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Abstract: The evolution of virtualization technologies and of distributed computing architectures has inspired the so-
called cloud native applications development approach. A cornerstone of this approach is the decomposition 
of a monolithic application into small and loosely coupled components (i.e., microservices). In this way, 
application’s performance, flexibility, and robustness can be improved. However, most orchestration 
algorithms assume generic application workloads that cannot serve efficiently the specific requirements posed 
by the applications, regarding latency and low communication delays between their dependent microservices. 
In this work, we develop advanced mechanisms for automating the allocation of computing resources, in order 
to optimize the service of cloud-native applications in a layered edge-cloud continuum. We initially present 
the Mixed Integer Linear Programming formulation of the problem. As the execution time can be prohibitively 
large for real-size problems, we develop a fast heuristic algorithm. To efficiently exploit the performance–
execution time trade-off, we employ a novel multi-agent Rollout, the simplest and most reliable among the 
Reinforcement Learning methods, that leverages the heuristic’s decisions to further optimize the final solution. 
We evaluate the results through extensive simulations under various inputs that demonstrate the quality of the 
generated sub-optimal solutions. 

1 INTRODUCTION 

Monolithic applications logic is concentrated into a 
single, integral, and indivisible entity (Villamizar et 
al., 2015). This approach was efficient in the past 
when applications consisted of a client-side user 
interface, a server-side implementation, and a 
database. However, with the gradual establishment of 
new ICT technologies (Akbar et al., 2022; Dangi et 
al., 2021; Shah et al., 2021) (virtualization, optical 
networks, 5G/6G), applications’ design complexity 
has become higher, while there is a constant need for 
updates to meet the ever-increasing Quality of 
Service (QoS) demands. The monolithic approach 
stands inadequate in such a competitive and volatile 
environment, thus creating the need for a novel 
application architecture model. The cloud-native 
approach seems to be a favorable candidate: By 
taking full advantage of the cloud computing model 
and decomposing the applications into microservices, 
it offers the flexibility, scalability, and robustness to 
thrive in the modern world (Ren et al., 2018). 

The primary design principle of a cloud-native 
application is its effective decomposition into 
microservices; small, loosely-coupled components, 
where each one packs its own code, runs 
autonomously and serves a specific and unique 
purpose. The execution typically takes place in 
autonomous visualized computing environments 
called containers (Bernstein, 2014), which reserve the 
required computing, networking and storage 
resources from the host operating system. 

Today, new kinds of services, inter-connected 
products and other digitized assets create massive 
amounts of data at the network’s edge and often 
require ultra-low processing delays. These include, 
among others, concepts like autonomous vehicles, 
smart cities, virtual/augmented reality, and 
biomedical care that utilize an abundance of sensors 
and other data-generating systems. In such scenarios, 
moving the generated load to remote cloud data 
centers can lead to network bottlenecks, while also 
fails to satisfy applications’ strict requirements due to 
the increased latency. To tackle these problems, the 
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paradigm of edge computing has arisen (Shi et al., 
2016). With edge computing, units placed at various 
locations close to the data sources, computing, 
networking and storage capabilities are provided on 
the spot. These units, although of lower capacity 
compared to cloud infrastructures, serve time-critical 
tasks and reduce the load offloaded to the central  
cloud. Cloud resources are also utilized in 
combination with the edge ones, e.g., serving latency-
tolerant workloads, creating a powerful edge-cloud 
continuum. Software-wise, lightweight containers are 
the ideal technology to enable the seamless execution 
of cloud-native applications, or parts of them, on the 
edge; (Goethals, n.d.) in contrast to other 
virtualization approaches like virtual machines. 

The present work focuses on the development of 
a novel mechanism for the appropriate allocation of 
the available computing and storage resources in the 
various layers of an edge-cloud infrastructure, to 
support incoming workload from cloud-native 
applications. Our aim is to jointly optimize a 
weighted combination of the average delay (per 
application) and the average cost of service while 
ensuring that the delay between dependent 
microservices and the available resources on the 
infrastructure nodes meet the requirements specified 
by the applications.. We first model the problem as a 
Mixed Integer Linear Programming (MILP) problem. 
Then, we construct a fast heuristic algorithm, called 
Greedy Resource Allocation Algorithm (GRAA), 
which is also utilized by a novel Rollout technique to 
further optimize the generated solution (namely 
Rollout algorithm based on GRAA) relying on 
Reinforcement Learning (RL) principles. We 
evaluate the results through extensive simulations 
under various scenarios and demonstrate the 
efficiency of the proposed solutions.  

