
Efficient Academic Retrieval System Based on Aggregated Sources

Virginia Niculescu a, Horea Greblă b, Adrian Sterca c and Darius Bufnea d

Computer Science Department “Babeş-Bolyai” University, 1. M. Kogălniceanu, Cluj-Napoca, Romania

Keywords: Data Engineering, Retrieval Systems, Recommender Systems, Research Paper Databases, Academic Sources,
Big-Data Processing, NLP, Apache Spark, Graph-Databases.

Abstract: On account of the extreme expansion of the scientific research paper databases, the usage of searching and
recommender systems in this area increased, as they can help researchers find appropriate papers by searching
in enormous indexed datasets. Depending on where the papers are published, there might be stricter policies
that force the author to also add the needed metadata, but still there are other for which these metadata are
not complete. As a result, many of the current solutions for searching and recommending papers are usually
biased to a certain database.
This paper proposes a retrieval system that can overcome these problems by aggregating data from different
databases in a dynamic and efficient way. Extracting data from different sources dynamically and not only
statically, based on a certain database, is important for assuring a complete interrogation, but in the same time
incur complex operations that may affect the performance of the system. The performance could be maintained
by using carefully designed architecture that relies on tools that allow high level of parallelization.
The main original characteristic of the system is represented by the hybrid interrogation of static data (stored
in databases) and dynamic data (obtained through real-time web interrogations).

1 INTRODUCTION

Recommender systems have a large number of appli-
cations in many fields including economic, education,
and scientific research. On the other hand, data en-
gineering is the practice of designing and building
systems for collecting, storing, and analyzing data at
scale. These systems collect, manage, and convert
raw data into usable information for data scientists
and business analysts to interpret. The goal of these
systems is to make data accessible, and so they enable
subsequent data analysis (Reis and Housley, 2022).

In academic research it is essential to be able to
easily find the papers that treat specific themes in or-
der to have a complete and correct view over the pre-
vious work. In addition, it is very useful to find ex-
perts and possible collaborators in specific domains,
based on their published work.

Paper recommender systems aim to help re-
searchers mitigate information overload and find rel-
evant papers for their research, while author recom-

a https://orcid.org/0000-0002-9981-0139
b https://orcid.org/0000-0002-8529-5797
c https://orcid.org/0000-0002-5911-0269
d https://orcid.org/0000-0003-0935-3243

mender systems can provide collaborators sugges-
tions for researchers and help them find specialists in
certain domains.

Nowadays, there are different scientific databases
that index scientific papers such as Scopus, Web of
Science, DBLP, Crossref, ACM Digital Library, IEEE
Xplore, Semantic Scholar, Google Scholar, etc. Also,
researchers may share their research findings and pub-
lications via digital platforms (e.g. arXiv, Research-
Gate) for free for knowledge exchange (Sun et al.,
2014). A complete search implies looking in many (if
not all) these sources in order to identify all needed in-
formation. Many of the current solutions (e.g.: Con-
nectedPapers (Alex Tarnavsky et al., 2020), OpenCi-
tations (Peroni and Shotton, 2020), SciGraph (Sci-
Graph, 2022)) that index scientific papers are usually
biased to a certain scientific database.

Given that the number of published papers grows
exponentially, it’s hard to keep track of the latest find-
ings in a field of interest. For this reason, the metadata
(i.e. – information that describes the resource: name,
creator, description, date of creation, keywords) asso-
ciated with them is crucial in a modern information
system, to easily find the corresponding resources.
Depending on where the papers are published, there
might be strict policies that force the author to add

436
Niculescu, V., Greblă, H., Sterca, A. and Bufnea, D.
Efficient Academic Retrieval System Based on Aggregated Sources.
DOI: 10.5220/0011850600003464
In Proceedings of the 18th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2023), pages 436-443
ISBN: 978-989-758-647-7; ISSN: 2184-4895
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



the needed metadata or not so strict.
Even though the metadata is missing, they are still

a key part of an information retrieval system, and it
would be useful if they could be automatically ex-
tracted if necessary.

