
Cloud-Native Applications’ Workload Placement over the
Edge-Cloud Continuum

Georgios Kontos1,2, Polyzois Soumplis1,2, Panagiotis Kokkinos2,3 and Emmanouel Varvarigos1,2
1School of Electrical and Computer Engineering, National Technical University of Athens, Greece

2Institute of Communication and Computer Systems, Athens, Greece
3Department of Digital Systems, University of Peloponnese, Sparta, Greece

Keywords: Cloud-Native, Edge-Cloud Continuum, Resource Allocation, Multi-Agent Rollout, Reinforcement Learning.

Abstract: The evolution of virtualization technologies and of distributed computing architectures has inspired the so-
called cloud native applications development approach. A cornerstone of this approach is the decomposition
of a monolithic application into small and loosely coupled components (i.e., microservices). In this way,
application’s performance, flexibility, and robustness can be improved. However, most orchestration
algorithms assume generic application workloads that cannot serve efficiently the specific requirements posed
by the applications, regarding latency and low communication delays between their dependent microservices.
In this work, we develop advanced mechanisms for automating the allocation of computing resources, in order
to optimize the service of cloud-native applications in a layered edge-cloud continuum. We initially present
the Mixed Integer Linear Programming formulation of the problem. As the execution time can be prohibitively
large for real-size problems, we develop a fast heuristic algorithm. To efficiently exploit the performance–
execution time trade-off, we employ a novel multi-agent Rollout, the simplest and most reliable among the
Reinforcement Learning methods, that leverages the heuristic’s decisions to further optimize the final solution.
We evaluate the results through extensive simulations under various inputs that demonstrate the quality of the
generated sub-optimal solutions.

1 INTRODUCTION

Monolithic applications logic is concentrated into a
single, integral, and indivisible entity (Villamizar et
al., 2015). This approach was efficient in the past
when applications consisted of a client-side user
interface, a server-side implementation, and a
database. However, with the gradual establishment of
new ICT technologies (Akbar et al., 2022; Dangi et
al., 2021; Shah et al., 2021) (virtualization, optical
networks, 5G/6G), applications’ design complexity
has become higher, while there is a constant need for
updates to meet the ever-increasing Quality of
Service (QoS) demands. The monolithic approach
stands inadequate in such a competitive and volatile
environment, thus creating the need for a novel
application architecture model. The cloud-native
approach seems to be a favorable candidate: By
taking full advantage of the cloud computing model
and decomposing the applications into microservices,
it offers the flexibility, scalability, and robustness to
thrive in the modern world (Ren et al., 2018).

The primary design principle of a cloud-native
application is its effective decomposition into
microservices; small, loosely-coupled components,
where each one packs its own code, runs
autonomously and serves a specific and unique
purpose. The execution typically takes place in
autonomous visualized computing environments
called containers (Bernstein, 2014), which reserve the
required computing, networking and storage
resources from the host operating system.

Today, new kinds of services, inter-connected
products and other digitized assets create massive
amounts of data at the network’s edge and often
require ultra-low processing delays. These include,
among others, concepts like autonomous vehicles,
smart cities, virtual/augmented reality, and
biomedical care that utilize an abundance of sensors
and other data-generating systems. In such scenarios,
moving the generated load to remote cloud data
centers can lead to network bottlenecks, while also
fails to satisfy applications’ strict requirements due to
the increased latency. To tackle these problems, the

Kontos, G., Soumplis, P., Kokkinos, P. and Varvarigos, E.
Cloud-Native Applications’ Workload Placement over the Edge-Cloud Continuum.
DOI: 10.5220/0011850100003488
In Proceedings of the 13th International Conference on Cloud Computing and Services Science (CLOSER 2023), pages 57-66
ISBN: 978-989-758-650-7; ISSN: 2184-5042
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

57

paradigm of edge computing has arisen (Shi et al.,
2016). With edge computing, units placed at various
locations close to the data sources, computing,
networking and storage capabilities are provided on
the spot. These units, although of lower capacity
compared to cloud infrastructures, serve time-critical
tasks and reduce the load offloaded to the central
cloud. Cloud resources are also utilized in
combination with the edge ones, e.g., serving latency-
tolerant workloads, creating a powerful edge-cloud
continuum. Software-wise, lightweight containers are
the ideal technology to enable the seamless execution
of cloud-native applications, or parts of them, on the
edge; (Goethals, n.d.) in contrast to other
virtualization approaches like virtual machines.

The present work focuses on the development of
a novel mechanism for the appropriate allocation of
the available computing and storage resources in the
various layers of an edge-cloud infrastructure, to
support incoming workload from cloud-native
applications. Our aim is to jointly optimize a
weighted combination of the average delay (per
application) and the average cost of service while
ensuring that the delay between dependent
microservices and the available resources on the
infrastructure nodes meet the requirements specified
by the applications.. We first model the problem as a
Mixed Integer Linear Programming (MILP) problem.
Then, we construct a fast heuristic algorithm, called
Greedy Resource Allocation Algorithm (GRAA),
which is also utilized by a novel Rollout technique to
further optimize the generated solution (namely
Rollout algorithm based on GRAA) relying on
Reinforcement Learning (RL) principles. We
evaluate the results through extensive simulations
under various scenarios and demonstrate the
efficiency of the proposed solutions.

