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Abstract: With the shift towards electric vehicles accelerating; we are working with open-source data to estimate to
which degree existing charging infrastructure is fulfilling the demand created by electric vehicles. This paper
is explaining how to create such a calculation by extracting data from large public areas in the city of Lindau
(Bodensee), Germany as a showcase. With this data we aim to evaluate whether charging stations located
in the premises of public and commercial buildings cover the demand of electric vehicles reaching the said
buildings. This research is conducted as a first step of methodologies development that aims on the long term
to create a tool that supports in the optimal placement of new charging stations. The methodology chosen
is inspired by two main concepts: the first is the attractiveness factor concept used for the creation of travel
models, while the second is the classification of charging stations based on location to determine their rate of
occupancy. They are both used to cluster buildings and charging stations respectively to be able to determine
the number of users in the area of study (AOS) compared to the overall number of electric vehicles reaching
the destination in a given day. This paper takes the island in the centre of the city of Lindau (Bodensee) as
its area under investigation and uses open-source data along with the appropriate assumptions as a base for its
calculations.

1 INTRODUCTION

In recent years, the distribution of Electric Vehicles
(EVs) has significantly increased. More and more
people switch from Combustion Vehicles (CVs) re-
place them especially with Battery-Driven Electric
Vehicles (BEVs). Together with the increasing avail-
ability of green energy, this development leads to a
positive effect for the greenhouse gas balance of our
economies. On the other side of the coin, Charg-
ing Infrastructure (CI) is being increasingly requested
and utilised. Following the initial spread of publicly
available Charging Stations (CSs) across the countries
in order to decrease the hurdles for the shift to more
sustainable transportation, now the question arises, at
which locations the CI should be strengthened in or-
der to satisfy the needs of the EV users (Klinkhardt
et al., 2021).

In recent years, there has been several research ap-
proaches and studies to evaluate the energy demand
and market development of electric vehicles including
extrapolations into the nearer future either for partic-
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ular cities (Schlote et al., 2021) or for whole countries
(Zhou et al., 2015). Other studies answered the ques-
tion about the current utilisation of CI (Hecht et al.,
2020). In order to estimate arrivals at certain loca-
tions it has been proposed to analyse the popularity
index (as known, e. g., from Google maps), show-
ing the occupation of certain locations by time. From
this studies, we know in rather general terms how CI
needs to be developed in the upcoming years.

However, an open challenge is to precisely esti-
mate the demand for CI around a particular location
or set of locations. With this information, more tar-
geted investments into CI would be possible taking
the actual demands of EV drivers into its focus. On
the one hand it needs to be answered, if visitors of a
certain place find sufficient charging possibilities for
their EVs within walking distance. On the other hand,
it needs to be considered, if it makes sense for EV
users to charge their vehicle at a given location, which
basically is related to the time, that people typically
stay at a given location, State of Charge (SOC) of the
EV and the user preferences. The approaches, which
analyse traffic situations at particular locations in or-
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der to estimate arrivals do not take into consideration
typical stay times.

Our research objective has been to develop an ap-
proach to estimate the demand for charging in walk-
ing distance to particular locations or buildings using
publicly available sources of data. In order to estimate
how many CSs should be available in walking dis-
tance of a particular building, we propose a method-
ology to determine the purpose of the building, which
gives an indication for typical stay times and the open-
ing hours of a building. Additionally, we consider the
characteristics of the building such as the size of the
building, which gives, together with the building / lo-
cation purpose, an estimation on the number of people
that arrive to the building based on statistical data and
building regulations. For the analysis, we limit our-
selves to publicly available OpenStreetMap (OSM)
data to ensure that the approach is transferable to ar-
bitrary regions and we also consider if buildings have
multiple purposes, for instance, if an apartment build-
ings has a shop floor. The methodology we present
is based on a re-classification and standardization of
OSM data. We feel that our approach can be well used
as an extension to already existing approaches, which
take traffic data and car arrivals at particular locations
into their consideration.

