
Crypto Advisor: A Web Application for Spotting Cross-Exchange
Cryptocurrency Arbitrage Opportunities

Robert-Christian Oant, ă a and Adriana Mihaela Coroiu b

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Mihail Kogălniceanu, Cluj-Napoca, Romania

Keywords: Cryptocurrency, Cross-Exchange Arbitrage, Centralized Exchanges, Trading Automation, Arbitrage
Opportunities Spotting, Web Application, Cloud Computing.

Abstract: The subject of this paper revolves around cryptocurrencies and trading automation, more precisely, on a low-
risk trading strategy called cross-exchange arbitrage. An approach that capitalizes on market inefficiencies by
frequently buying and selling on two distinct exchanges in order to accumulate minor profits. Our solution is a
web application for identifying opportunities produced by this strategy and delivering them in a user-friendly
manner, as well as in a structured format for developers. The main objective was to develop a production-ready
tool that is useful for professional traders, utilizing real data in real-world circumstances.

1 INTRODUCTION

Cryptocurrencies are digital assets or currencies
based on blockchain technology, which enables pay-
ment and transaction verification in the absence of a
centralized custodian. Bitcoin, the most well-known
cryptocurrency, was first described in a paper by
Satoshi Nakamoto (Nakamoto, 2008) in 2008, and it
was launched in 2009. The cryptocurrency market
has changed significantly since then. On more than
100 exchanges around the world, more than 50 mil-
lion active investors trade bitcoin and other cryptocur-
rencies. We have long been fascinated by trading au-
tomation, not only on the cryptocurrency market but
also on the stock market. But as we all know, trad-
ing does not guarantee profits, particularly when trad-
ing without a strategy, therefore we tried to design
a system that minimizes risk and focuses on nearly
market-neutral strategies that can guarantee long-term
earnings. This paper aims to provide comprehensive
research on a specific low-risk cryptocurrency trading
strategy called cross-exchange arbitrage.

2 THEORETICAL BACKGROUND

Blockchain Technology. Blockchain, as explained
by Fang in (Fang et al., 2022), is a digital ledger of

a https://orcid.org/0000-0002-5823-1827
b https://orcid.org/0000-0001-5275-3432

economic transactions that can be used to record any-
thing with inherent worth, not simply financial trans-
actions. In its most basic form, a Blockchain is a col-
lection of immutable data entries with timestamps that
are maintained by a distributed network of machines.
A transaction is, for example, a file that says, ”A pays
X Bitcoins to B” and is signed using A’s private key.
This is the most fundamental form of public-key cryp-
tography, as well as the foundation for cryptocurren-
cies. On these networks, cryptocurrencies are the to-
kens used to send value and pay for transactions. They
can be regarded as Blockchain tools, but in certain sit-
uations, they can also act as resources or utilities.
Cryptocurrency Exchanges. A cryptocurrency ex-
change or Digital Currency Exchange (DCE) is a
business that allows customers to trade cryptocurren-
cies. The practical part of this thesis revolves a lot
around exchanges and the variation in prices of assets
on these exchanges, so it is important to understand
what type of markets exist and why there might be
a price discrepancy for similar assets. To expand on
the above statement, there are two primary sorts of
exchanges:

• Centralized exchanges (CEX): as the term im-
plies, CEXs are crypto exchanges founded by
centralized entities that control the exchange’s
ownership. The pricing of assets on central-
ized exchanges is determined by the most re-
cently matched bid-ask order on the exchange or-
der book.

238
Oant,ă, R. and Coroiu, A.
Crypto Advisor: A Web Application for Spotting Cross-Exchange Cryptocurrency Arbitrage Opportunities.
DOI: 10.5220/0011850400003470
In Proceedings of the 15th International Conference on Computer Supported Education (CSEDU 2023) - Volume 1, pages 238-246
ISBN: 978-989-758-641-5; ISSN: 2184-5026
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)



• Decentralized exchanges (DEX): in contrast to
CEXs, DEXs rely on arbitrage traders to main-
tain prices in check. Instead of an orderbook
in which buyers and sellers are matched to trade
cryptocurrency assets, these exchanges utilize liq-
uidity pools.