The remainder of this paper is organized as
follows: In Section 2, we present the related work. In
Section 3, we analyze the considered edge-cloud
infrastructure and the cloud-native applications
workload and formulate the resource allocation
problem as a MILP. In Section 4, we present the
heuristic algorithms developed. In Section 5, we
comment on the simulation results and finally, in
Section 6 we conclude our work.

2 RELATED WORKS

The resource allocation problem in virtualized
environments is a multi-dimensional research area
that has attracted the interest of the research
community. The modeling of the problem among the

different works varies according to the considered
topology and the adopted technologies, while the
proposed solutions employ techniques from the wider
realm of mathematics and computer science.

(Li et al., 2018) examine the placement of virtual
machines (VMs) on top of physical systems in a cloud
data center to perform big-data analytics from
Internet of Things (IoT) devices. The infrastructure is
modeled as a graph, where nodes represent VMs, and
links represent the network communication between
them. The aim is to minimize the maximum
utilization across the links in order to optimally utilize
network resources and avoid congestion. A greedy,
first-fit heuristic algorithm is presented that targets
placing as many interacting VMs as possible on the
same physical systems to minimize communication
costs. Authors in (Kiran et al., 2020) introduce the
VNFPRA problem, which focuses on the optimal
placement of VNFs (Virtualized Network Functions)
in SDN-NFV-enabled Multi-Access Edge Computing
(MEC) nodes with the aim of minimizing the
deployment and resource usage cost. The MEC
topology is modeled with a weighted graph, where
each node corresponds to a MEC node, characterized
by its available resources, while each link is a
network link with a given capacity. The problem is
formulated as a Mixed Integer Programming (MIP)
problem, where the objective function is the total
service cost that considers the placement cost,
resource usage cost and link usage/replication cost.
To tackle the time-consuming process of finding the
optimal solution, the authors propose a genetic-based
heuristic algorithm. In (da Silva & da Fonseca, 2018),
the authors develop an algorithm based on Gaussian
Process Regression to predict future traffic and
minimize request blocking, especially in the case of
time-critical requests. A hierarchical infrastructure
that consists of computing layers (near edge, far edge,
cloud) is considered and the objective is to ensure that
the near/far edge resources are sufficient enough to
serve future time-sensitive demands.

Shifting our attention to more relevant works to
the one presented in this paper, authors in (Santoro et
al., 2018) developed “Foggy”, an architectural
framework based on open-source tools that handles
requests from end users in a multi-level
heterogeneous fog/edge environment. The requests
arrive in a FIFO queue, and at each stage, the
available nodes are ranked by their processing power
and their networking towards the end user to extract
the best match. The authors in (Mutlag et al., 2021)
proposed a dynamic resource scheduling scheme for
critical smart-healthcare tasks in a fog/edge-cloud
topology. Their model consists of a multi-agent

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

58

system (MAS) with four kinds of agents named
personal agent (PA), master personal agent (MPA),
fog node agent (FNA), and master fog node agent
(MFNA). The scheduling strategy relies on effective
prioritization of the tasks according to their criticality
and on balancing network load. In (Pallewatta et al.,
2019) a system for microservices placement in a
multi-layered fog/edge environment is implemented,
targeting to place them as close as possible to the data
sources. All related operations (e.g., service
discovery, load balancing) are also handled in a
decentralized manner by the infrastructure nodes.

Finally, reinforcement learning is a technique that
has been used in the context of resource allocation in
edge-cloud environments. The authors in (Alfakih et
al., 2020) present a deep reinforcement learning
approach, based on state-action-reward-state-action
(SARSA), for addressing the problem of task off-
loading and resource allocation in Mobile Edge
Computing (MEC) environments. They model user
requests as a sequence of sub-tasks, which can be
executed by either the nearest edge server, the
adjacent edge server, or the central cloud. The
proposed solution aims to minimize service delay and
energy consumption by dynamically making
offloading decisions and allocating resources based
on the current state of the infrastructure. (Wang et al.,
2021) present a solution for the microservice
coordination problem in mobile edge computing
environments where mobile users (e.g., autonomous
vehicles) offload computation to the edge clouds. The
authors aim to minimize a weighted combination of
delay and migration costs by determining the optimal
deployment locations for microservices. They first
propose an offline algorithm able to derive the
optimal objective and then a Q-learning-based
reinforcement learning approach that produces a
near-optimal solution in real-time. (Chen et al., 2021)
propose a deep reinforcement learning solution for
microservice deployment in heterogenous edge-cloud
environments. They consider microservices as a
service chain, in which the microservices must be
executed in a pre-specified order. Simulations are
conducted with a combination of real and synthetic
data, with the objective of minimizing the Average
Waiting Time (AWT) of the microservices.