The remainder of this paper is organized as 
follows: In Section 2, we present the related work. In 
Section 3, we analyze the considered edge-cloud 
infrastructure and the cloud-native applications 
workload and formulate the resource allocation 
problem as a MILP. In Section 4, we present the 
heuristic algorithms developed. In Section 5, we 
comment on the simulation results and finally, in 
Section 6 we conclude our work. 

2 RELATED WORKS 

The resource allocation problem in virtualized 
environments is a multi-dimensional research area 
that has attracted the interest of the research 
community. The modeling of the problem among the 

different works varies according to the considered 
topology and the adopted technologies, while the 
proposed solutions employ techniques from the wider 
realm of mathematics and computer science.  

(Li et al., 2018) examine the placement of virtual 
machines (VMs) on top of physical systems in a cloud 
data center to perform big-data analytics from 
Internet of Things (IoT) devices. The infrastructure is 
modeled as a graph, where nodes represent VMs, and 
links represent the network communication between 
them. The aim is to minimize the maximum 
utilization across the links in order to optimally utilize 
network resources and avoid congestion. A greedy, 
first-fit heuristic algorithm is presented that targets 
placing as many interacting VMs as possible on the 
same physical systems to minimize communication 
costs. Authors in (Kiran et al., 2020) introduce the 
VNFPRA problem, which focuses on the optimal 
placement of VNFs (Virtualized Network Functions) 
in SDN-NFV-enabled Multi-Access Edge Computing 
(MEC) nodes with the aim of minimizing the 
deployment and resource usage cost. The MEC 
topology is modeled with a weighted graph, where 
each node corresponds to a MEC node, characterized 
by its available resources, while each link is a 
network link with a given capacity. The problem is 
formulated as a Mixed Integer Programming (MIP) 
problem, where the objective function is the total 
service cost that considers the placement cost, 
resource usage cost and link usage/replication cost. 
To tackle the time-consuming process of finding the 
optimal solution, the authors propose a genetic-based 
heuristic algorithm. In (da Silva & da Fonseca, 2018), 
the authors develop an algorithm based on Gaussian 
Process Regression to predict future traffic and 
minimize request blocking, especially in the case of 
time-critical requests. A hierarchical infrastructure 
that consists of computing layers (near edge, far edge, 
cloud) is considered and the objective is to ensure that 
the near/far edge resources are sufficient enough to 
serve future time-sensitive demands. 

Shifting our attention to more relevant works to 
the one presented in this paper, authors in (Santoro et 
al., 2018) developed “Foggy”, an architectural 
framework based on open-source tools that handles 
requests from end users in a multi-level 
heterogeneous fog/edge environment. The requests 
arrive in a FIFO queue, and at each stage, the 
available nodes are ranked by their processing power 
and their networking towards the end user to extract 
the best match. The authors in (Mutlag et al., 2021) 
proposed a dynamic resource scheduling scheme for 
critical smart-healthcare tasks in a fog/edge-cloud 
topology. Their model consists of a multi-agent 
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system (MAS) with four kinds of agents named 
personal agent (PA), master personal agent (MPA), 
fog node agent (FNA), and master fog node agent 
(MFNA). The scheduling strategy relies on effective 
prioritization of the tasks according to their criticality 
and on balancing network load. In (Pallewatta et al., 
2019) a system for microservices placement in a 
multi-layered fog/edge environment is implemented, 
targeting to place them as close as possible to the data 
sources. All related operations (e.g., service 
discovery, load balancing) are also handled in a 
decentralized manner by the infrastructure nodes. 