There are ranked databases that allow publishing
the work even in the manuscript form without even
requiring important meta-fields, such as the subject,
the abstract, the affiliations of the authors. Some
of those can be automatically generated (subject, ab-
stract), while others might be filled in through a pro-
cess called metadata harvesting which aggregates the
same resource from multiple sources, which might
have those fields filled in, or have some additional in-
formation (Gill et al., 2008).

For any recommender or retrieval system it is es-
sential to have fast access to a complete and up-to-
date set of data from which it can extract the most
appropriate solutions.

In addition, nowadays systematic literature re-
views are more and more important for a solid re-
search. A system that could easily extract all the rel-
evant results of a particular domain is extremely use-
ful.
Objectives and Contribution. The main objective
of this research is investigate how to efficiently col-
lect and aggregate academic papers from multiple
sources, in order to obtain a complete academic base
for academic recommendation. Through a complete
academic base we understand an interrogation space
(that may have static but also dynamic parts) of scien-
tific papers with complete metadata information.

• A pure dynamic approach would imply dy-
namic searching (using web crawlers) on different
sources, aggregation of the results and only tem-
porary store these results.

• A pure static approach would imply to prior col-
lect all the information from the remote sources
and periodically update the locally stored global
database. These implies not only very high initial
costs, but also continuous costs required by the
periodical updating.
We propose here a hybrid variant that stores in-

ternally data from one source (up to a certain date)
and then uses a dynamic approach to obtain informa-
tion from other sources. In order to demonstrate the
proposed approach we developed a tool called ARRS
(Aggregator Research Retrieval System) that allows
the user to investigate a field of interest: see what pa-
pers have already been published on that topic, the au-
thors that worked on a specific paper and all the other
authors they collaborated with.

We assert that a graph database would be appro-
priate to be used for the system storage due to its char-

acteristics that allow establishing the natural connec-
tions between the data (papers and authors). In addi-
tion, the storage is updated and supplemented through
any usage of the system. The users of the system will
be those that accomplish the maintenance.

Performance is another important issue that could
be achieved by employing parallel computing for the
dynamic search and database updating. For this rea-
son, the metadata normalization process is done on
an Apache Spark cluster (Haines, 2022; Apache Soft-
ware Foundation, 2022).

Most of the open-source solutions (e.g. (Alex Tar-
navsky et al., 2020), (Corporation for Digital Schol-
arship, 2006), (Peroni and Shotton, 2020), (SciGraph,
2022)) that allow a user to query papers on a specific
topic have behind the scenes an indexed dataset which
is used to deliver a response in real-time. Even though
this aspect greatly increases responsiveness, this also
means that the newest papers might not be present in
this dataset. It is also the case for the tools that rely
entirely on an external data source (e.g.: VOSviewer
(Centre for Science and Technology Studies, )), which
allows the user to build a network of papers dynami-
cally, using API calls.

In contrast, the proposed approach besides using
an indexed dataset stored in a graph database, it also
interrogates multiple academic data sources to update
the dataset while each user searches for the topics
of interest. Thus, this hybrid approach allows re-
sponsiveness through the use of an indexed dataset,
brings newly published papers using APIs for the plat-
forms that provide such services, such as IEEE, Sco-
pus and Crossref, and crawlers to also gather data
from sources that don’t have an available API.

In terms of efficiency, the ARRS was designed as
a scalable solution, by using multiple parallelization
techniques.

In the same time, the system represents a proof
of concept for a general hybrid big data system that
interrogates static data (stored in databases) and dy-
namic data (obtained through web interrogations).
Paper Structure. After this first section that gives
a short introduction into the context, objectives and
contribution, section 2 analyzes the related work in
the field of academic recommender and search sys-
tems, with a special interest on freely web accessible
tools. In section III the design of the proposed solu-
tion is described: the system requirements and func-
tionalities, the architecture and some implementation
challenges. The evaluation is done based on three cri-
teria: usability, accuracy, and performance, and these
are reported in section IV. Finally, the conclusions are
drawn, and the future research directions that could
be taken.

