range Query with Limit. The third
query is a modification of the second query since
a limit was added, reducing the fetched data to
a pre-defined amount. Here Cassandra and Post-
greSQL showed the best results.

Q4: Time Range Query with Multiple Filters.
For this query, we included multiple filter crite-
ria to the query. Cassandra was again the fastest
database to execute the query, while MongoDB
showed the slowest performance.

Q5: Time Range Query with Multiple Filters
with Limit. As an adaptation to the fourth query,
we added a limit to restrict the number of results.
Cassandra again showed the best performance,
followed by the two relational database systems.

Q6: Query with Aggregation Function (AVG).
From this query onward we test several aggrega-
tion functions. Starting with the average function,
our results show that QuestDB executed the query
first. The two relational databases also show de-
cent results.

Q7: Query with Aggregation Function
(COUNT). When counting data points, Post-
greSQL showed the best performance. Due to an
error, the results of the Cassandra database could
not be considered. The Python client was not
able to execute the query, since the aggregation
of data was grouped by the devices, which is
not the primary key. Cassandra, however, only
permits an aggregation grouped by the primary
key, which in our case is the timestamp.

Q8: Query with Aggregation Function (SUM/
MEAN). For the SUM or MEAN function, Mon-
goDB showed the best performance. Similarly
to the previous query, the result of the Cassandra
database could not be considered due to an error
when executing the query.

Q9: Query with Aggregation Function (MAX/
MIN). QuestDB, MySQL, and InfluxDB showed

On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems

145



Table 2: Comparison of Query Latency (in sec.).

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
MySQL 0.095 0.102 0.836 0.091 0.028 0.083 0.107 0.186 0.067 0.281

PostgreSQL 0.031 0.162 0.016 0.12 0.018 0.136 0.036 0.117 0.147 0.218
Cassandra 0.0004 0.0009 0.001 0.0005 0.001 0.485 - - 0.337 -
MongoDB 0.851 0.3 0.041 0.334 0.313 0.166 0.074 0.116 0.103 0.236
InfluxDB 0.203 0.197 0.131 0.071 0.087 0.213 0.213 1.584 0.087 0.213
QuestDB 0.037 0.037 0.045 0.058 0.044 0.0419 0.121 0.135 0.055 0.141

the best results when applying the MAX or MIN
aggregation function. The database Cassandra
showed rather weak performance.

Q10: Query with Aggregation Function (MAX)
and Group-By Clause. Due to the same exe-
cution error as before, the result of the Cassan-
dra database could not be considered. QuestDB
showed the best performance among the remain-
ing database systems.

Despite the reoccurring error, the NoSQL database
Cassandra shows the best performance for five queries
as compared to the other database systems. When cal-
culating the average, however, QuestDB shows the
best results, while InfluxDB comes in last due to a
significantly higher value for Q8 as compared to re-
sults from other queries. On average, PostgreSQL and
MySQL also show decent results overall.

6 DISCUSSION AND
CONCLUSION

In this research, we demonstrated a comparison of
database systems regarding their functionalities re-
quired to meet the demands for IoT applications.
We initially performed a market analysis to iden-
tify a large set of databases. For our market study,
we focused on relational, NoSQL, and time-series
databases. After having collected information on 50
database systems, we refined the set based on pre-
defined criteria. We solely focused on open-source,
on-premise database systems that can be set up using
an official Docker image. After excluding systems
that did not meet our criteria, we applied a popularity
measure to identify the two most popular systems per
category from the systems that were still remaining.

Next, we performed a requirements analysis based
on related literature to identify functional and non-
functional requirements for a database system in an
IoT context. Based on these requirements we per-
formed a variety of tests. As a result, we were able
to demonstrate the weaknesses and strengths of the
database systems, which helps practitioners and re-
searchers in their decision on which database to use.

From our comparison of the functional require-
ments, we conclude the following aspects. The se-
lected relational database systems focus on consis-
tency and availability, while both, the NoSQL and
time-series databases definitely focus on partition tol-
erance, but then either aim for high availability or
high consistency. Only the relational database sys-
tems are not scalable and do not provide load bal-
ancing. Additionally, the open-source version of In-
fluxDB is also not scalable. Since scalability is an
important aspect to handle the vast amounts of data
created by IoT devices, our results regarding this cri-
terion show that relational databases are less suitable.
Additionally, the relational databases also do not sup-
port long-term storage, which again makes them less
appropriate for IoT use cases. Tags are only supported
by InfluxDB, while matrix time series is only possi-
ble in the relational and NoSQL databases. For the
remaining functional criteria, we were not able to ob-
serve significant differences between the systems.