Finally, reinforcement learning is a technique that 
has been used in the context of resource allocation in 
edge-cloud environments. The authors in (Alfakih et 
al., 2020) present a deep reinforcement learning 
approach, based on state-action-reward-state-action 
(SARSA), for addressing the problem of task off-
loading and resource allocation in Mobile Edge 
Computing (MEC) environments. They model user 
requests as a sequence of sub-tasks, which can be 
executed by either the nearest edge server, the 
adjacent edge server, or the central cloud. The 
proposed solution aims to minimize service delay and 
energy consumption by dynamically making 
offloading decisions and allocating resources based 
on the current state of the infrastructure. (Wang et al., 
2021) present a solution for the microservice 
coordination problem in mobile edge computing 
environments where mobile users (e.g., autonomous 
vehicles) offload computation to the edge clouds. The 
authors aim to minimize a weighted combination of 
delay and migration costs by determining the optimal 
deployment locations for microservices. They first 
propose an offline algorithm able to derive the 
optimal objective and then a Q-learning-based 
reinforcement learning approach that produces a 
near-optimal solution in real-time. (Chen et al., 2021) 
propose a deep reinforcement learning solution for 
microservice deployment in heterogenous edge-cloud 
environments. They consider microservices as a 
service chain, in which the microservices must be 
executed in a pre-specified order. Simulations are 
conducted with a combination of real and synthetic 
data, with the objective of minimizing the Average 
Waiting Time (AWT) of the microservices.  

In our work, we explore the allocation of 
microservice based-applications in a distributed 
hierarchical edge-cloud infrastructure considering 
important aspects of their operation. None of the 
mentioned works, consider the dependencies between 
microservices as delay constraints between their 
corresponding service nodes to guarantee their 
seamless communication. This is a valid concern that 

must not go unnoticed especially when 
geographically dispersed infrastructures are 
considered. Microservice dependencies often take the 
form of information exchange requirements or even 
service chains, when one microservice must complete 
its execution before another starts. Hence, the latency 
between the corresponding service nodes of 
dependent microservices should be taken into account 
in the allocation process. In addition, to the best of 
our knowledge, we are the first to employ the multi-
agent Rollout technique in such a scenario. It is a very 
unique optimization approach based on the principles 
of Dynamic Programming and Reinforcement 
Learning, where greedy heuristics can be used to 
approximate future decisions and can produce 
valuable results with the assistance of the Rollout 
technique, which although easy to understand and 
implement, can improve the solutions significantly. 
Finally, most works mainly focus on the provider, 
studying its economic and energy well-fare, while 
often neglecting the requirements of the “clients”, 
such as cloud-native applications’ owners and users. 
For this reason, our work focuses on meeting the 
requirements set by the applications and on 
optimizing the multiple and conflicting microservice 
placement objectives.  

3 PROBLEM FORMULATION 

We consider a hierarchical edge-cloud infrastructure, 
with multiple layers of edge resources (e.g., on-
device, near-edge, far-edge) to serve the incoming 
cloud-native workload. We assume that the edge 
layers consist of machines with relative limited 
resources, such as raspberry Pi’s, NVIDIA Jetson, 
servers, mini – Datacenters, etc. while the cloud layer 
has practically unlimited resources.  

The hierarchical edge-cloud infrastructure is 
denoted as a Undirected Weighted Graph 𝐺 = (𝑉, 𝐸). 
Each node 𝑣 ∈ 𝑉  is described by the tuple 𝜏 = [𝑐 , 𝑟 , 𝑜 , 𝑛 ] , where 𝑐  is node’s 𝑣  CPU capacity 
measured in CPU units, 𝑟  is the node’s RAM 
capacity measured in RAM units, 𝑜  is the node’s 
operating cost and 𝑛  is the node’s networking cost 
coefficient. Operational cost relates to the expenses 
made for purchasing, deploying, and operating the 
respective computing/storage systems. This is small 
for the cloud layer, since providers achieve 
economies of scale, and gradually increases for the 
edge layers, due to their limited resources, the small 
number of customers and their geographically 
dispersed placement. Networking cost coefficient 𝑛  
results from the usage of any link from the nodes 
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where data are generated to the node(s) 𝑣  where 
computing operations take place and is multiplied by 
the ingress data to deduce the actual networking cost 
of service. The coefficient is minimal for the near 
edge nodes, where links are shorter in distance and 
cheaper to install, while it gradually increases up to 
the massive links connecting the cloud nodes. 
Generally, data are generated at the lower levels of 
the infrastructure that can be either equipped with 
computing resources (local processing) or not. As 
they are typically located in the near edge, the delay 
is small for transferring the data to a subset of near 
edge nodes as they are located closer to the data-
source, given their plurality and thus higher 
geographical density, while it increases for the higher 
layer nodes (far edge, cloud). Finally, each link 𝑒 ∈ 𝐸 
between two nodes  𝑣  and 𝑣′ is characterized by a 
weight 𝑙 , , representing the communication 
(propagation) delay of nodes 𝑣 and 𝑣′.  