Efficient Academic Retrieval System Based on Aggregated Sources

437



2 RELATED WORK

Recommender systems (also known as recommenda-
tion engines) are tools that offer useful item sugges-
tions based on the user input or profile. Ideally, a
recommender system provides recommendations au-
tomatically by inferring the needs from the user’s item
interactions. Alternatively, the recommender system
asks users to specify their needs by providing a list of
keywords or through some other methods. Even if by
introducing keywords the system becomes more sim-
ilar to a search engine or a retrieval system, it is es-
timated that about 80% of the recommender systems
requires users to either explicitly provide keywords or
to provide text snippets (Beel et al., 2016).

In this regard, recommender and retrieval sys-
tems are alike, meaning they both search for relevant
items/documents to the user’s query. Still, a recom-
mender system can also provide a ranked list of sug-
gestions by checking the importance of each resource
found (Ricci et al., 2022) or additional information
that could be discovered from the initial suggestion
list.

The surveys (Beel et al., 2016; Bai et al., 2020)
emphasize the following recommendation techniques
as being the most appropriate approaches in the field
of research-paper recommender systems: Stereotyp-
ing, Content-based Filtering, Collaborative Filtering,
Co-Occurrence, Graph-based, Global Relevance, or
Hybrid.

From the same surveys it may be noticed that more
than half of the recommendation approaches applied
content-based filtering (Pazzani and Billsus, 2007;
Caragea et al., 2014), while collaborative filtering and
graph-based (Gori and Pucci, 2006; Xia et al., 2016;
Zhou et al., 2014) recommendations were applied
each in around 15% of the approaches. In addition,
most approaches neglected the user-modeling process
and did not infer information automatically, but let
users provide keywords, text snippets or a single pa-
per as input. In this regard, they are much similar
to retrieval systems. During development of our sys-
tem, we have considered: content based, graph-based,
global relevance and hybridization(Burke, 2007).

Following an analysis of the open-source solu-
tions that tackle the problem of academic papers re-
trieval based on some keywords or specific queries,
the next tools have been identified as representatives.
CitNetExplorer: is a tool developed at the Leiden
University that can be used to visualize and analyze
citation patterns of scientific publications. It uses var-
ious algorithms to detect the connected components,
most relevant papers, shortest and longest paths. It
also allows indirect citation relations to be visible on

the graph, and supports direct import from Web of
Science. Its main advantage is that it can handle large
citation networks (millions of papers and ten times
more relations) (van Eck and Waltman, 2014).
VOSviewer: is another tool from the Leiden Uni-
versity that is used to build and visualize bibliomet-
ric networks. The networks can contain many types
of publications and the relations between the nodes
can use the citation, bibliographic coupling or co-
authorship. This tool also allows to build and vi-
sualize networks that are related to a specific query.
It can download data from Web of Science, Scopus,
Dimensions, Lens and PubMed. Through the APIs
provided by Crossref, Semantic Scholar, OpenCita-
tions and WikiData, it can build co-authorship and co-
occurrence networks (Centre for Science and Tech-
nology Studies, ). Even though the VOSviewer tool
might have full subscriptions to all the APIs above,
depending on the required size of the network, query-
ing those databases through the API might not be very
suitable, due to the high latency.
ConnectedPapers: is a visual tool, very easy to use,
that provides a graph overview of the academic land-
scape on a specific topic. It’s mainly used to discover
relevant prior work on the subject of interest and to
create bibliographies for research papers.
Unlike the previous solutions, ConnectedPapers
doesn’t use a citation tree. It builds a graph in which
the papers are organized depending on how similar
they are. As a result, even if the papers don’t nec-
essarily cite one another, they can still be highly re-
lated and put into the graph close to each other. The
metric used for determining the similarity uses co-
citations and bibliographic coupling, which means
that if two papers have similar references, they’re
most likely related. When building the graph, Con-
nectedPapers searches through approximately 50,000
papers, groups similar papers in clusters, while high-
lighting the popular papers (highly cited) with larger
nodes, and recent papers with darker colors (Alex Tar-
navsky et al., 2020). The only limitation is the fact
that the queried papers are retrieved from a single
database, namely the Semantic Scholar Paper Corpus.
Besides having this single point of failure, the papers
might not be relevant for criteria such as geographic
location.
Zotero: was first proposed in 2006; this is an open-
source tool which is used to gather, arrange, and an-
alyze research papers. The user can manage a per-
sonal library, as well as generating bibliographies, ci-
tations, and reports (Corporation for Digital Scholar-
ship, 2006). Zotero can be seen more like a research
paper manager rather than a recommender system, be-
cause although the user can supply RSS feeds and