To be noted, the practical application of this paper is
related mostly to CEXs.
Arbitrage Trading Strategies. Defining cryptocur-
rency trading in a simple form - is the act of buy-
ing and selling cryptocurrencies with the purpose of
profit. A trading strategy is an algorithm of prede-
fined rules and events that trigger buying and sell-
ing crypto assets on one or multiple markets (as men-
tioned in (Jothi and Oswalt Manoj, 2022)). There are
numerous trading strategies available, but the focus
of this thesis is on arbitrage trading. Furthermore,
arbitrage trading can be divided into multiple sub-
strategies as described in (Shynkevich, 2021), such as
cross-exchange arbitrage, spatial arbitrage, triangular
arbitrage, decentralized arbitrage, and statistical arbi-
trage. As mentioned previously, our focus is on the
cross-exchange arbitrage strategy.

3 CROSS-EXCHANGE
ARBITRAGE METHOD

Cross-exchange arbitrage is a low-risk strategy that
capitalizes on market inefficiencies by frequently
buying and selling on two distinct exchanges in order
to accumulate minor profits.

3.1 Why Is this Strategy Low-Risk?

As described in (Lacity, 2020), traders that recognize
arbitrage opportunities and capitalize on them do so
with the expectation of making a fixed profit, rather
than assessing market sentiments or relying on other
predictive pricing strategies. Also, depending on the
resources available to traders, it is possible to enter
and exit an arbitrage trade in seconds or minutes. Al-
though this sounds good in theory, numerous factors
must be considered, such as fees, timing, availability,
and profitability.

On the majority of exchanges, we can distinguish
the following sorts of usual fees:

• Withdraw fees: These are the costs incurred when
withdrawing a crypto asset from an exchange’s
digital wallet. Typically, these fees are flat (set
amount) and determined by the coin you desire to
withdraw and the blockchain on which the with-
drawal activity is performed.

• Trading fees: These are the charges associated
with purchasing and selling crypto on an ex-
change. They are often based on percentages,
ranging from 0.05 percent to 0.5 percent, and are
primarily divided into two categories: maker fees
and taker fees, according to (Lansky, 2018).

3.2 Timing and Availability

Time is of the essence in arbitrage trading. The
pricing discrepancy between two exchanges tends to
shrink as more traders take advantage of a given ar-
bitrage opportunity, this is due to the law of supply
and demand. Some of the factors that could affect the
time it takes to execute a successful arbitrage trade are
listed below (as presented in (Fang et al., 2022)):

• Transaction speed: Because you must perform
cross-exchange transactions, the time it takes to
validate these transitions on the blockchain may
have an impact on the effectiveness of your arbi-
trage trading strategy.

• AML checks: Although arbitrage trading is not il-
legal in any kind of way, when substantial sums
of money are moved by a trader, exchanges fre-
quently conduct anti-money laundering (AML)
checks. Such examinations might take weeks in
some circumstances.

• Offline wallets: Crypto exchanges are prone to
outages. For one reason or another, crypto ex-
changes may restrict the withdrawal and deposit
of specific digital assets.

3.3 Algorithm Steps

This section presents the steps of executing a cross-
exchange arbitrage trade. An arbitrage opportunity
is spotted between exchange A and exchange B for
the coin BTC, pair BTC/USDT. First of all, assuming
we have a certain amount of USDT in our account on
exchange A.

1. Trade BTC/USDT pair on exchange A, effectively
buying on the ask price for how much USDT
amount we have. Therefore, we have successfully
converted our amount of USDT into BTC. By do-
ing this operation, we have incurred a trading fee.

2. Withdraw the amount of BTC we have to ex-
change B, making sure that the withdraw chain
from exchange A is the same with deposit chain
from exchange B. By doing this operation, we
have incurred a withdraw fee.

3. Once the BTC is deposited on exchange B, we
trade USDT/BTC, effectively selling on the bid

Crypto Advisor: A Web Application for Spotting Cross-Exchange Cryptocurrency Arbitrage Opportunities

239



price for how much BTC amount we have. There-
fore, we have successfully converted our amount
of BTC into USDT. By doing this operation, we
have incurred another trading fee.

4. Now we are left with more USDT than we first
started, effectively making a profit. This has been
a successful arbitrage cycle.

5. Optionally, we can repeat the cycle by withdraw-
ing our USDT back to exchange A. Note that this
operation is taxed by another withdraw fee.

E. Profitability The formula based on quantity,
rate, trade, and fee can be used to estimate the prof-
itability of an arbitrage opportunity (the result is
percentage-based on the initial quantity).