The workload under consideration consists of a 
set 𝐴 of cloud-native applications. Each application 𝑎 ∈ 𝐴 is described by an Undirected Weighted Graph 𝐺 = (𝑉 , 𝐸 ), with the nodes 𝑉  corresponding to 
the microservices that make up the application and 
the arcs 𝐸  the inter-dependencies (communication 
requirements) among them. Each cloud native 
application has a source node 𝜋 ∈ 𝑉  and each 
microservice 𝑖 = 1, … , |𝐼 |  of application 𝑎 , has 
specific resource requirements described by the tuple [𝜀 , , 𝜌 , , 𝑠 , ], where 𝜀 ,  is the microservice’s CPU 
demand, 𝜌 ,  is its memory demand and 𝑠 ,  is the 
size of the input data. Furthermore, each arc 𝑒 ∈ 𝐸   
between two microservices 𝜄, 𝜄 ∈ 𝑉  has a weight 𝜆 , , that represents the maximum acceptable delay 
between the corresponding service nodes 𝑣, 𝑣′  of 
these microservices. This is a measure of the intensity 
of the dependency between these two microservices, 
in a sense that highly dependent microservices should 
be served by the same or geographically approximate 
nodes to reduce communication costs and guarantee 
application's efficiency with in-time calculations.  

3.1 MILP Formulation 

In what follows, we present the mathematical 
formulation of the cloud native resource allocation 
problem over a cloud-edge infrastructure. The 
optimization objective is a weighted combination of 
the average (operational and networking) cost and the 
maximum delay per application assignment, with 
respect to computing and networking constraints 
imposed by the applications requirements and nodes’ 
resource availability. 

 

Input: 𝑉 Total number of nodes 𝐴 Total number of applications 𝐼  Total number of microservices for the
 𝑎’th application, 𝑎 = 1, … , 𝐴  𝑜  Operating cost of node 𝑣, 𝑣 = 1, … , 𝑉 𝜆 , ,  Relative upper delay limit between micro-
services 𝑖, 𝑖’ of an application 𝑎, 𝑎 = 1, … , 𝐴. 𝑙 ,  Communication delay between nodes 𝑣  and 𝑣’, 𝑣, 𝑣 = 1, … , 𝑉 𝑐  Total available CPU units of node 𝑣 , 𝑣 =1, … , 𝑉 𝑟  Total available memory units of node 𝑣, 𝑣 =1, … , 𝑉 𝜀 ,  
CPU units required by the 𝑖’th microservice 𝑖 = 1, … , 𝐼 , of application 𝑎, 𝑎 = 1, … , 𝐴 

𝜌 ,  
Memory units required by the 𝑖 ’th 
microservice 𝑖 = 1, … , 𝐼 , of application 𝑎 , 𝑎 = 1, … , 𝐴 𝑛  Networking cost coefficient of node 𝑣 , 𝑣 =1, … , 𝑉 𝑠 ,  
Size of transported data for the 𝑖 ’th 
microservice, 𝑖 = 1, … , 𝐼 ,  of application 𝑎 , 𝑎 = 1, … , 𝐴  

w 
Weighting coefficient to control the 
horizontal/vertical placement of the 
applications’ microservices  

Variables: 

𝑥 , , Binary variable, which is equal to 1 if the 𝑖’th 
microservice  𝑖 = 1, … , 𝐼 , of application 𝑎, 𝑎 =1, … , 𝐴 is assigned to node 𝑖, and 0 otherwise 𝜏 Integer variable that denotes the monetary cost 
for serving cloud native application 𝑎 = 1, … , 𝐴 𝜃 Integer variable that denotes the maximum 
propagation latency of cloud native application 𝑎 = 1, … , 𝐴 

Objective Function: 

min 𝑤 ∙ 𝜏 + (1 − 𝑤) ∙ 𝜃  (1)

Subject to the Following Constraints: 
C.1. Placement of the microservices to nodes. For 
each application 𝑎 = 1, … , 𝐴  and for each 
microservice 𝑖 = 1, … , 𝐼   

𝑥 , , = 1 (2)

C.2. Respect of the relative latency between the 
applications’ microservices. For each application 𝑎 =1, … , 𝐴, and each pair of microservices of application 
a, 𝑖, 𝑖 = 1, … , 𝐼 ,  
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Figure 1: The flowchart of the GRAA heuristic. 𝑙 , 𝑥 , , +  𝑙 , 𝑥 , , 𝜆 , , + 𝑙 ,  (3)