From a scientific point of view, our work con-
tributes to the development of methodologies aimed
at estimating the demand and capacity of CIs. In ex-
tension to the existing work, we particularly empha-
size the use of open data, and how types of real world
data (building data, location, charging station, loca-
tion attractiveness data, and statistical information) is
merged into a single automated workflow.

2 RELATED WORK

Among the various approaches for estimating the
charging demand for EVs, some focus on the charging
stations while some approaches focus on the tracks
the cars travel in. For both approaches two general
directions can be found: empirical investigations and
simulations.

Empirical investigations: van den Akker (J.M.
van den Akker, 2020) used a preprocessed data set
of 4.9M charging processes provided externally, con-
taining: arrival time, connection time, distance (be-
tween adjacent chargers in a straight line), time be-
tween sessions, category of a charging session (13
different types differentiating charging time, same or
different charging location, duration of the session -
same, medium, long-, time between charging events,
and type of a distribution – narrow, wide, broad-). Ad-

ditionally, drivers are modelled by their behaviour de-
scribed through the probability over the 13 types of
charging session the users perform. For each individ-
ual EV the distances are computed through the energy
consumption between charging processes.

An important empirical approach has been pro-
vided by Hecht et al. (Hecht et al., 2020), who anal-
ysed the occupancy rate of charging stations all over
Germany. For this, the authors classified charging sta-
tions by their power and their location (urban, subur-
ban, industrial, uninhabited). The work provides aver-
age statistical data on when charging stations are used
and how utilised they are being.

Another empirical approach is given by Draz and
Albayrak (Draz and Albayrak, 2019), who estimate
the energy demand of a vehicle through stochastically
defining the SOC when the vehicle arrives and the
battery size. Based on this it is estimated whether a
car uses a high power CS (with low SOC) or a nor-
mal charging power. Based on the arrival times of
EVs and the number of charging points at a location,
the number of charging services is defined. Given a
charging profile for a EV, it is now possible to calcu-
late the energy demand.

simulative investigation: A simulative approach
has been described by Schlote et al. (Schlote et al.,
2021), where the energy consumption of EV is mod-
eled on the basis of the Markovian net, taking some
parameters such as slope of the road segment, aver-
age speed, acceleration, and potential of regenerative
breaking into account. Technically, the SUMO traf-
fic simulator is utilised for evaluation of the model.
The motion trajectories of cars are based again on the
Markov model where the probabilities that a car is
driving along certain road segments are derived; the
segments being defined by the road intersections. The
destinations of cars (which could give an indication
where cars recharge), are determined by a random
process estimating how many cars are travelling from
which origin to which destination. Different general
strategies for route selection are taken such as a ”min-
imum popularity routing”, or ”minimum energy rout-
ing”. As a vehicle model, a single standard vehicle
has been used by the authors to be modeled via a small
set of parameters.

Another simulative approach uses the SUMO traf-
fic simulator and extends it with a physics-based
model for the energy consumption of different classes
of vehicles (Koch et al., 2021). Different power-trains
can be simulated with this extension. In a large-scale
study, the authors investigated the energy consump-
tion of the German city of Paderborn in various sce-
narios describing the total share of EV of correspond-
ing car segments. For this purpose, the authors used
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three potential scenarios for the development of the
local traffic including the share and type of EVs in
Paderborn based on recent developments with an out-
look towards 2030. For the first scenario, the current
set of car segments is used, for the second scenario a
dominance of small vehicles is assumed. In scenario
3, the increasing trend of SUVs of 13% per year with
1% decrease for the next 10 years is assumed, making
SUVs the most dominant car by 2030. For technical
information about cars, statistical data for the devel-
opment of the EV market has been used.

A third simulative approach is the demand estima-
tion of the EVs using Multi-Agent-System (MAS)-
based open source traffic simulation software called
MATSim (Jahn et al., 2020). Four car classes with
different average consumption per km are used for the
car simulation. In the MAS, the agents follow their
daily schedule composed by the activities of work-
ing, shopping, and other leisure activities, which have
been derived from census data. Each agent is applied
with transportation modes such as car, bike, public
transport, etc. Distances, transport modes, etc. are
backed with open source and census data.