4 TECHNOLOGIES

In this section, we analyze the advantages and limi-
tations of our application’s underlying technologies.
We will cover web application architecture, client-
side and server-side frameworks, and cloud deploy-
ment.
Client-Server Architecture. A client–server archi-
tecture divides an application into client and server
components. This application type is executed across
a computer network connecting the client and the
server. The server provides the essential functionality
of such a design: any number of clients can connect to
the server and request that it accomplish a task. The
server accepts these requests, completes the requested
task, and returns any necessary results to the client,
according to (Fraternali, 1999).
Single-Page Applications. There are numerous sorts
of web applications, including static web applica-
tions, dynamic web applications, e-commerce appli-
cations, portal web applications, progressive web ap-
plications, etc. Our application is classified as a
Single-Page Application (SPA). Following (Hacker
and Hatemi-J, 2012), single-page web apps allow for
dynamic interaction by modifying the current page’s
content rather than loading entirely new pages from
the server whenever a user action is done. AJAX,
a condensed form of Asynchronous JavaScript and
XML, is the foundation for enabling page communi-
cations and, thus, for making SPAs a reality. Single-
page applications are similar to traditional desktop ap-
plications in that they do not disrupt the user experi-
ence.
FastAPI. FastAPI is a modern, fast (high-
performance), server-side web framework for
building APIs with Python 3.6+ based on standard
Python type hints. Despite Python’s reputation as

being a slower programming language because it is
interpreted rather than compiled, FastAPI provides
the same level of performance as typically quicker
languages. As depicted in Figure 1, we can see a
performance benchmark in comparison with other
frameworks written in Go, JavaScript and Python.

Figure 1: Performance Benchmark.

It may not be clear how FastAPI is able to achieve
this staggering performance only by looking under the
hood we can see that this framework makes use of the
asyncio package in Python. FastApi is capable of in-
tegrating so well with Asyncio because it is built atop
Starlette, a lightweight ASGI framework/tool that is
perfect for developing async web services. As a spiri-
tual successor to WSGI, ASGI is a standard interface.
It allows for interoperability throughout the whole
Python async web stack, including servers, applica-
tions, middleware, and individual components. Con-
currency is applied at the request/response level; thus
your application will act in a non-blocking manner
throughout the stack. As a result, the performance
gains are significant. There are multiple other capa-
bilities in FastAPI’s toolbox, including the use of py-
dantic schemas, powerful dependency injection, and
Jinja2 integration, as detailed in (Kornienko et al.,
2021).
Vue. Vue is a client-side JavaScript framework for
building user interfaces and single-page applications
(SPAs). It is built on top of conventional HTML,
CSS, and JavaScript, and it is based on a declarative,
component-based programming model that helps you
create user interfaces quickly, no matter how basic or
complex they are. It mainly follows the architectural
pattern of model-view-viewmodel. Inspired by Vue’s
team comparison (Hanchett and Listwon, 2018), in
the following paragraphs we will compare it with two
other popular client-side frameworks React and An-
gular. React and Vue share some similarities such as
utilizing a virtual DOM and providing reactive and
composable view components. All React components
use JSX, a declarative XML-like syntax that oper-
ates withing JavaScript. Using JSX to render func-
tions has the benefit of harnessing the capability of a
full programming language (JavaScript) to build your
view. Despite supporting JSX, Vue’s default experi-

CSEDU 2023 - 15th International Conference on Computer Supported Education

240



ence is templates, a simpler alternative. The benefit
of templates is that they are more intuitive to under-
stand for developers that have worked with HTML,
and that existing applications can be progressively mi-
grated to make use of Vue’s reactivity features. Some
of Vue’s syntax will resemble that of AngularJS (e.g.
v-if vs ng-if). This is due to the fact that AngularJS
got a number of things right, and these were an early
source of inspiration for Vue. Both in terms of API
and design, Vue is considerably easier to use than
AngularJS. In most cases, learning enough to con-
struct non-trivial applications takes less than a day,
but this is not the case with AngularJS. Moreover, Vue
is a more flexible, modular solution than AngularJS,
which has firm convictions about how your applica-
tions should be constructed. While this makes Vue
more adaptable to a wider range of projects, we also
acknowledge that there are instances when it’s bene-
ficial to have some decisions made for you so you can
get straight to working.

4.1 Cloud Deployment

Cloud Deployment is the process of deploying an ap-
plication using one or more cloud-based hosting mod-
els, such as software as a service (SaaS), platform
as a service (PaaS), and/or infrastructure as a service
(IaaS). This covers designing, planning, executing,
and running cloud workloads.