Our test of the non-functional requirements
demonstrated inclusive results. First, the results of
the data ingestion test showed that QuestDB, one of
the time-series databases tested, shows the best re-
sults overall, while InfluxDB performed very poorly.
Based on this observation, we cannot make the gen-
eralized conclusion that time series databases are best
suited for storing large amounts of data quickly. Inter-
estingly, one of the relational databases, PostgreSQL,
showed very decent results for each test as well. Both
NoSQL databases performed moderately.

Second, our comparison of the query latencies
demonstrated that Cassandra shows by far the best
results. Additionally, the relational databases show
decent performance for basic queries since they used
a primary key on the timestamp improving the per-
formance of queries on the timestamp. On average,
QuestDB performs the best. Similar to our test on
loading the data into the databases, InfluxDB shows
inefficient performance. As expected, the relational
databases performed only decently.

While based on the results of our test on func-
tional and non-functional requirements, we are not
able to identify a clear winner, we still conclude that
QuestDB appears to be most suitable to handle the

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

146



large amounts of data generated from IoT devices. We
additionally observed that there exist large differences
between databases of the same type since InfluxDB
indicated a weaker performance than QuestDB, for
instance.

Our study has limitations since we restricted the
set of tested systems to open-source and on-premise
databases, while commercial and/or systems hosted
on clouds make up a large majority of the database
systems available as demonstrated in our market re-
search. We did not consider further requirements for
using database systems in an IoT application, such
as security. Still, we demonstrated the strengths and
weaknesses of six popular databases regarding their
suitability for IoT use cases, providing a comprehen-
sive overview to support decision-making.

ACKNOWLEDGEMENTS

This research has been supported by the Deutsche
Forschungsgemeinschaft (DFG) under Research
Grant No. 432399058.

REFERENCES

Alam, M., Rufino, J., Ferreira, J., Ahmed, S. H., Shah, N.,
& Chen, Y. (2018). Orchestration of microservices for
iot using docker and edge computing. IEEE Commun.
Mag., 56(9), 118–123.

Amghar, S., Cherdal, S., & Mouline, S. (2018). Which
NoSQL database for IoT Applications? 2018 Proc.
of MoWNeT, 131–137.

Bader, A., Kopp, O., & Falkenthal, M. (2017). Survey
and comparison of open source time series databases.
Datenbanksysteme für Business, Technologie und Web
(BTW 2017) - Workshopband, 249–268.

Baiyere, A., Topi, H., Wyatt, J., Venkatesh, V., & Donnel-
lan, B. (2020). Internet of things (IoT) – a research
agenda for information systems. Commun. Assoc. Inf.
Syst., 47(1), 21.

Beynon-Davies, P. (2017). Database systems. Bloomsbury
Publishing.

Chauhan, D., & Bansal, K. L. (2017). Using the advantages
of nosql: A case study on mongodb. Int. J. Recent In-
nov. Trends Comput. Commun., 5, 90–93.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey.
Mob. Netw. Appl., 19, 171–209.

Chui, M., Löffler, M., & Roberts, R. (2020). The Internet of
Things. McKinsey Quarterly.

Codd, E. F. (1970). A relational model of data for large
shared data banks. Commun. ACM, 13, 377–387.

De Mauro, A., Greco, M., & Grimaldi, M. (2015). What is
big data? A consensual definition and a review of key
research topics. AIP Conference Proceedings, 1644,
97–104.

Elmasri, R., & Navathe, S. B. (2016). Fundamentals of
database systems (7th ed.). Pearson.

Fatima, H., & Wasnik, K. (2016). Comparison of sql, nosql
and newsql databases for internet of things. 2016
IEEE Bombay Section Symposium (IBSS), 1–6.

Gregor, S., & Hevner, A. R. (2013). Positioning and pre-
senting design science research for maximum impact.
MIS Quarterly, 37, 337–355.

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M.
(2013). Internet of Things (IoT): A vision, architec-
tural elements, and future directions. Future Gener.
Comput. Syst., 29(7), 1645–1660.

Hao, Y., Qin, X., Chen, Y., Li, Y., Sun, X., Tao, Y., Zhang,
X., & Du, X. (2021). Ts-benchmark: A benchmark
for time series databases. Proc. of 37th IEEE ICDE,
588–599.

ITU-T, T. S. S. o. I. (2011). Overview of the Internet of
Things (tech. rep.) [Publication Title: International
Telecommunication Union].

Liu, R., & Yuan, J. (2019). Benchmarking time series
databases with iotdb-benchmark for iot scenarios.
arXiv preprint. http://arxiv.org/abs/1901.08304

Lycett, M. (2013). ’Datafication’: Making sense of (big)
data in a complex world. Eur. J. Inf. Syst., 22(4),
381–386.

Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac,
I. (2012). Internet of things: Vision, applications
and research challenges. Ad Hoc Networks, 10(7),
1497–1516.