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

438



other data sources, this implies that the user has to
introduce them manually.
OpenCitations: is a tool for open scholarship that
tackles the publication of open citation data in the
form of Linked Open Data. This means that it builds
an open source citation index. It currently contains in-
formation about approximately 14 million citations.
The main goal of this tool is to make scholarly bib-
liographic and citation data largely available to any
user (Peroni and Shotton, 2020). Though it provides
a huge index of research papers, this tool is more like
a database, rather than a recommender system, but it
can be well used as an input for such a software tool.
SciGraph: is a knowledge graph from Springer,
which offers linked open data from the following ag-
gregates sources: Springer Nature, Digital Science
and Unsilo. This aggregated data generates a rich
semantic abstract of how various pieces of informa-
tion are related. It currently can hold between 1.5
and 2 billion relations between various types of pa-
pers, such as journals, articles, books, and confer-
ences (SciGraph, 2022). SciGraph’s dataset is highly
biased on the indexes provided by their partners. They
plan to extend their dataset to bring more highly qual-
itative data.

3 ARRS –FUNCTIONALITY AND
DESIGN

The proposed system – ARRS – uses aggregated aca-
demic sources in order to extract the relevant papers
on a topic specified through a keyword based inter-
rogation. By choosing a resulted paper, its authors
together with their collaborators are extracted and
shown using connected graphs that emphasize also
the degree of connectivity.

3.1 System Functionality

Papers query.
The keyword interrogation can be given in a simple
implicit way as an enumeration of words (when we
assume an OR operator between them), but also in
more complex way using operators AND, OR, and
NOT.

An example of interrogation is:

“so f tware bot ′′

OR robotic AND so f tware
OR “robotic process automation′′

OR “so f tware robot ′′ NOT “cognitive automation′′

The result of such query is a graph of papers that
is also graphically represented on the interface. The

edge between two nodes in this papers graph repre-
sents one or more common keywords from the query,
the more common keywords, the wider the edge (each
edge has an associated weight).
Authors Network. After the relevant papers are
shown, the user may select a specific paper, and then
a graph of the corresponding authors and also all their
collaborators will be shown (a collaborator is an au-
thor that is co-author to at least one paper). In the au-
thors’ graph, an edge means co-authorship on at least
one paper.
Author’s Papers. On the authors’ graph, if the user
selects any author node (which can be an author cor-
responding to the initial selected paper, or a collabo-
rator), the system will display the papers published by
that author, as well as their metadata. This allows us
to inspect on what fields those researchers worked on,
in general, not only the fields described by the initial
query.

3.2 Data Normalisation

Behind the scene, there is a very important process:
data normalization. The collected data come from
different sources with various representation schemas
and they should be transformed in order to have a
common representation of the associated metadata
(e.g.: title, authors, authors’ affiliations, subject, pub-
lisher, publish year, abstract, DOI, type of article). If
for example the keywords are missing, ARRS will try
to extract keywords from the abstract (if available),
or from the title. The collected data are then used to
update the database, either by adding missing infor-
mation for certain papers or just adding new ones.

The system uses NLP (Natural Language Process-
ing) in the searching process (the roots of the key-
words are extracted using a stemming algorithm) and
in the normalisation process, too. For example, in or-
der to extract keywords from an abstract or from a
title, NLP algorithms have been enrolled.

3.3 Architecture, Design and
Implementation Challenges

Since we propose the creation of a system that can
gather data from multiple sources, normalize them on
a cluster, and aggregate them into a graph database,
this implies a very high level of complexity, and so a
hierarchical decomposition through modularisation is
needed.