C.3. The allocated CPU units of the served 
applications cannot surpass the number of available 
CPU units at each node. For each node 𝑣 = 1, … , 𝑉,  

𝜀 , 𝑥 , ,  𝑐  (4)

C.4. The allocated Memory units of the served 
applications cannot surpass the number of available 
Memory units at each node. For each node 𝑣 =1, … , 𝑉, 

𝜌 , 𝑥 , ,  𝑟   (5)

C.5. Total monetary application cost 𝜏 calculation. 
For each application 𝑎 = 1, … , 𝐴 

𝜏 = (𝑜 + 𝑛 ∙ 𝑠 , ) ∙ 𝑥 , ,  (6)

C.6. Maximum per application latency (propagation) 
calculation. For each node 𝑣 = 1, … , 𝑉,  for each 
cloud native application   𝑎 = 1, … , 𝐴, and each of its 
microservices 𝑖 = 1, … , 𝐼 , 𝜃 𝑥 , , ∙ 𝑙 ,  (7)

The objective function (Eq. 1) is the weighted 
sum of the maximum delay and cost per applications’ 
assignments, where 𝑤 = 0 considers purely the delay 
minimization problem and thus the microservices of 
the applications are preferably placed in the edge 
(horizontal scaling),  𝑤 = 1 deals with the cost 
minimization problem and thus the vertical scaling of 
applications, and any intermediate value of w 
considers both of the aforementioned parameters with 

different contribution in the calculation of the total 
cost. The first constraint (Eq. 2) is used to ensure that 
every microservice is assigned to exactly one node. 
The second constraint (Eq. 3) enforces that allocation 
of resources among interacting applications of a 
microservice is performed with respect to their 
latency constraint. Constraints (3) and (4) ensure that 
microservices running in a node do not use more than 
the available resources, while constraints (5) and (6) 
calculate the monetary cost and the maximum latency 
of each application respectively. Note that our 
considered formulation supports general workloads 
(not strictly cloud-native applications) that can take 
the form of an application with a single microservice. 

Next, we examined the number of variables and 
constraints required by the MILP formulation. 
Assuming that the infrastructure consists of |𝑉| nodes 
and |𝐴|  cloud-native applications are served, each 
one consisting of |𝐼| microservices, the total number 
of variables is [|𝑉| ∙ |𝐴| ∙ |𝐼| + 2 ∙ |𝐴|]. It requires the 
following equality constraints: |𝐴| ∙ |𝐼| for constraint 
1 (eq.2 C.1.) and  |𝐴| for constraint 5 (eq. 6). It also 
requires the following inequality constraints: |𝐴| ∙|𝐼| ∙ |𝑉|  for constraint 2 (eq. 3), |𝑉|  for constraint 3 (eq. 4), |𝑉| for constraint 4 (eq. 5) and |𝑉| ∙ |𝐴| ∙ |𝐼| for constraint 6 (eq. 7). 

4 RESOURCE ALLOCATION 
MECHANISMS 

As the considered problem belongs to the NP-hard 
class of problems (Sallam & Ji, 2019) the presented 
MILP is computationally intensive with prohibitively 
large execution time even for small size problems. 
For this reason, we developed sub-optimal 
mechanisms. First, we present the Greedy Resource 
Allocation   Algorithm   (GRRA),   which   is able   to  
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Figure 2: The multi-agent Rollout options for serving the i-th microservice of application a. 

deduce the optimal placement for each microservice 
individually in a greedy manner. Next, we describe 
the multi-agent Rollout mechanism, a meta-heuristic 
algorithm that uses GRRA to provide an improved 
solution through an iterative process. 