In our work, we explore the allocation of
microservice based-applications in a distributed
hierarchical edge-cloud infrastructure considering
important aspects of their operation. None of the
mentioned works, consider the dependencies between
microservices as delay constraints between their
corresponding service nodes to guarantee their
seamless communication. This is a valid concern that

must not go unnoticed especially when
geographically dispersed infrastructures are
considered. Microservice dependencies often take the
form of information exchange requirements or even
service chains, when one microservice must complete
its execution before another starts. Hence, the latency
between the corresponding service nodes of
dependent microservices should be taken into account
in the allocation process. In addition, to the best of
our knowledge, we are the first to employ the multi-
agent Rollout technique in such a scenario. It is a very
unique optimization approach based on the principles
of Dynamic Programming and Reinforcement
Learning, where greedy heuristics can be used to
approximate future decisions and can produce
valuable results with the assistance of the Rollout
technique, which although easy to understand and
implement, can improve the solutions significantly.
Finally, most works mainly focus on the provider,
studying its economic and energy well-fare, while
often neglecting the requirements of the “clients”,
such as cloud-native applications’ owners and users.
For this reason, our work focuses on meeting the
requirements set by the applications and on
optimizing the multiple and conflicting microservice
placement objectives.

3 PROBLEM FORMULATION

We consider a hierarchical edge-cloud infrastructure,
with multiple layers of edge resources (e.g., on-
device, near-edge, far-edge) to serve the incoming
cloud-native workload. We assume that the edge
layers consist of machines with relative limited
resources, such as raspberry Pi’s, NVIDIA Jetson,
servers, mini – Datacenters, etc. while the cloud layer
has practically unlimited resources.

The hierarchical edge-cloud infrastructure is
denoted as a Undirected Weighted Graph 𝐺 = (𝑉, 𝐸).
Each node 𝑣 ∈ 𝑉 is described by the tuple 𝜏 = [𝑐 , 𝑟 , 𝑜 , 𝑛] , where 𝑐 is node’s 𝑣 CPU capacity
measured in CPU units, 𝑟 is the node’s RAM
capacity measured in RAM units, 𝑜 is the node’s
operating cost and 𝑛 is the node’s networking cost
coefficient. Operational cost relates to the expenses
made for purchasing, deploying, and operating the
respective computing/storage systems. This is small
for the cloud layer, since providers achieve
economies of scale, and gradually increases for the
edge layers, due to their limited resources, the small
number of customers and their geographically
dispersed placement. Networking cost coefficient 𝑛
results from the usage of any link from the nodes

Cloud-Native Applications’ Workload Placement over the Edge-Cloud Continuum

59

where data are generated to the node(s) 𝑣 where
computing operations take place and is multiplied by
the ingress data to deduce the actual networking cost
of service. The coefficient is minimal for the near
edge nodes, where links are shorter in distance and
cheaper to install, while it gradually increases up to
the massive links connecting the cloud nodes.
Generally, data are generated at the lower levels of
the infrastructure that can be either equipped with
computing resources (local processing) or not. As
they are typically located in the near edge, the delay
is small for transferring the data to a subset of near
edge nodes as they are located closer to the data-
source, given their plurality and thus higher
geographical density, while it increases for the higher
layer nodes (far edge, cloud). Finally, each link 𝑒 ∈ 𝐸
between two nodes 𝑣 and 𝑣′ is characterized by a
weight 𝑙 , , representing the communication
(propagation) delay of nodes 𝑣 and 𝑣′.

The workload under consideration consists of a
set 𝐴 of cloud-native applications. Each application 𝑎 ∈ 𝐴 is described by an Undirected Weighted Graph 𝐺 = (𝑉 , 𝐸), with the nodes 𝑉 corresponding to
the microservices that make up the application and
the arcs 𝐸 the inter-dependencies (communication
requirements) among them. Each cloud native
application has a source node 𝜋 ∈ 𝑉 and each
microservice 𝑖 = 1, … , |𝐼 | of application 𝑎 , has
specific resource requirements described by the tuple [𝜀 , , 𝜌 , , 𝑠 ,], where 𝜀 , is the microservice’s CPU
demand, 𝜌 , is its memory demand and 𝑠 , is the
size of the input data. Furthermore, each arc 𝑒 ∈ 𝐸
between two microservices 𝜄, 𝜄 ∈ 𝑉 has a weight 𝜆 , , that represents the maximum acceptable delay
between the corresponding service nodes 𝑣, 𝑣′ of
these microservices. This is a measure of the intensity
of the dependency between these two microservices,
in a sense that highly dependent microservices should
be served by the same or geographically approximate
nodes to reduce communication costs and guarantee
application's efficiency with in-time calculations.

3.1 MILP Formulation

In what follows, we present the mathematical
formulation of the cloud native resource allocation
problem over a cloud-edge infrastructure. The
optimization objective is a weighted combination of
the average (operational and networking) cost and the
maximum delay per application assignment, with
respect to computing and networking constraints
imposed by the applications requirements and nodes’
resource availability.