In order to provide a high level of scalability,
ARRS was designed as a scalable solution, by using
multiple parallelization techniques.

Efficient Academic Retrieval System Based on Aggregated Sources

439



Figure 1: Architecture of the ARSS Retrieval System.

We have considered Apache Spark1 in order to im-
prove the performance of the normalization process –
Spark has been chosen as being appropriate for ef-
ficient streaming computation. (Many other recom-
mender systems use the machine learning component
– Apache ML2 for generating recommendations; this
could be added in a further development for AI rec-
ommendations.) The Sparck cluster uses a load bal-
ancer to distribute the workload to the worker nodes.

The architecture of the system is depicted in Fig-
ure 1.

For each emphasised component there were spe-
cific implementation challenges, and we emphasise
the most important of them in what it follows. Many
of these challenges were surmounted by using appro-
priate specialized frameworks, but putting all these to
work together represented also a challenge.
Spark Streaming Component. The Spark component
handles the data normalization. Once the data nor-
malization and keywords extraction is done, the result
is inserted into the graph database.

The Spark component accepts data as a socket text
stream and first has to deserialize the data and apply a
flatMap operation to ensure the result is a single col-

1https://spark.apache.org
2https://spark.apache.org/mllib/

lection, instead of a collection of collections (each
operation that processes the data is executed on the
Spark worker nodes). Then, after obtaining the dese-
rialized items, a transform operation is triggered on all
the RDDs (Resilient Distributed Datasets) which is then
chained with a map operation per RDD; this map oper-
ation calls the function that normalizes the items. Af-
ter the processing is done, foreach operations are used
to call the database manager function that inserts or
updates the items.
Publish-Subscribe System. Due to the fact that the
results obtained from the crawlers are yielded at dif-
ferent times, there is a need to transform them into a
stream, such that they can be processed when they are
available. To achieve this, a custom publish-subscribe
system based on TCP sockets was created that allows
the Web Sources Aggregator to send its data, as soon
as it becomes available, to the TCP server, which will
then forward it to its subscribers, meaning the Spark
system that builds a stream from the data received
through the TCP socket.
Web Sources Aggregator. This component has the
responsibility of retrieving papers from a large vari-
ety of data sources, such as Crossref, IEEE, ACM,
Scopus, ResearchGate, arXiv, in an efficient way, us-
ing thread pool executors (employing thread pool ex-
ecutors was essential in order to assure a good per-
formance). This component also allows the use of
Web crawlers that simulate the user interaction with a
browser to get the data, and a specialised framework
– Selenium3 – was used for this purpose.
The Web crawling process is triggered each time an
user enters a new query. Still, even parallelised,
crawling on the spot still takes tens of seconds, which
hinders the responsiveness of the system. To over-
come this, priorities for each dataset were assigned:
highest priority for the database, medium priority for
API calls (since it’s near instantaneously), and lowest
priority for the crawling. These priorities determine
what data will be first shown on the graph, which will
be regenerated when a new dataset is available.
Graph Database Manager. Considering the many-
to-many relationship between the papers and their au-
thors, as well as the complex join operations that are
in the dataset, the chosen graph database was neo4j4.
Initially, this database is populated with data from
Crossref that contains around 120 million papers.
Still, this contains only the work published until 2021,
which means that the system also has to query more
recent papers by crawling multiple databases, such as
IEEE, ACM, Scopus, arXiv, and ResearchGate. Each
query produces an update of the database by updat-

3https://www.selenium.dev
4https://neo4j.com

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

440



ing some missing metadata of some papers (if they
were found on the web sources) and by adding the
new papers that were found. This way the database
is dynamically and implicitly maintained through the
usage of the system by the users.
User Interface. The entries selected from the graph
database based on the user’s query are displayed on
the interface, as lists of papers and authors, as well as
graphical representations of the created graphs. When
the user enters a query, ARRS will first match the
papers from the database based on three meta-fields:
the title, the associated keywords, and the abstract.
The result of an interrogation is updated after the web
sources interrogation is finalized.