Mostafa, J., Wehbi, S., Chilingaryan, S., & Kopmann, A.
(2022). Scits: A benchmark for time-series databases
in scientific experiments and industrial internet of
things. Proc. of the 34th Int. Conf. Sci. Stat. Database
Manag., 1–11.

Musa, E., Delač, G., Šilić, M., & Vladimir, K. (2019).
Comparison of relational and time-series databases
for real-time massive datasets. 2019 Proc. of the 42th
MIPRO, 1065–1070.

Nasar, M., & Kausar, M. A. (2019). Suitability of influxdb
database for iot applications. Int. J. Eng. Innov. Tech-
nol., 8, 1850–1857.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatter-
jee, S. (2007). A design science research methodology
for information systems research. J. Manag. Inf. Syst.,
24(3), 45–77.

Rautmare, S., & Bhalerao, D. M. (2016). MySQL and
NoSQL database comparison for IoT application.
2016 Proc. of. IEEE ICACA, 235–238.

Rayes, A., & Salam, S. (2017). Internet of things from hype
to reality. Springer Basel.

Sestino, A., Prete, M. I., Piper, L., & Guido, G. (2020). In-
ternet of Things and Big Data as enablers for business
digitalization strategies. Technovation, 98(July).

solid IT gmbh. (2022). Db-engines ranking. Retrieved
December 7, 2022, from https://db-engines.com/en/
ranking/relational+dbms

Strohbach, M., Ziekow, H., Gazis, V., & Akiva, N. (2015).
Towards a big data analytics framework for iot and
smart city applications. MOST, 4, 257–282.

On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems

147



A APPENDIX

A.1 Market Analysis

Database Type Operating
Systems Maintainer License Latest Stable

Release
First

Release
Cloud/

on-prem.

Official
Docker
Image

Oracle relational,
multi-model all Oracle

Corp commercial in 2019:
19C 1980 both no

MySQL relational,
multi-model all MySQL open-source in 2022:

8.0.29 1995 both yes

Microsoft
SQL Server

relational,
multi-model

Linux,
Windows Microsoft commercial

in 2019:
SQL Server

2019
1989 both no

PostgreSQL relational,
multi-model all

PostgreSQL
Global Devel-
opment Group

open-source in 2022:
15.1 1996 both yes

IBMDB2 relational,
multi-model all IBM commercial in 2022:

13.1 1983 both yes

Microsoft Access relational Windows Microsoft commercial
with trailware

in 2019:
Microsoft

Access 2019
1992 both no

SQLite relational all SQLite public domain in 2022:
3.39.0 2000 both no

Maria DB relational,
multi-model all

MariaDB
Corporation Ab,

MariaDB
Foundation

open-source in 2022:
10.9.3 2009 both yes

Microsoft Azure relational,
multi-model Windows Microsoft commercial in 2022:

V12 2010 cloud no

Snowflake relational hosting
on all

Snowflake
Computing Inc. commercial in 2022:

6.15 2014 cloud no

Databricks multi-model hosting
on all Databricks open-source in 2022:

11.2 2013 cloud no

Google Big Query relational hosting
on all Google commercial in 2022:

3.3.3 2010 cloud no

Teradata relational Linux Teradata commercial in 2019:
1.0 MU2 1984 both no

Amazon Redshift relational,
multi-model

hosting
on all Amazon commercial in 2022:

1.0.41465 2012 cloud no

FileMaker relational all FileMaker commercial in 2021:
19.4.1 1983 both no

Mongo DB Document Store all MongoDB, Inc
open-source
Server-side

public license

in 2022:
6.0.1 2009 both yes

Cassandra Wide-column
store all Apache Software

Foundation open-source in 2022:
4.0.6 2008 both yes

Redis Key-value store all Redis open-source in 2022:
7.0.4 2009 both yes

Hbase Wide-column
store all Apache Software

Foundation open-source in 2022:
2.5.0 2008 both yes

Amazon
Dynamo DB

Document store,
Key-value store all Amazon commercial in 2022

(no version) 2012 cloud no

Microsoft Azure
Cosmos DB

Graph DBMS,
Document
Key-value,

Wide-column

all Microsoft commercial in 2022
(no version) 2014 cloud no

Memcached Key-value store all Danga Interactive open-source in 2022:
1.6.15 2003 both yes

Firebase
Realtime Database Document store all Google commercial in 2022

(no version) 2012 cloud no

Datastax Enterprise Wide-column
store all DataStax commercial in 2020:

6.8 2011 both no

CouchDB Document Store all Apache Software
Foundation open-source in 2022:

3.2.2 2005 both yes

CouchBase Document Store all CouchBase, Inc open-source in 2021:
7.1.0 2010 cloud yes