4.1 Greedy Resource Allocation 
Algorithm (GRAA) 

GRAA is a greedy heuristic that seeks to find a 
satisfactory even-though sub-optimal solution by 
serving the application demands in a best fit manner. 
GRAA takes as input the infrastructure graph 𝐺 =(𝑉, 𝐸) along with all the applications’ demands and 
its microservices described by graph 𝐺 =(𝑉 , 𝐸 ) for application 𝑎 , ∀𝑎 = 1, … , 𝐴. 
Applications are served sequentially, one by one. 
After selecting an application, the first microservice 
of the application is selected and the candidate 
infrastructure nodes with enough resources are 
calculated in order to accommodate it. These nodes 
are ranked based on the objective function 
considering the cost and the latency introduced by the 
assignment of the microservice 𝑖 = 1, … , 𝐼𝑎.  to each 
node. The best node 𝑣 ∈ 𝑉  is selected and the 
demanded by the microservice computing and 
memory resources are reserved. If the application 
consists of more than one microservices, the next 
microservice is selected. The same process is 
followed for the following microservice with the 
addition of the relative latency constraint between the 
communicating microservices. Hence, given the first 
microservice location, the nodes 𝑣 ∈ 𝑉  with 
communication latency smaller to the limit by the 
microservices are selected, 𝑙 , 𝜆 , , , . If more 
than one node is found, it places the second 
microservice in the best one (it could be the same 
node as the first microservice). The same process is 
repeated until the 𝐼 -th microservice of the 
application is served. If it is not possible to find a node 
to host an application’s microservice, the procedure 
is re-initiated for the same application considering the 
second-best node for the first microservice and so on. 
When a solution is found the utilization of the 

resources is updated and the application is marked as 
served. The above process is repeated for all 
applications, returning the final assignment and the 
value of the objective function (Eq. 1). From the 
description of the aforementioned procedure, it may 
be the case where the selection of the first node can 
make the execution of an application impossible due 
to the latency constraint among the microservices of 
the application. Although this may happen for the 
edge resources which are characterized by limited 
capacity of resources, this does not stand for the 
abundant cloud resources, which are able to execute 
the application demands at the price of increased 
propagation latency. The complexity of this approach 
is polynomial with a worst-case execution time of 𝑂(|𝐴| ∙ |𝐼 | ∙ |𝑉|), assuming that all the nodes |𝑉| are 
candidate locations to serve the first microservice of 
each application. A typical iteration of this algorithm 
is presented in the flowchart of Fig. 1.  

4.2 Multi-Agent Rollout Mechanism 

To further improve the performance of the 
aforementioned greedy heuristic, we also developed a 
multi-agent Rollout mechanism. Rollout (Bertsekas, 
2010; Bertsekas et al., 1997) is among the most 
known reinforcement leaning techniques that aims to 
provide a close to optimal solution by leveraging a 
base policy (like GRAA). It is an iterative process that 
takes each time as input an instance of the resource 
assignment problem (concerning applications with 
microservices) with a partial solution of the problem 
(some microservices assigned to nodes) and 
constructs step-by-stem the solution. This technique 
becomes particularly useful when the exact methods 
are too slow and/or when solutions provided by 
heuristics are inefficient. 

Assuming that the first (𝑎-1) applications have 
been served and application 𝑎 is going to be served, 
the multi-agent rollout heuristic gets as input a 
solution path 𝑜 = [𝑜 , … , 𝑜 ] of size ∑ 𝑜 ∙ 𝐼 , 
where states 𝑜 , for 𝑘 = 1, … , 𝑎 − 1   contains the 
assignment of the microservices of the application 𝑘 = 1, … . , 𝑎 − 1 to processing nodes. Then, state 𝑜𝑎 
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is broken down into 𝐼  stages each one corresponding 
to the allocation of resources of one of the 𝐼  
microservices that make up application 𝑎  to 
processing nodes. Initially, a number of possible 
placements 𝑃 ,  for each microservice 𝑖 = 1, … , 𝐼  
that is going to be served are calculated. Next, to 
decide for the placement of a microservice 𝑖, one of 
the available placement options 𝑝 ∈ 𝑃 ,  is selected 
and the respective service cost is calculated based on 
the provided objective function, while the cost for the 
remaining microservices and applications is 
calculated making use of the GRAA heuristic (base 
policy), resulting in a total cost 𝜎 . When all the 
possible placements 𝑃  of microservice i have been 
performed, the one that provides the lowest cost 𝜎  is 
selected (Fig 2.). The utilization of the node that 
serves the microservice is updated accordingly, the 
microservice is marked as served and the procedure 
continues with the following microservice.  The 
placement of the microservice 𝐼  of application 𝑎 
indicates the transition to state 𝑜   and the same 
procedure is repeated until all the application 
demands A are served. At the end, the allocation of 
resources to nodes is returned along with the 
weighted cost for the performed assignment.  