In addition to these main components, we empha-
size the following two modules:
Network Analysis Module. The network analysis
module was introduced as a part of ARRS controller
and uses the framework networkx in order to compute
degree, betweenness, closeness and eigenvector cen-
tralities, as well as some metrics such as the diameter,
the average shortest path length and the density of the
graph. It is important to note that all the graphs in the
ARRS use weighted edges, to better highlight what
the most important nodes are. Their weight is com-
puted as the number of common keywords between
two nodes in the papers graph, and the number of col-
laborations between nodes in the authors graph (in
this context, a collaboration means that two authors
wrote a paper together).
NLP Processing Module. During normalisation pro-
cess, the extraction of keywords from the abstract or
the title was based on NLP by using RAKE5 – an
algorithm that can extract keywords from individual
documents by splitting the text into a vector depend-
ing on a list of delimiters. This vector is then di-
vided into continuous sequences of words using the
stop words as delimiters. The roots of the words are
computed using a stemming function based on the
Porter algorithm (Porter, 2006) to get to the root of the
word (e.g.: ’running’ becomes ’run’). This was used
to allow the same word to match multiple documents
which might have otherwise been excluded because
they used another form of the word.
Normalization functions were created for each data
source.
NLP processing is also used for achieving a uniform
style for the DOI (e.g.: only the ID, not the full URL)
and build the item following a chosen schema.
Cluster of Docker Containers. The system uses a
cluster of Docker containers6. The container images
used are similar and we wrote an image specification

5RAKE (Rapid Automatic Keyword Extractor)
6https://www.docker.com/

for each of them. Since there are multiple containers
that need to be started in a specific order, and they
require a custom configuration, docker-compose was
used to handle the creation of the containers. Figure 2
shows the cluster of Docker containers and how they
interact.

Figure 2: Docker containers cluster.

Heuristic Optimization. Since the crawling pro-
cess is a slow one, depending on the data source and
whether it needed to simulate a browser interaction
with Selenium or not, the process can take anywhere
between half a minute and a few hours. For this
reason, the number of entries brought back by the
crawlers is limited based on the factors above, to some
parameters that were heuristically estimated. Further-
more, each data source first provides the most relevant
papers to the user’s query. This ensures that the im-
pact of this limitation is minimal, and guarantees an
acceptable response time of the ARRS.

4 ARRS – EVALUATION

The evaluation of the proposed solution is addressed
from the software quality attributes, with a special in-
terest on the following three perspectives: usability,
accuracy, and performance. For evaluation a main
test case has been considered for the following sim-
ple query: “machine learning text summarization”

4.1 Usability

The user interface was inspired from the one provided
by ConnectedPapers(Alex Tarnavsky et al., 2020), pro-
viding a base layout with a search bar on the top, two
side columns that show information about the papers,
and a center section that displays an interactive graph.

The authors graph is shown when a node in the
papers graph is selected (double click). The graph
contains the authors of the selected papers, as well
as their peers (other researchers with whom they col-
laborated). The user can further inspect the papers
published by each author, and see the metadata cor-
responding to the each resulted papers. In the papers’
graph, there are edges that are wider than the rest. The

Efficient Academic Retrieval System Based on Aggregated Sources

441



weight of an edge that links two papers depends on the
number of matches between their keywords.

The responsiveness of the system is assured by ob-
taining the results in steps, based on some priorities
(as described in the previous section), and by caching
them in memory.

4.2 Accuracy

Even though ARRS is similar to ConnectedPapers
tool in terms of UI, the way the network of papers is
built is entirely different. ConnectedPapers starts, for
example, from a user query, then it asks the user to
select the most relevant papers, based on which it will
build the graph, whereas the ARRS uses the user’s
query to directly build the graph. Overall, this al-
lows a better overview of the research published for
the topic of interest, given that another important pur-
pose of the system is to allow the user to check the
authors graph to look for possible collaborators.