4.1.1 Heroku Server-Side Deployment

Heroku is a platform as a service (PaaS) that enables
developers to build, run, and operate applications
entirely in the cloud. PaaS architectures typically
include operating systems, programming-language
execution environments, libraries, databases, web
servers, and connectivity to some platforms. The
Heroku cloud service platform is based on a managed
container (called dynos within the Heroku paradigm)
system. It has integrated data services and a powerful
ecosystem for deploying and running modern appli-
cations. Heroku is, in our opinion, a superior alter-
native for developers new to cloud deployment than
its IaaS competitors, Azure or AWS, due to the fact
that in a PaaS service, you do not have to worry about
managing containers, load balancers, or databases;
all are given as a managed service. Its pricing (free
500 hours of dyno usage each month), python build-
packs, and various add-ons, like free databases, SSL
certificates, custom domain names, smtp mail server,
among others, are a few of its attractions.

4.1.2 Netlify Client-Side Deployment

Similarly to Heroku, Netlify is also a PaaS, the main
distinction is that Netlify mainly focuses on host-
ing static websites with serverless backends, whereas
Heroku is built to host dynamic, server-side rendered
websites and apps. The way Netlify works is quite in-
novative as it aims to decouple the client-side from the
server-side part of an app. By the use of the Jamstack,
Netlify delivers a precompiled and optimized static
frontend which is deployed globally via the Edge
CDN. The server-side consists of multiple serverless
functions distributed as microservices, hence lower-
ing load. In addition, these functions are deployed to
AWS Lambda and turned into API endpoints. How-
ever, in our particular case, a serverless backend was
unnecessary, as all of the server-side code was de-
ployed to the aforementioned Heroku. Some of its
perks include making the deployment process fast
and intuitive, pricing (300 minutes of free build time
per month), and add-ons such as CD integration with
GitHub, free TLS encryption, a custom domain name,
and SPA integration.

5 SIMILAR SOLUTIONS

As the sector for arbitrage trading automation is not
highly developed, there are not as many similar pop-
ular solutions in this field. Although arbitrage trading
is quite popular, it is often conducted by individuals
using proprietary software or open-source bots, which
require specialized programming and cryptocurrency
skills to operate. To clarify, crypto trading automa-
tion is developed, however, crypto arbitrage trading
automation is not. There are numerous powerful bots
that trade cryptocurrencies on your behalf using typi-
cally straightforward tactics. Some of these general
bots are included on popular platforms such as Pi-
onex, Kucoin, and Coinrule, among others. Except
for Pionex, which offers some sort of arbitrage bot,
the rest of the mentioned platforms do not really offer
any solutions. Moreover, Pionex’s trading bot utilizes
spot-futures arbitrage, which is an entirely different
story from cross-exchange arbitrage. Although, in the
course of our extensive research, we have uncovered
a number of relatively obscure and somewhat popular
platforms that are comparable to our concept. Table 1
presents an unbiased comparison between these alter-
natives. Note that Crypto Advisor is our solution.

Legend for the table content: a - Automated Sys-
tem: the ability to automatically trade cryptocurrency
on your behalf. b - Spotter: continuous finder of ar-
bitrage opportunities without user input. c - Spotting

Crypto Advisor: A Web Application for Spotting Cross-Exchange Cryptocurrency Arbitrage Opportunities

241



Table 1: Solution APPs comparison.
Characteristics Crypto Advisor ArbiTool ArbiSmart Cryptohopper Coygo Hummingbot
Web Platform Yes Yes Yes Yes Yes No
Main Function Spotter Spotter Automated Platform Automated Platform Spotter and Automated Platform Terminal-like Bot and ecosystem
Automated Systema No No Yes Yes Yes Yes
Programmable Bot No No No No No Yes
Spotterb Yes Yes Yes Yes Yes Yes, but limited
Spotting tablec Yes Yes No No Yes No
History tabled Yes No No No No No
Wallet Statuse No Yes N/An N/A ? o Yes
Tx Timef No Yes N/A N/A ? No
Complex Filtersg Yes Yes N/A N/A Yes N/A
Email Alerts Yes Yes for Premium N/A N/A ? N/A
Market Depth Yes Yes No No Yes Yes
Orderbook Table No Yes No No ? ?
Public API Yes No No Yes Swapped for trading terminal N/A
Opportunities Endpointh Yes N/A N/A Something similar N/A N/A
History Endpointi Yes N/A N/A Yes N/A N/A
Opportunities WebSocketj Yes No No No N/A N/A
Subscription Free Free and premium Fee-based Free and premium Free and premium Open-source and Free
Nr of supported exchanges 10 35 20 9 11 33
DEX supportk No No No No No Yes

Nr of supported currencies 1000
?,probably

>1000
? 75 ?