Google Cloud
FireStore Document store all Google commercial in 2022

(no version) 2017 cloud no

Microsoft Azure
Table Storage

Wide-column
store all Microsoft commercial in 2022

(no version) 2012 cloud no

Google Cloud
Bigtable

Key-value,
Wide-column

store
all Google commercial in 2022

(no version) 2015 cloud no

IoTBDS 2023 - 8th International Conference on Internet of Things, Big Data and Security

148



Neo4j Grapf DBMS all Neo4j, Inc open-source in 2022:
4.4.11 2007 both yes

InfluxDB Time-series all InfluxData open-source in 2022:
2.4 2013 both yes

Kdb+ Time-series all Kx Systems commercial in 2018:
3.6 2000 both no

Prometheus Time-series all Prometheus open-source in 2022:
V2.3.0 2015 both yes

Graphite Time-series Linux Orbitz
Worldwide, Inc open-source in 2022:

1.1.10 2006 both no

Timescale DB Time-series all Timescale Inc open-source in 2022:
2.6.0 2018 both no

Apache Druid Time-series all Apache Software
Foundation open-source in 2022:

24.0.0 2012 both no

RRD Tool Time-series Linux Tobias Oetiker open-source in 2022:
1.8.0 1999 both no

Open TSDB Time-series all Yahoo open-source in 2021:
2.4.1 2011 both no

Dolphin DB Time-series Linux,
Windows Dolphin Db, Inc commercial in 2022:

V2.00.4 2018 both no

Fauna Time-series all Fauna, Inc commercial in 2021
(no version) 2014 cloud no

Quest DB Time-series all QuestDB Limited open-source in 2021:
6.0.3 2016 both yes

Grid DB Time-series Linux Toshiba Digital
Solutions Corp. open-source in 2022:

5.0.0 2013 both no

TD Engine Time-series Linux,
Windows TDEngine open-source in 2022:

3.0.1.3 2019 cloud no

Amazon Timestream Time-series all Amazon commercial in 2022
(no version) 2022 cloud no

KairosDB Time-series all KairosDB open-source in 2018:
1.2.2 2013 both no

eXtremeDB Time-series all McObject commercial in 2021:
8.2 2001 both no

Victoria Metrics Time-series all VictoriaMetrics open-source in 2022:
V1.77 2018 both no

IBM Db2 Event Store Time-series all IBM commercial in 2021:
2 2017 both no

Raima Database
Manager Time-series all Raima Inc commercial in 2021:

15.2 1984 both no

Apache IOTDB Time-series all Apache Software
Foundation open-source in 2022:

0.13.2 2018 both no

A.2 Comparison
Requirement MySQL PostgreSQL Cassandra MongoDB InfluxDB QuestDB

i)
CAP Theorem CA CA AP CP AP CP

Scalability ✗ ✗ ✓ ✓ ✗ ✓
Load Balancing ✗ ✗ ✓ ✓ ✓ ✓

ii)

a) Basic Functions ✓ ✓ ✓ ✓ ✓ ✓
Aggregate Functions ✓ ✓ ✓ ✓ ✓ ✓

b)

Continuous Calculation ✓ ✓ ✓ ✓ ✓ ✓
Tags ✗ ✗ ✗ ✗ ✓ ✗

Long-term Storage ✗ ✗ ✓ ✓ ✓ ✓
Matrix Time Series ✓ ✓ ✓ ✓ ✗ ✗

iii)

Down-Sampling ✓ ✓ ✓ ✓ ✓ ✓
Smallest Sample

Interval 1ms 1ms 1ms 1ms 1ms 1ms

Smallest Granularity
for Storage 1ms 1ms 1ms 1ms 1ms 1ms

Smallest Guaranteed
Granularity for Storage 1ms 1ms 1ms 1ms 1ms 1ms

iv)
API and Interfaces

MySQL Rest
API, MySQL
Workbench

and CLI

PostgREST
for API,

PgAdmin and
CLI

Cassandra
Restful API,

Cassandra Query
Language Shell

(cqlsh)

MongoDB
REST API,
MongoDB
Compass

Collect, CLI,
Graphite,
InfluxQL,

OpenTSDB

QuestDB
REST API,

Web Console

Client Libraries ✓ ✓ ✓ ✓ ✓ ✓
Plugins ✓ ✓ ✓ ✓ ✓ ✓

v)

Version Used in Experiments
and Release Date

8.0.30
Jul 2022

15.0
Oct 2022

4.0
Oct 2022

6.0
Aug 2022

2.4.0
Aug 2022

6.5.4
Oct 2022

Commercial Support ✓ ✓ ✓ ✓ ✓ ✓

License GNU GPL PostgreSQL
License

Apache Software
Foundation GNU AGPL MIT Apache-2.0

On-Premise Internet of Things (IoT) Data Storage: Comparison of Database Management Systems

149