Consider an application 𝑎  consisting of 𝐼  
microservices. Each microservice can be placed (in 
the general scenario) in one of the nodes of the 
infrastructure, resulting in a state size of |𝑉|  for the 
collective decision of the application’s placement. 
When the allocation of resources of an application a 
is broken down into |𝐼 | sequential decisions and by 
applying one agent-at-a-time instead of all-agents-at-
once the state space is reduced into |𝑉| ∙ |𝐼 | states. In 
this case, the control space complexity from the 
different options when serving the applications is 
traded off with state space complexity and the 
computational requirements are proportional to the 
number of microservices and the number of 
computing nodes of the examined infrastructure. 

5 SIMULATION EXPERIMENTS 

To perform our experiments, we considered two 
topologies for the hierarchical cloud-edge 
infrastructure, with different characteristics regarding 
the number of nodes at the different layers and their 
computing capacity (Table 1): a basic that consists of 
19 nodes and an extended that consists of 53 nodes, 
with the cloud having enough capacity to serve the 
examined workloads. For both topologies, we 
assumed that they are organized into a hierarchical 

infrastructure that consists of nodes (locations) that 
belong to three different layers namely the near-edge, 
far-edge and cloud. In the basic topology, we 
considered (i) 15 near edge resources equipped with 
an integer number of CPU and memory units taken 
from the uniform distribution in the close interval 
[4,8] and [4,16] respectively with an operating cost 
taken in the interval [6-8], (ii) 3 far edge nodes with 
[80-120] and [120-200] CPU and Memory resource 
and relative cost [3,4] and (iii) 1 cloud locations with 
500 CPU units and 1000 Memory units with cost in 
the close interval [1,2]. The operational cost 𝑜  is 
measured in normalized cost units to fit our 
mathematical model. The network cost coefficient 
values 𝑛  are drawn from (Rutledge, 2020).  

The propagation delay is measured in normalized 
latency units. We considered the propagation delay 
between the data-source and the cloud layers to be 
approximately 5 times greater than between the data-
source and near-edge. The exact distances are not 
well defined nor standardized, but we used (Madden, 
2020) as a guideline/estimation. The communication 
delays among the layers were calculated accordingly. 
Note that the basic topology was used for 
performance comparison between our GRAA 
heuristic, the multi-agent Rollout, and the built-in 
optimal MILP solver of Matlab. The execution times 
for the optimal solver became prohibitively large for 
larger configurations, hence the use of the basic 
topology. The extended topology considers the same 
node attributes, but their numbers are scaled to 40 
near-edge nodes, 10 far-edge nodes and 3 central 
cloud locations. The extended topology was used for 
the rest of the experiments to provide a closer-to-real-
world scenario and demonstrate the scalability of the 
proposed algorithms.  

Table 1: The characteristics of the computing nodes of the 
basic and extended topologies. 

Near-Edge Far-Edge Cloud
Basic topology 

(#Nodes) 15 3 1 

Extended 
topology 
(#Nodes)

40 10 3 𝑐 [4, 8] [80-120] 500 𝑟 [4, 16] [120-200] 1000 𝑜 [2, 3] [1,1.5] [0.3,0.7] 𝑛 0.1 0.25 0.5 

With regards to the workload, the demands were 
generated randomly at the near-edge nodes consisting 
of microservices drawn from the uniform distribution 
in the close interval [1,5]. The size of the workload of 
each application was randomly selected in the interval 
[1,5], measured in normalized size units. 
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Dependencies between pairs of microservices were 
created randomly with probability equal to 0.3, while 
the latency constraint among them varies in the close 
interval [0.5,3.5] latency units. The processing and 
memory requirements of each microservice are drawn 
from the uniform distribution in the close interval [1, 
4] and [1, 8] respectively. The proposed mechanisms 
were developed in MATLAB and the experiments 
were conducted on a 6 core 2.6 GHz Intel Core i7 PC 
with 12 GB of RAM. 

Initially, we compared the performance of the 
multi-agent rollout and the greedy heuristic with the 
optimal solution provided by the MILP in means of 
execution time and optimality for randomly selected 
application demands (ranging from 50 to 300) and for 
weighting coefficient 0.01. This coefficient 
corresponds to the latency optimization problem, but 
with a minimal inclusion of cost.  

Table 2: The total cost and the execution time for w=0.01 
for the different mechanisms. 