?,probably

>1000

table: web or in-app/terminal presentation of current
arbitrage opportunities. d - History table: web or in-
app/terminal presentation of past arbitrage opportuni-
ties. e - Wallet Status: provides the wallet status (of-
fline, online) for multiple currencies and exchanges. f
- Tx time: estimated transaction time between two ex-
changes. g - Complex filters: complex filtering capa-
bilities for the spotting table. h - Opportunities End-
point: API endpoint for receiving JSON information
about current arbitrage opportunities. i - History End-
point: API endpoint for past arbitrage opportunities
or useful backtesting info. j - Opportunities Web-
Socket: 24/7 streaming WebSocket for current arbi-
trage opportunities. k - DEX support: supports the
usage of decentralized exchanges. l - Exchange Con-
nectors: how does the platform connect to various ex-
changes (automatic, no need for connection, private
API keys). m - Spotting/Trading latency: the delay in
spotting/trading an arbitrage opportunity. n - N/A, not
applicable. o - ?, unknown, no data.

6 PRACTICAL APPLICATION

6.1 Project Description

As presented in the previous section, our solution
is Crypto Advisor. A web application for spotting
cross-exchange cryptocurrency arbitrage opportuni-
ties. This application’s primary objective was to pro-
vide a robust public API solution that works as a data
collector, locating the values of cryptocurrencies on
many exchanges and spotting arbitrage opportunities
between them. Moreover, a public streaming Web-
Socket was developed, which essentially functions as

an extension of the API by continuously delivering
arbitrage opportunities to connected clients. In order
to present the API more effectively, we have also de-
signed a web application that is built upon it. The
client-side consumes the data supplied by our API
and displays it to the client in an easy-to-use format.
Additionally, we have also implemented user authen-
tication, email notifications, and OpenAPI standards
documentation.

6.2 Pre-Implementation Analysis

After analyzing the application’s requirements, we
have determined that its development lifecycle con-
sists of four major stages: Arbitrage algorithm im-
plementation and data collection, API Implementa-
tion, Front-End/UI Implementation, and Cloud De-
ployment. The development was conducted in the
presented order. To further highlight the features and
constraints of our application, we have prepared the
following use cases diagram, depicted in Figure 2.

Figure 2: Use cases diagram.

CSEDU 2023 - 15th International Conference on Computer Supported Education

242



6.3 Domain Models

We have also constructed a diagram depicting the do-
main models of our application. SqlAlchemy ORM
creates the tables in our database based on these mod-
els (as we can see in Figure 3).

Figure 3: Domain Models Diagram.

6.4 Architecture

6.4.1 Client-Side Architecture

As Vue.js is a client-side component-based frame-
work employing the model-view-viewmodel pattern,
reusability is strongly encouraged, which is why com-
ponents are embedded in other components or views
in the diagram below: Figure 4.

Figure 4: Client-Side Architecture Diagram.

Views have the same capabilities as components,
but they are mostly utilized for routing; hence, you
could say that a distinct page is a view.

6.4.2 Server-Side Architecture

To illustrate how the layers communicate with each
other, we have constructed a diagram of the entire
server-side application: Figure 5.

Note that we omitted fields and methods because it
would make the diagram much more difficult to com-
prehend. Usually, python applications are difficult to
portray in a UML class diagram since python is not
as restrictive in OOP and classes are not mandatory.

Figure 5: Server-side Architecture Diagram.

Therefore, some of the so-called classes in figure 6
are essentially simple files with static attributes and
methods that behave similarly to a singleton class

6.4.3 Deployment Architecture

In order to better understand the security procedures
and layers of our application, we have created a de-
ployment diagram (we can see in Figure 6) depicting
how our services are distributed over different servers.

Figure 6: Deployment Architecture Diagram.

Essentially, any device with a browser can ac-
cess our system via the URL: https://crypto-advisor-
app.netlify.app/home

The front-end service then interacts with the
Heroku-deployed REST API. In addition, we have
utilized Heroku’s add-ons such as an AWS Post-
greSQL database and Mailgun SMTP server.