Input: 𝑉 Total number of nodes 𝐴 Total number of applications 𝐼 Total number of microservices for the
 𝑎’th application, 𝑎 = 1, … , 𝐴 𝑜 Operating cost of node 𝑣, 𝑣 = 1, … , 𝑉 𝜆 , , Relative upper delay limit between micro-
services 𝑖, 𝑖’ of an application 𝑎, 𝑎 = 1, … , 𝐴. 𝑙 , Communication delay between nodes 𝑣 and 𝑣’, 𝑣, 𝑣 = 1, … , 𝑉 𝑐 Total available CPU units of node 𝑣 , 𝑣 =1, … , 𝑉 𝑟 Total available memory units of node 𝑣, 𝑣 =1, … , 𝑉 𝜀 ,
CPU units required by the 𝑖’th microservice 𝑖 = 1, … , 𝐼 , of application 𝑎, 𝑎 = 1, … , 𝐴

𝜌 ,
Memory units required by the 𝑖 ’th
microservice 𝑖 = 1, … , 𝐼 , of application 𝑎 , 𝑎 = 1, … , 𝐴 𝑛 Networking cost coefficient of node 𝑣 , 𝑣 =1, … , 𝑉 𝑠 ,
Size of transported data for the 𝑖 ’th
microservice, 𝑖 = 1, … , 𝐼 , of application 𝑎 , 𝑎 = 1, … , 𝐴

w
Weighting coefficient to control the
horizontal/vertical placement of the
applications’ microservices

Variables:

𝑥 , , Binary variable, which is equal to 1 if the 𝑖’th
microservice 𝑖 = 1, … , 𝐼 , of application 𝑎, 𝑎 =1, … , 𝐴 is assigned to node 𝑖, and 0 otherwise 𝜏 Integer variable that denotes the monetary cost
for serving cloud native application 𝑎 = 1, … , 𝐴 𝜃 Integer variable that denotes the maximum
propagation latency of cloud native application 𝑎 = 1, … , 𝐴

Objective Function:

min 𝑤 ∙ 𝜏 + (1 − 𝑤) ∙ 𝜃 (1)

Subject to the Following Constraints:
C.1. Placement of the microservices to nodes. For
each application 𝑎 = 1, … , 𝐴 and for each
microservice 𝑖 = 1, … , 𝐼

𝑥 , , = 1 (2)

C.2. Respect of the relative latency between the
applications’ microservices. For each application 𝑎 =1, … , 𝐴, and each pair of microservices of application
a, 𝑖, 𝑖 = 1, … , 𝐼 ,

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

60

Figure 1: The flowchart of the GRAA heuristic. 𝑙 , 𝑥 , , + 𝑙 , 𝑥 , , 𝜆 , , + 𝑙 , (3)

C.3. The allocated CPU units of the served
applications cannot surpass the number of available
CPU units at each node. For each node 𝑣 = 1, … , 𝑉,

𝜀 , 𝑥 , , 𝑐 (4)

C.4. The allocated Memory units of the served
applications cannot surpass the number of available
Memory units at each node. For each node 𝑣 =1, … , 𝑉,

𝜌 , 𝑥 , , 𝑟 (5)

C.5. Total monetary application cost 𝜏 calculation.
For each application 𝑎 = 1, … , 𝐴

𝜏 = (𝑜 + 𝑛 ∙ 𝑠 ,) ∙ 𝑥 , , (6)

C.6. Maximum per application latency (propagation)
calculation. For each node 𝑣 = 1, … , 𝑉, for each
cloud native application 𝑎 = 1, … , 𝐴, and each of its
microservices 𝑖 = 1, … , 𝐼 , 𝜃 𝑥 , , ∙ 𝑙 , (7)

The objective function (Eq. 1) is the weighted
sum of the maximum delay and cost per applications’
assignments, where 𝑤 = 0 considers purely the delay
minimization problem and thus the microservices of
the applications are preferably placed in the edge
(horizontal scaling), 𝑤 = 1 deals with the cost
minimization problem and thus the vertical scaling of
applications, and any intermediate value of w
considers both of the aforementioned parameters with

different contribution in the calculation of the total
cost. The first constraint (Eq. 2) is used to ensure that
every microservice is assigned to exactly one node.
The second constraint (Eq. 3) enforces that allocation
of resources among interacting applications of a
microservice is performed with respect to their
latency constraint. Constraints (3) and (4) ensure that
microservices running in a node do not use more than
the available resources, while constraints (5) and (6)
calculate the monetary cost and the maximum latency
of each application respectively. Note that our
considered formulation supports general workloads
(not strictly cloud-native applications) that can take
the form of an application with a single microservice.

Next, we examined the number of variables and
constraints required by the MILP formulation.
Assuming that the infrastructure consists of |𝑉| nodes
and |𝐴| cloud-native applications are served, each
one consisting of |𝐼| microservices, the total number
of variables is [|𝑉| ∙ |𝐴| ∙ |𝐼| + 2 ∙ |𝐴|]. It requires the
following equality constraints: |𝐴| ∙ |𝐼| for constraint
1 (eq.2 C.1.) and |𝐴| for constraint 5 (eq. 6). It also
requires the following inequality constraints: |𝐴| ∙|𝐼| ∙ |𝑉| for constraint 2 (eq. 3), |𝑉| for constraint 3 (eq. 4), |𝑉| for constraint 4 (eq. 5) and |𝑉| ∙ |𝐴| ∙ |𝐼| for constraint 6 (eq. 7).