A
pp

lic
at

io
n 

de
m

an
ds

 MILP 
Multi-agent 

Rollout 
GRAA 

Obj. 
value 

Exec. 
Time 
(sec) 

Obj. 
value 

Exec. 
Time 
(sec) 

Obj. 
value 

Exec. 
Time 
(sec) 

50 55.92 92.37 56.31 17.3 56.84 0.12 

100 115.15 507.42 116.17 69.42 117.90 0.22 

150 228.51 2453.16 236.49 147.72 252.38 0.35 

200 409.94 10000 421.6 252.09 438.62 0.47 

250 657.8 10000 675.42 349.74 702.37 0.67 

300 - 10000 1051.8 348.82 1079.2 0.89 

Regarding the performance of the proposed 
mechanisms, GRAA, which is a best-fit heuristic, had 
the worst performance, with a gap up to 10% from the 
optimal solution, whereas the Multi-agent Rollout 
managed to generate solutions within 3.5% of the 
optimal in all cases. As for the execution time, GRAA 
exposed the lowest execution time in the order of 
milliseconds even for higher workloads, while 
Rollout's execution time growth is polynomial with 
the workload increment. Finally, the MILP solver had 
exponentially increasing execution times, and for the 
workload sizes of 200 and 250 application demands, 
it finished its operation withing the time limit that was 
set, while for the largest workload did not managed to 
produce a feasible solution during this period.  

 

 
Figure 3: The pareto efficiency chart. 

In Fig. 3, we present the allocative efficiency 
chart for the two objectives that are taken into 
consideration, namely the monetary cost for the 
application execution and the average latency per 
application for the different weighting co-efficients 
that are used in the objective function. As expected, 
the lowest cost is achieved when cloud resources are 
highly utilized and thus the propagation latency 
increases as cloud resources are located in a few 
distant locations to which the data are transferred. 
When the single optimization criterion is the 
minimization of latency, the propagation delay is 
minimized by 70% compared to the previous case, 
while the monetary cost is increased by almost 75%.  

Next, we examined the utilization of edge and 
cloud resources for serving 600 cloud native 
application demands for the different weighting 
coefficients w (Fig. 4.a). Edge resources are utilized 
more in small weight values, as the objective is 
approaching the delay minimization and edge layers 
consist of nodes in geographic proximity to the data-
source. In this case the microservices of an 
application expand over the resources of the edge 
layer, which is known as horizontal scaling.  On the 
other hand, cloud resources are heavily utilized in 
high w values, as the objective is approaching the 
monetary cost minimization, thus the “cheap” cloud 
nodes are preferred. For intermediate values of w, 
applications microservices are allocated over the 
edge-cloud continuum which is known as vertical 
scaling. This showcases the importance of edge 
resources in the minimization of the applications 
latency for time critical operations.  

Finally, in Fig.4.b we examined the contribution 
of networking and operational cost for the different 
weighting co-efficient values. When the objective 
function targets the minimization of the monetary 
cost, the cloud resources are preferred with the 
operational and networking  cost  contributing  almost 
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a. 

b. 

Figure 4: a. The number of microservices allocated at the 
near/far edge and the cloud and b. the operational and 
networking cost for the different objective co-efficients. 

equally to the total cost, as the processing cost is low 
while the networking cost increases for the 
transferring the application data to the cloud. On the 
other hand, when the objective is the minimization of 
latency and edge resources are utilized, the 
processing cost of the edge resources is the main 
factor of the total monetary cost, with the networking 
cost corresponding to 12% of the total cost. 

6 CONCLUSIONS 

In this work, we addressed the problem of resource 
allocation in multi-layered edge-cloud infrastructures 
for optimally serving cloud-native applications. We 
considered multiple important (and often neglected) 
parameters, such as the delay constraints posed by the 
dependencies among microservices. GRAA was 
developed to provide a sub-optimal solution and to be 
used by the Rollout technique for further 
optimization. We demonstrated the trade-off between 
delay and monetary cost of service and proved the 
quality of the Rollout technique, which provided a 
significant improvement in the GRAA’s solution, 

while also maintaining a low computational time. We 
aspire to further investigate this problem by adding 
more parameters into our objective, such as security 
and bandwidth consumption. In addition, we aim to 
provide a more realistic scenario by collecting real 
application and infrastructure data as well as solving 
the corresponding on-line problem. Finally, we aim to 
fully explore the capabilities of Rollout by 
implementing it with different base policies. 
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