When comparing the results obtained from the
ConnectedPapers and ARRS, the first one yielded 40
papers, while the proposed solution provided over
100. In terms of papers matching between the two
results, this greatly varies depending on the paper that
the ConnectedPaper user chose to build the graph. As
a consequence, they cannot be directly compared, as
in most cases, ARRS will yield an entirely different
dataset. However, in terms of searching for future col-
laborators, ARRS proved to offer a better overview of
the literature, which gives the user the chance to in-
spect the most relevant papers to the query, based on
which edge is wider (meaning it has more keywords
matching with the ones in the interrogation).

4.3 Performance

The parallelisation implemented through the thread
pool executor for crawling and using Spark for nor-
malisation, significantly improves the obtained per-
formance. Several experiments have been conducted
on to emphasize the importance of parallel computa-
tion introduced in the system.

In terms of hardware specification, the system was
tested on two virtual machines, each with 16 CPU
cores and 64GB RAM. The storage used was 1TB.

In terms of performance obtained for crawling,
for the main test query the parallel approach yielded
the results in 29.678 seconds, while the sequential
one (without the executor thread pool) provided the
results in 6 minutes and 9.018 seconds. So, the
speedup (speedup = sequentialTime/parallelTime)
is for this process 12.434.

Regarding the performance of the normalization
process, the sequential execution took 32.304 sec-
onds, while the execution on the Spark cluster only
took 2.461 seconds, resulting in a speedup of 13.126.

Table 1: ARRS Performance Analysis. Ts denotes the se-
quential execution time in seconds, and Tp denotes the par-
allel execution time in seconds.

Query Ts Tp Speedup
abstractive text sum-
marization

222.788 33.624 6.626

abstractive AND text
AND summarization
NOT extractive

252.619 26.792 9.429

state-of-the-art nlp
techniques for data
cleaning

207.006 33.966 6.095

GAN networks 245.739 32.214 7.628
human face genera-
tion using GAN net-
works

243.652 31.967 7.622

text to image transla-
tion

253.977 31.681 8.016

clothing AND trans-
lation NOT ”GAN
network”

215.248 28.517 7.548

automatic metadata
generator

248.436 31.389 7.915

”data encryption”
AND ”data decryp-
tion”

255.079 30.650 8.322

blockchain technol-
ogy in the banking
industry

246.831 30.251 8.159

In order to evaluate the performance in more de-
tail, we have done other several experiments besides
that main test case – for different queries, and the
results are shown in Table 1. In this table, Ts de-
notes the sequential execution time in seconds, and
Tp denotes the parallel execution time in seconds, and
the speedup obtained through parallelization is em-
phasized. From these, an analysis of average perfor-
mance could be extracted:

• Average sequential time: 239.127 sec.
• Average parallel time: 30.215 sec.
• Average speedup: 7.736.

5 CONCLUSIONS

We proposed an Aggregator Researcher Retrieval
System - ARRS, as a hybrid system that retrieves
data from a large variety of data sources, such as

ENASE 2023 - 18th International Conference on Evaluation of Novel Approaches to Software Engineering

442



Crossref, IEEE, ACM, Scopus, ResearchGate, and
arXiv, through crawlers and APIs. The system ag-
gregates the duplicate papers by merging and fills in
their missing metadata when possible (keywords ex-
traction, metadata harvesting).

Through parallelization using thread pool execu-
tors, the crawling process has been highly improved,
which greatly improved the responsiveness of the ap-
plication. The normalization process was run on a
Spark cluster deployed on Docker containers. ARRS
system provides a solid base which can be further im-
proved by scaling and aggregating data from more
data sources.

The system we proposed could represent the data
engineering component of a more complex recom-
mender system that adds an AI data analysis compo-
nent that extracts the best recommendations that fit the
user profile. This is the reason of using the term ’re-
trieval system’, even if besides the papers extraction
and aggregation, the system also provides the possi-
bility to extract the network of authors and their col-
laborators.

On a larger view, this system could be considered
a proof of concept for a general efficient approach
in building and updating big databases from different
web sources. In many cases, creating and managing
a database that aggregates information from different
sources is difficult and implies considerable cost. This
dynamic approach of updating and supplementing a
database by using a tool that offers the possibility to
search for the information stored into the database and
in associated sources, could be an efficient and pro-
ductive solution.