4 RESOURCE ALLOCATION
MECHANISMS

As the considered problem belongs to the NP-hard
class of problems (Sallam & Ji, 2019) the presented
MILP is computationally intensive with prohibitively
large execution time even for small size problems.
For this reason, we developed sub-optimal
mechanisms. First, we present the Greedy Resource
Allocation Algorithm (GRRA), which is able to

Cloud-Native Applications’ Workload Placement over the Edge-Cloud Continuum

61

Figure 2: The multi-agent Rollout options for serving the i-th microservice of application a.

deduce the optimal placement for each microservice
individually in a greedy manner. Next, we describe
the multi-agent Rollout mechanism, a meta-heuristic
algorithm that uses GRRA to provide an improved
solution through an iterative process.

4.1 Greedy Resource Allocation
Algorithm (GRAA)

GRAA is a greedy heuristic that seeks to find a
satisfactory even-though sub-optimal solution by
serving the application demands in a best fit manner.
GRAA takes as input the infrastructure graph 𝐺 =(𝑉, 𝐸) along with all the applications’ demands and
its microservices described by graph 𝐺 =(𝑉 , 𝐸) for application 𝑎 , ∀𝑎 = 1, … , 𝐴.
Applications are served sequentially, one by one.
After selecting an application, the first microservice
of the application is selected and the candidate
infrastructure nodes with enough resources are
calculated in order to accommodate it. These nodes
are ranked based on the objective function
considering the cost and the latency introduced by the
assignment of the microservice 𝑖 = 1, … , 𝐼𝑎. to each
node. The best node 𝑣 ∈ 𝑉 is selected and the
demanded by the microservice computing and
memory resources are reserved. If the application
consists of more than one microservices, the next
microservice is selected. The same process is
followed for the following microservice with the
addition of the relative latency constraint between the
communicating microservices. Hence, given the first
microservice location, the nodes 𝑣 ∈ 𝑉 with
communication latency smaller to the limit by the
microservices are selected, 𝑙 , 𝜆 , , , . If more
than one node is found, it places the second
microservice in the best one (it could be the same
node as the first microservice). The same process is
repeated until the 𝐼 -th microservice of the
application is served. If it is not possible to find a node
to host an application’s microservice, the procedure
is re-initiated for the same application considering the
second-best node for the first microservice and so on.
When a solution is found the utilization of the

resources is updated and the application is marked as
served. The above process is repeated for all
applications, returning the final assignment and the
value of the objective function (Eq. 1). From the
description of the aforementioned procedure, it may
be the case where the selection of the first node can
make the execution of an application impossible due
to the latency constraint among the microservices of
the application. Although this may happen for the
edge resources which are characterized by limited
capacity of resources, this does not stand for the
abundant cloud resources, which are able to execute
the application demands at the price of increased
propagation latency. The complexity of this approach
is polynomial with a worst-case execution time of 𝑂(|𝐴| ∙ |𝐼 | ∙ |𝑉|), assuming that all the nodes |𝑉| are
candidate locations to serve the first microservice of
each application. A typical iteration of this algorithm
is presented in the flowchart of Fig. 1.

4.2 Multi-Agent Rollout Mechanism

To further improve the performance of the
aforementioned greedy heuristic, we also developed a
multi-agent Rollout mechanism. Rollout (Bertsekas,
2010; Bertsekas et al., 1997) is among the most
known reinforcement leaning techniques that aims to
provide a close to optimal solution by leveraging a
base policy (like GRAA). It is an iterative process that
takes each time as input an instance of the resource
assignment problem (concerning applications with
microservices) with a partial solution of the problem
(some microservices assigned to nodes) and
constructs step-by-stem the solution. This technique
becomes particularly useful when the exact methods
are too slow and/or when solutions provided by
heuristics are inefficient.

Assuming that the first (𝑎-1) applications have
been served and application 𝑎 is going to be served,
the multi-agent rollout heuristic gets as input a
solution path 𝑜 = [𝑜 , … , 𝑜] of size ∑ 𝑜 ∙ 𝐼 ,
where states 𝑜 , for 𝑘 = 1, … , 𝑎 − 1 contains the
assignment of the microservices of the application 𝑘 = 1, … . , 𝑎 − 1 to processing nodes. Then, state 𝑜𝑎

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

62

is broken down into 𝐼 stages each one corresponding
to the allocation of resources of one of the 𝐼
microservices that make up application 𝑎 to
processing nodes. Initially, a number of possible
placements 𝑃 , for each microservice 𝑖 = 1, … , 𝐼
that is going to be served are calculated. Next, to
decide for the placement of a microservice 𝑖, one of
the available placement options 𝑝 ∈ 𝑃 , is selected
and the respective service cost is calculated based on
the provided objective function, while the cost for the
remaining microservices and applications is
calculated making use of the GRAA heuristic (base
policy), resulting in a total cost 𝜎 . When all the
possible placements 𝑃 of microservice i have been
performed, the one that provides the lowest cost 𝜎 is
selected (Fig 2.). The utilization of the node that
serves the microservice is updated accordingly, the
microservice is marked as served and the procedure
continues with the following microservice. The
placement of the microservice 𝐼 of application 𝑎
indicates the transition to state 𝑜 and the same
procedure is repeated until all the application
demands A are served. At the end, the allocation of
resources to nodes is returned along with the
weighted cost for the performed assignment.