6.5 Business Layer

The Business layer of this application encapsulates
the module Bot-Folder where all the logic behind ar-
bitrage spotting is implemented. As shown in Figure
5, the module has high cohesiveness between its com-
ponents and is only loosely coupled to a Rest Con-
troller responsible for arbitrage endpoints. This mod-
ule can be easily isolated from the rest of the applica-
tion because it operates independently. The abstract
class Bot provides a generalization of the Arbitrage-
Bot class. This class mostly adheres to a Strategy-
like Pattern and has concrete methods for data col-
lecting and parsing that can be used in any kind of
Bot (Do This, ).

Crypto Advisor: A Web Application for Spotting Cross-Exchange Cryptocurrency Arbitrage Opportunities

243



6.5.1 Data Collecting and Parsing

The primary purpose of the ExchangeApiService
class is to connect to external APIs and scrape web-
sites. Multiple external services, such as the Coin-
MarketCap API, the CCXT library (onl, ), and the
CoinMarketFees website (Atzberger et al., 2022), are
present in the class and are actively utilized. The
CCXT library is responsible for collecting data such
as coin prices and order book details, users of this li-
brary will have direct access to the source (the API
endpoints of various exchanges), resulting in the most
accurate data available. The CoinMarketCap API is
mostly used for retrieving the topmost 1000 popular
currencies because these coins often have the highest
trading activity and are more likely to provide arbi-
trage opportunities.

As the ccxt library is not very reliable on fees, we
have used beautiful soup (a python library for web
scraping (Richardson, 2007)) to collect as much data
as possible from the CoinMarketFees website, where
fees are typically accurate.

6.5.2 Data Manipulation and Arbitrage Spotting

ArbitrageBot is an implementation of the generic Bot
class; its primary function is to manipulate received
data and identify arbitrage opportunities. The gather-
data method relies on the superclass’s methods in or-
der to retrieve data from the ExchangeApiService.
After that, a comparison is made between all ex-
changes, and then all pairs of the used exchanges,
under a predetermined threshold of percentage differ-
ence, and a JSON-style dictionary is constructed con-
taining all opportunities. Information about market
liquidity and fees is obtain through other methods.

6.6 Controller Layer

This layer’s purpose is to expose the Rest endpoints.
Encapsulating the routers module, which contains the
API’s controllers for its many functionalities (user
router, authentication router, mail router and arbitrage
router). This module primarily defines the URLs, pa-
rameters, dependencies, and response schemas of our
endpoints. In addition, by utilizing dependency in-
jection, unauthorized access to the resources is pre-
vented. The database connection is also provided us-
ing injections by referencing a function from our con-
nection file which yields a Session object that can be
later used for queries (Copeland, 2008). In order to
maintain a clean separation between our layers, end-
point functionality is delegated to the repository mod-
ule of the persistent layer.

Endpoints. One of the top objectives in creating
our endpoints was to ensure full synchronicity be-
tween them so that time-intensive endpoints, such
as the endpoint for identifying opportunities, would
not cause the application to underperform. Thus,
endpoints will function optimally when several si-
multaneous calls are made without any time delays.
The arbitrage router contains endpoints primarily as-
sociated with our business layer, such as endpoints
for identifying opportunities, storing scrapped fees
in our database, retrieving past arbitrage opportuni-
ties from our database, obtaining trading fees for spe-
cific coins and exchanges, a WebSocket for contin-
uous streaming our opportunities, and endpoints for
internal connection and disconnection from the Web-
Socket (Pterneas, 2013). The authentication router is
mostly associated with the security layer, where all
functionality is outsourced, and its primary job is to
expose a login endpoint. Similarly, to the authentica-
tion router, the Mail router has the primary purpose
of exposing an endpoint related to the email notifica-
tions for our users. Lastly, the User router is related to
CRUD operations on our users, namely creating (reg-
istering), reading, updating, and deleting user infor-
mation.
WebSocket. Due to challenges in gathering data in
the client-side portion of this application, as time-
intensive endpoints would be terminated on refresh-
ing, losing crucial information, our solution is a Web-
Socket that continuously broadcasts the most recently
computed list of opportunities. Thus, when required,
the client-side can obtain all data almost instantly.
Note that this WebSocket, as well as a few arbitrage
endpoints, are publicly accessible via our API solu-
tion. Several setbacks have occurred throughout the
development of this websocket. Typically, websock-
ets should be a separate service that operates indepen-
dently from the rest of the application. However, this
is not possible in our case, thus our websocket is es-
sentially incorporated as an endpoint, which has led
to numerous difficulties in maintaining synchronic-
ity. For the rest of the endpoints, synchronicity is
assured by design, as the FastApi framework inserts
the endpoint functions in a self-managing thread or
event pool, but this is not the case with websockets.
We had to manually obtain the running event loop and
inject the websocket’s functionality, which proved to
be quite challenging, but we were ultimately success-
ful. However, additional optimizations are required as
the number of external clients connecting to our web-
socket affects its performance.