ACKNOWLEDGEMENTS

The implementation of the ARRS system started in
2021 with the dissertation thesis of the student O.
Oprisan, from the master specialization High Perfor-
mance Computing and Big Data Analytics of “Babeş-
Bolyai” University. The thesis was under the coordi-
nation of dr. Virginia Niculescu.

REFERENCES

Alex Tarnavsky, E., Eddie, S., Itay Knaan, H., and Sa-
har, P. (2020). Connected Papers - Find and explore
academic papers. https://www.connectedpapers.com/.
Accessed 10.05.2022.

Apache Software Foundation (2022). Apache Spark - Uni-
fied Engine for large-scale data analytics. https://
spark.apache.org. Accessed 5.05.2022.

Bai, X., Wang, M., Lee, I., Yang, Z., Kong, X., and Xia, F.
(2020). Scientific paper recommendation: A survey.

Beel, J., Gipp, B., Langer, S., and Breitinger, C. (2016).
Research-paper recommender systems: A literature
survey. Int. J. Digit. Libr., 17(4):305–338.

Burke, R. (2007). Hybrid Web Recommender Systems,
pages 377–408. Springer Berlin Heidelberg.

Caragea, C., Bulgarov, F. A., Godea, A., and Das Golla-
palli, S. (2014). Citation-enhanced keyphrase extrac-
tion from research papers: A supervised approach.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1435–1446. Assoc. for Comp. Linguistics.

Centre for Science and Technology Studies (). VOSviewer
- Visualizing scientific landscapes. https://www.
vosviewer.com. Accessed 10.05.2022.

Corporation for Digital Scholarship (2006). Zotero - Your
personal research assistant. https://www.zotero.org.
Accessed 10.05.2022.

Gill, T., Gilliland, A. J., Whalen, M., and Woodley, M. S.
(2008). Introduction to Metadata. Getty Publications.

Gori, M. and Pucci, A. (2006). Research paper recom-
mender systems: A random-walk based approach.
In 2006 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2006 Main Conference Proceed-
ings)(WI’06), pages 778–781.

Haines, S. (2022). Modern Data Engineering with Apache
Spark: A Hands-On Guide for Building Mission-
Critical Streaming Applications. Apress.

Pazzani, M. J. and Billsus, D. (2007). Content-Based
Recommendation Systems, pages 325–341. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Peroni, S. and Shotton, D. (2020). OpenCitations, an infras-
tructure organization for open scholarship. Quantita-
tive Science Studies, 1(1):428–444.

Porter, M. (2006). The Porter stemming algorithm. https:
//tartarus.org/martin/PorterStemmer/.

Reis, J. and Housley, M. (2022). Fundamentals of Data
Engineering. O’Reilly Media.

Ricci, F., Rokach, L., and Shapira, B. (2022). Recommender
Systems Handbook. Springer, 3rd ed. 2022 edition.

SciGraph (2022). SciGraph - A Linked Open Data platform
for the scholarly domain. https://www.springernature.
com/gp/researchers/scigraph. Accessed 10.05.2022.

Sun, J., Ma, J., Liu, Z., and Miao, Y. (2014). Leveraging
Content and Connections for Scientific Article Rec-
ommendation in Social Computing Contexts. The
Computer Journal, 57(9):1331–1342.

van Eck, N. J. and Waltman, L. (2014). CitNetExplorer: A
new software tool for analyzing and visualizing cita-
tion networks. Journal of Informetrics, 8(4):802–823.

Xia, F., Liu, H., Lee, I., and Cao, L. (2016). Scientific ar-
ticle recommendation: Exploiting common author re-
lations and historical preferences. IEEE Transactions
on Big Data, 2(2):101–112.

Zhou, Q., Chen, X., and Chen, C. (2014). Authorita-
tive scholarly paper recommendation based on paper
communities. In 2014 IEEE 17th International Con-
ference on Computational Science and Engineering,
pages 1536–1540.

Efficient Academic Retrieval System Based on Aggregated Sources

443