Consider an application 𝑎 consisting of 𝐼
microservices. Each microservice can be placed (in
the general scenario) in one of the nodes of the
infrastructure, resulting in a state size of |𝑉| for the
collective decision of the application’s placement.
When the allocation of resources of an application a
is broken down into |𝐼 | sequential decisions and by
applying one agent-at-a-time instead of all-agents-at-
once the state space is reduced into |𝑉| ∙ |𝐼 | states. In
this case, the control space complexity from the
different options when serving the applications is
traded off with state space complexity and the
computational requirements are proportional to the
number of microservices and the number of
computing nodes of the examined infrastructure.

5 SIMULATION EXPERIMENTS

To perform our experiments, we considered two
topologies for the hierarchical cloud-edge
infrastructure, with different characteristics regarding
the number of nodes at the different layers and their
computing capacity (Table 1): a basic that consists of
19 nodes and an extended that consists of 53 nodes,
with the cloud having enough capacity to serve the
examined workloads. For both topologies, we
assumed that they are organized into a hierarchical

infrastructure that consists of nodes (locations) that
belong to three different layers namely the near-edge,
far-edge and cloud. In the basic topology, we
considered (i) 15 near edge resources equipped with
an integer number of CPU and memory units taken
from the uniform distribution in the close interval
[4,8] and [4,16] respectively with an operating cost
taken in the interval [6-8], (ii) 3 far edge nodes with
[80-120] and [120-200] CPU and Memory resource
and relative cost [3,4] and (iii) 1 cloud locations with
500 CPU units and 1000 Memory units with cost in
the close interval [1,2]. The operational cost 𝑜 is
measured in normalized cost units to fit our
mathematical model. The network cost coefficient
values 𝑛 are drawn from (Rutledge, 2020).

The propagation delay is measured in normalized
latency units. We considered the propagation delay
between the data-source and the cloud layers to be
approximately 5 times greater than between the data-
source and near-edge. The exact distances are not
well defined nor standardized, but we used (Madden,
2020) as a guideline/estimation. The communication
delays among the layers were calculated accordingly.
Note that the basic topology was used for
performance comparison between our GRAA
heuristic, the multi-agent Rollout, and the built-in
optimal MILP solver of Matlab. The execution times
for the optimal solver became prohibitively large for
larger configurations, hence the use of the basic
topology. The extended topology considers the same
node attributes, but their numbers are scaled to 40
near-edge nodes, 10 far-edge nodes and 3 central
cloud locations. The extended topology was used for
the rest of the experiments to provide a closer-to-real-
world scenario and demonstrate the scalability of the
proposed algorithms.

Table 1: The characteristics of the computing nodes of the
basic and extended topologies.

Near-Edge Far-Edge Cloud
Basic topology

(#Nodes) 15 3 1

Extended
topology
(#Nodes)

40 10 3 𝑐 [4, 8] [80-120] 500 𝑟 [4, 16] [120-200] 1000 𝑜 [2, 3] [1,1.5] [0.3,0.7] 𝑛 0.1 0.25 0.5

With regards to the workload, the demands were
generated randomly at the near-edge nodes consisting
of microservices drawn from the uniform distribution
in the close interval [1,5]. The size of the workload of
each application was randomly selected in the interval
[1,5], measured in normalized size units.

Cloud-Native Applications’ Workload Placement over the Edge-Cloud Continuum

63

Dependencies between pairs of microservices were
created randomly with probability equal to 0.3, while
the latency constraint among them varies in the close
interval [0.5,3.5] latency units. The processing and
memory requirements of each microservice are drawn
from the uniform distribution in the close interval [1,
4] and [1, 8] respectively. The proposed mechanisms
were developed in MATLAB and the experiments
were conducted on a 6 core 2.6 GHz Intel Core i7 PC
with 12 GB of RAM.

Initially, we compared the performance of the
multi-agent rollout and the greedy heuristic with the
optimal solution provided by the MILP in means of
execution time and optimality for randomly selected
application demands (ranging from 50 to 300) and for
weighting coefficient 0.01. This coefficient
corresponds to the latency optimization problem, but
with a minimal inclusion of cost.

Table 2: The total cost and the execution time for w=0.01
for the different mechanisms.