CSEDU 2023 - 15th International Conference on Computer Supported Education

244



6.7 Persistance Layer

The persistence layer consists primarily of the ORM
models (Figure 4) that are used to generate database
tables, as well as the repository module. As indicated
before, the repository module is responsible for ac-
cessing the database tables utilizing the injected Ses-
sion object and defining the endpoint functionality.
Essentially, each Rest Controller has its own associ-
ated repository. Typically, functions are divided into
computational functions and database manipulation
functions. In addition, common HTTP exceptions
such as 404 not found error, 500 internal server er-
ror and 409 conflict error are raised here (Zhu et al.,
2015).

6.8 Security Layer

As this application is distributed on the web, we have
invested a great deal of work ensuring that it has a
solid security foundation. This module consists of
functionalities for user authentication through RBAC
(Sandhu, 1998) and oauth2’s JWT (Bucher and
Christensen, 2019; MAN, ), as well as middleware
(Middleware, 2006)and CORS (Abdelhamied, 2016).
Firstly, in order to assure that our user’s credentials
are safe we have used OAuth2PasswordRequestForm
and OAuth2PasswordBearer from FastAPI’s library
(Bansal and Ouda, 2022), which is mainly repre-
sented through a form-data in the endpoint request
body. Furthermore, user’s credentials are stored in
the database in an encrypted format using the bcrypt
hashing algorithm which ensures that brute force and
rainbow table attacks are not feasible (Sriramya and
Karthika, 2015). Our login endpoint from the authen-
tication router verifies through bycrpt that the sup-
plied credentials match those stored in the database.
After that, it returns the JWT token with the expira-
tion date, username, email and the role of our user
embedded in itself. This token can be later decrypted
using the Secret Key. All of our critical endpoints
necessitate an Authorization header with a valid un-
expired token in order to function. Furthermore,
role-based access to resources is ensured by check-
ing the provided token and matching it to the cur-
rent user token. Even though a common user has
a valid token, RBAC prevents him from accessing
admin-specific endpoints. Although middleware is
generally a separate server that operates as a proxy,
we only have some sort of middleware that intercepts
API calls and runs a specific validation code segment.
Our middleware function validates client IP addresses
based on a whitelist of allowed addresses, returning
a 400 Bad Request Error otherwise. As our client-

side and server-side are placed on separate servers,
we have assured via CORS that only calls from our
specific client-side resource, namely crypto-advisor-
app.netlify.app, are permitted. This is achieved by
specifying an origin header, which CORS can after-
ward validate. The psycopg2 adapter for database
connection is provided by the SQLAlchemy package,
and besides transporting credentials or other sensi-
tive information such as host or port number, it en-
sures that the queries are properly sanitized and do not
contain any kind of hidden compromising commands
that might affect our database (Nüst and Ostermann,
2020). Both client-side and server-side resources are
accessible through https with TLS encryption [31],
with certificates issued by the PaaS provider. The
providers also offer active DDoS [32] monitoring,
which is another popular form of cyberattack.

7 CONCLUSION AND FUTURE
DEVELOPMENTS

The objective of this thesis was to assess the efficacy
of the cross-exchange arbitrage strategy and build a
web application with an underlying API that facili-
tates this approach. We can proudly say this was ac-
complished. We have developed a robust API that de-
livers precise data with low latency. Our API solution
is highly specialized in cross-exchange arbitrage for
centralized exchanges, making it rather distinctive in
terms of its capabilities. Obviously, there are other
APIs that provide similar data, but we were unable to
discover one that incorporates every aspect required
to perform an arbitrage trade, as our API does. We
hope to eventually expand our solution in the follow-
ing ways: Firstly, we would like to incorporate addi-
tional exchanges, especially decentralized ones, and
also more coins. We would also like to make our
system more efficient by utilizing graph networks and
cost-based pathfinding algorithms, such as Dijkstra’s
algorithm. As stated in the first section, we have only
considered one of the several arbitrage approaches;
therefore, we would like to develop solutions for ad-
ditional strategies in the future.

ACKNOWLEDGEMENTS

The publication of this paper was supported by the
2022 Development Fund of the Babeş-Bolyai Univer-
sity (UBB).

The extended version of this paper and large ex-
planations were part of the bachelor thesis of Robert

Crypto Advisor: A Web Application for Spotting Cross-Exchange Cryptocurrency Arbitrage Opportunities

245



Oanta, study program Mathematics and Computer
Science, UBB.

REFERENCES

Abdelhamied, M. A. H. (2016). Client-side security using
cors.

Atzberger, D., Scordialo, N., Cech, T., Scheibel, W., Trapp,
M., and Döllner, J. (2022). Codecv: Mining expertise
of github users from coding activities. In 2022 IEEE
22nd International Working Conference on Source
Code Analysis and Manipulation (SCAM), pages 143–
147. IEEE.

Bansal, P. and Ouda, A. (2022). Study on integration of
fastapi and machine learning for continuous authenti-
cation of behavioral biometrics. In 2022 International
Symposium on Networks, Computers and Communi-
cations (ISNCC), pages 1–6. IEEE.

Bucher, P. P. and Christensen, C. J. (2019). Oauth 2.
Copeland, R. (2008). Essential sqlalchemy. ” O’Reilly Me-

dia, Inc.”.
Do This, W. W. Refactoring, design patterns and extreme

programming.
Fang, F., Ventre, C., Basios, M., Kanthan, L., Martinez-

Rego, D., Wu, F., and Li, L. (2022). Cryptocurrency
trading: a comprehensive survey. Financial Innova-
tion, 8(1):1–59.

Fraternali, P. (1999). Tools and approaches for developing
data-intensive web applications: a survey. ACM Com-
puting Surveys (CSUR), 31(3):227–263.

Hacker, S. and Hatemi-J, A. (2012). A bootstrap test for
causality with endogenous lag length choice: theory
and application in finance. Journal of Economic Stud-
ies, 39(2):144–160.

Hanchett, E. and Listwon, B. (2018). Vue. js in Action. Si-
mon and Schuster.

Jothi, K. and Oswalt Manoj, S. (2022). A comprehen-
sive survey on blockchain and cryptocurrency tech-
nologies: Approaches, challenges, and opportunities.
Blockchain, Artificial Intelligence, and the Internet of
Things: Possibilities and Opportunities, pages 1–22.

Kornienko, D., Mishina, S., and Melnikov, M. (2021). The
single page application architecture when developing
secure web services. In Journal of Physics: Confer-
ence Series, volume 2091, page 012065. IOP Publish-
ing.

Lacity, M. (2020). Crypto and blockchain fundamentals.
Ark. L. Rev., 73:363.

Lansky, J. (2018). Possible state approaches to cryptocur-
rencies. Journal of Systems integration, 9(1):19.

MAN, B. J. User interface for ddos mitigation configura-
tion.

Middleware, R. H. (2006). Hibernate: Relational persis-
tence for java and .net. Red Hat Middleware.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Decentralized business review, page
21260.

Nüst, D. and Ostermann, F. (2020). Reproducibility review
of: Window operators for processing spatio-temporal
data streams on unmanned vehicles. Open Science
Framework, 10.

Pterneas, V. (2013). Getting Started with HTML5 Web-
Socket Programming. Packt Publishing.

Richardson, L. (2007). Beautiful soup documentation.
Sandhu, R. S. (1998). Role-based access control. In Ad-

vances in computers, volume 46, pages 237–286. El-
sevier.

Shynkevich, A. (2021). Bitcoin arbitrage. Finance Research
Letters, 40:101698.

Sriramya, P. and Karthika, R. (2015). Providing password
security by salted password hashing using bcrypt al-
gorithm. ARPN journal of engineering and applied
sciences, 10(13):5551–5556.

Zhu, J., He, P., Fu, Q., Zhang, H., Lyu, M. R., and Zhang,
D. (2015). Learning to log: Helping developers make
informed logging decisions. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineer-
ing, volume 1, pages 415–425. IEEE.

CSEDU 2023 - 15th International Conference on Computer Supported Education

246