A
pp

lic
at

io
n

de
m

an
ds

 MILP
Multi-agent

Rollout
GRAA

Obj.
value

Exec.
Time
(sec)

Obj.
value

Exec.
Time
(sec)

Obj.
value

Exec.
Time
(sec)

50 55.92 92.37 56.31 17.3 56.84 0.12

100 115.15 507.42 116.17 69.42 117.90 0.22

150 228.51 2453.16 236.49 147.72 252.38 0.35

200 409.94 10000 421.6 252.09 438.62 0.47

250 657.8 10000 675.42 349.74 702.37 0.67

300 - 10000 1051.8 348.82 1079.2 0.89

Regarding the performance of the proposed
mechanisms, GRAA, which is a best-fit heuristic, had
the worst performance, with a gap up to 10% from the
optimal solution, whereas the Multi-agent Rollout
managed to generate solutions within 3.5% of the
optimal in all cases. As for the execution time, GRAA
exposed the lowest execution time in the order of
milliseconds even for higher workloads, while
Rollout's execution time growth is polynomial with
the workload increment. Finally, the MILP solver had
exponentially increasing execution times, and for the
workload sizes of 200 and 250 application demands,
it finished its operation withing the time limit that was
set, while for the largest workload did not managed to
produce a feasible solution during this period.

Figure 3: The pareto efficiency chart.

In Fig. 3, we present the allocative efficiency
chart for the two objectives that are taken into
consideration, namely the monetary cost for the
application execution and the average latency per
application for the different weighting co-efficients
that are used in the objective function. As expected,
the lowest cost is achieved when cloud resources are
highly utilized and thus the propagation latency
increases as cloud resources are located in a few
distant locations to which the data are transferred.
When the single optimization criterion is the
minimization of latency, the propagation delay is
minimized by 70% compared to the previous case,
while the monetary cost is increased by almost 75%.

Next, we examined the utilization of edge and
cloud resources for serving 600 cloud native
application demands for the different weighting
coefficients w (Fig. 4.a). Edge resources are utilized
more in small weight values, as the objective is
approaching the delay minimization and edge layers
consist of nodes in geographic proximity to the data-
source. In this case the microservices of an
application expand over the resources of the edge
layer, which is known as horizontal scaling. On the
other hand, cloud resources are heavily utilized in
high w values, as the objective is approaching the
monetary cost minimization, thus the “cheap” cloud
nodes are preferred. For intermediate values of w,
applications microservices are allocated over the
edge-cloud continuum which is known as vertical
scaling. This showcases the importance of edge
resources in the minimization of the applications
latency for time critical operations.

Finally, in Fig.4.b we examined the contribution
of networking and operational cost for the different
weighting co-efficient values. When the objective
function targets the minimization of the monetary
cost, the cloud resources are preferred with the
operational and networking cost contributing almost

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

64

a.

b.

Figure 4: a. The number of microservices allocated at the
near/far edge and the cloud and b. the operational and
networking cost for the different objective co-efficients.

equally to the total cost, as the processing cost is low
while the networking cost increases for the
transferring the application data to the cloud. On the
other hand, when the objective is the minimization of
latency and edge resources are utilized, the
processing cost of the edge resources is the main
factor of the total monetary cost, with the networking
cost corresponding to 12% of the total cost.

6 CONCLUSIONS

In this work, we addressed the problem of resource
allocation in multi-layered edge-cloud infrastructures
for optimally serving cloud-native applications. We
considered multiple important (and often neglected)
parameters, such as the delay constraints posed by the
dependencies among microservices. GRAA was
developed to provide a sub-optimal solution and to be
used by the Rollout technique for further
optimization. We demonstrated the trade-off between
delay and monetary cost of service and proved the
quality of the Rollout technique, which provided a
significant improvement in the GRAA’s solution,

while also maintaining a low computational time. We
aspire to further investigate this problem by adding
more parameters into our objective, such as security
and bandwidth consumption. In addition, we aim to
provide a more realistic scenario by collecting real
application and infrastructure data as well as solving
the corresponding on-line problem. Finally, we aim to
fully explore the capabilities of Rollout by
implementing it with different base policies.

ACKNOWLEDGEMENTS

The work presented is supported by the EU Horizon
2020 research and innovation program under grant
agreement No. 101017171 in the context of the
MARSAL project and by the Hellenic Foundation for
Research and Innovation (H.F.R.I.) under the “2nd
Call for H.F.R.I. Research Projects to support Faculty
Members & Researchers” (Project Number: 04596).

REFERENCES

Akbar, M. S., Hussain, Z., Sheng, Q. Z., & Mukhopadhyay,
S. (2022). 6G Survey on Challenges, Requirements,
Applications, Key Enabling Technologies, Use Cases,
AI integration issues and Security aspects.
http://arxiv.org/abs/2206.00868

Alfakih, T., Hassan, M. M., Gumaei, A., Savaglio, C., &
Fortino, G. (2020). Task offloading and resource
allocation for mobile edge computing by deep
reinforcement learning based on SARSA. IEEE Access,
8, 54074–54084. https://doi.org/10.1109/ACCESS.
2020.2981434

Bernstein, D. (2014). Containers and cloud: From LXC to
docker to kubernetes. IEEE Cloud Computing, 1(3),
81–84. https://doi.org/10.1109/MCC.2014.51

Bertsekas, D. P. (2010). Rollout Algorithms for Discrete
Optimization: A Survey.

Bertsekas, D. P., Tsitsiklis, J. N., Wu, C., Bertsekas, D. P.,
Tsitsiklis, J. N., & Wu ’, C. (1997). Rollout
Algorithm For Combinatorial Optimization
ROLLOUT ALGORITHMS FOR COMBINATORIAL
OPTIMIZATION.

Chen, L., Xu, Y., Lu, Z., Wu, J., Gai, K., Hung, P. C. K., &
Qiu, M. (2021). IoT Microservice Deployment in Edge-
Cloud Hybrid Environment Using Reinforcement
Learning. IEEE Internet of Things Journal, 8(16),
12610–12622. https://doi.org/10.1109/JIOT.2020.
3014970

da Silva, R. A. C., & da Fonseca, N. L. S. (2018). Resource
allocation mechanism for a fog-cloud infrastructure.
IEEE International Conference on Communications,
2018-May. https://doi.org/10.1109/ICC.2018.8422237

Dangi, R., Lalwani, P., Choudhary, G., You, I., & Pau, G.
(2021). Study and Investigation on 5G Technology: A

Cloud-Native Applications’ Workload Placement over the Edge-Cloud Continuum

65

Systematic Review. Sensors (Basel, Switzerland),
22(1). https://doi.org/10.3390/s22010026

Goethals, T. (n.d.). FLEDGE: Kubernetes Compatible
Container Orchestration on Low-resource Edge
Devices.

Kiran, N., Liu, X., Wang, S., & Changchuan, Y. (2020).
VNF Placement and Resource Allocation in SDN/NFV-
enabled MEC Networks.

Li, X., Lian, Z., Qin, X., & Jie, W. (2018). Topology-aware
resource allocation for IoT services in clouds. IEEE
Access, 6, 77880–77889. https://doi.org/10.1109/
ACCESS.2018.2884251

Madden, J. (n.d.). Edge computing and transmission costs -
DCD. Retrieved December 8, 2022, from
https://www.edgecomputing-news.com/2020/10/29/an
alysis-economics-of-edge-computing/

Mutlag, A. A., Ghani, M. K. A., Mohammed, M. A.,
Lakhan, A., Mohd, O., Abdulkareem, K. H., & Garcia-
Zapirain, B. (2021). Multi-agent systems in fog–cloud
computing for critical healthcare task management
model (CHTM) used for ECG monitoring. Sensors,
21(20). https://doi.org/10.3390/s21206923

Pallewatta, S., Kostakos, V., & Buyya, R. (2019).
Microservices-based IoT application placement within
heterogeneous and resource constrained fog computing
environments. UCC 2019 - Proceedings of the 12th
IEEE/ACM International Conference on Utility and
Cloud Computing, 71–81. https://doi.org/10.1145/
3344341.3368800

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., &
Huang, T. (2018, September 16). Migrating web
applications from monolithic structure to microservices
architecture. ACM International Conference
Proceeding Series. https://doi.org/10.1145/3275219.
3275230

Rutledge, K. (n.d.). Analysis_ The economics of edge
computing.

Sallam, G., & Ji, B. (2019). Joint Placement and Allocation
of VNF Nodes with Budget and Capacity Constraints.
http://arxiv.org/abs/1901.03931

Santoro, D., Zozin, D., Pizzolli, D., de Pellegrini, F., &
Cretti, S. (2018). Foggy: A Platform for Workload
Orchestration in a Fog Computing Environment.
https://doi.org/10.1109/CloudCom.2017.62

Shah, S. D. A., Gregory, M. A., & Li, S. (2021). Cloud-
Native Network Slicing Using Software Defined
Networking Based Multi-Access Edge Computing: A
Survey. In IEEE Access (Vol. 9, pp. 10903–10924).
Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/ACCESS.2021.3050155

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge
Computing: Vision and Challenges. IEEE Internet of
Things Journal, 3(5), 637–646. https://doi.org/10.1109/
JIOT.2016.2579198

Villamizar, M., Garces, O., Castro, H., Verano, M.,
Salamanca, L., Casallas, R., & Gil, S. (2015).
Evaluating the monolithic and the microservice
architecture pattern to deploy web applications in the
cloud. 2015 10th Colombian Computing Conference,

10CCC 2015, 583–590. https://doi.org/10.1109/
ColumbianCC.2015.7333476

Wang, S., Guo, Y., Zhang, N., Yang, P., Zhou, A., & Shen,
X. (2021). Delay-Aware Microservice Coordination in
Mobile Edge Computing: A Reinforcement Learning
Approach. IEEE Transactions on Mobile Computing,
20(3), 939–951. https://doi.org/10.1109/TMC.2019.
2957804.

CLOSER 2023 - 13th International Conference on Cloud Computing and Services Science

66