Also Hernández-Moreno et al. provided a simu-
lative approach for estimating the energy consump-
tion of a single EV using the MATLAB/SIMULINK
package ADVISOR, which is capable of estimat-
ing the energy consumption of arbitrary power-trains
(Hernández-Moreno et al., 2022). The cars are mod-
elled through parameters describing the chassis, the
e-motor, the battery set, and a storage block for regen-
erative breaking. The authors used the Tesla Model 3
as their base model due to the public availability of
the required data. Dynamic traffic parameters have
been modelled with a Markov M/D/n queuing model,
the parameters of which have been captured from a
real-world traffic observation based on video track-
ing. From the computation of the queuing model the
parameters for a SUMO MAS simulation have been
derived. From that simulation, driving parameters for
individual cars have been gathered, which, in turn,
have been used for analysing the energy consumption
of these cars.

3 DATA

Continuing on the carried-on research, our aim is to
come up and apply a methodology to create a model
that depends solely on open-data, and hence could
further on be applied to different contextual locations
to calculate more precisely the required expansions in
the local CS infrastructures for cities and the optimal
locations of new stations. The methodology to be ex-

Figure 1: Methodology Logic.

plained in this section and demonstrated in Fig 1 is
inspired by the overlapping of the work of Klinker-
hardt et.al. (Klinkhardt et al., 2021) and that of Hecht
et.al. (Hecht et al., 2020). Using classified OSM in-
formation on buildings and Points of Interests (POIs)
data organized by tags representing particular features
of locations, we can can provide an estimation of the
maximum number of people visiting a certain build-
ing during a chosen time interval. This data is then
overlapped with open-data on CS which can be cate-
gorized based on the study from Hecht et al. (Hecht
et al., 2020) and therefore have an average percentage
of occupancy rate during these chosen time intervals.

3.1 Working with Geographical Data

POIs and Building uses construct the basis of our Trip
Purpose tables. We use the following “Trip Purpose”
definition extracted from different research on travel
model: “the categorized list of destinations based on
the function” (Klinkhardt et al., 2021). To ensure the
adaptability of the methodology to different scenar-
ios, this research paper uses OSM as a main source
for geographical data. This decision ensures avail-
ability of data for most locations, the ability to en-
hance the data thanks to the open-source character-
istic of the platform, and the ability to calculate the
accuracy of data in comparison to other areas. The
use of OSM as a source has also allowed for the ac-
quisition of what is considered “raw data”; meaning
that no pre-processing has been carried out on it and
therefore the data can be filtered and clustered to fit
into our travel model.
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Figure 2: Classified buildings.

To ensure our travel model includes all types of
trips; we extracted all buildings from OSM and then
proceeded to assign different uses to buildings based
on the tags assigned to them. This way we ensure
all tags are considered. We therefore extracted the
list of attributes related to our downloaded buildings
and created a prioritization list based on the data filled
in. We were then, able through comparison of dif-
ferent attributes and their rate of usability, and using
PyQGIS script for the automation of the process; to
create a new “fclass” local feature attribute to contain
the identified use of the building. During the prioriti-
zation, some keys’ values were eliminated; those were
values that didn’t provide an indication of a place that
could host people but rather indicated either a quick
stop or an attachment to a place (as with the key value
”attached” often found). The first “quick stop” elimi-
nation is to adapt the data to our need, which is the
allocation of new Charging Stations. Quick stops
are not in themselves destinations and don’t provide
a time long enough for charging an E-vehicle. The
second elimination of “attachments” was to avoid du-
plication of data by eliminating ”attached buildings”
whereas the main building was found to be sufficient
for the calculations. A third type of elimination also
took place. This was to eliminate polygons features
that were mistakenly mapped as buildings when they
maintain the function of a plot of land.

For the POIs, a different type of features -
“Points”- was studied. What created the challenge,
with handling the POIs, is their inaccurate allocation
where they sometimes overlapped with buildings with
different uses. Nevertheless, POIs add a layer of ac-

curacy as they include uses and places of attractions
that may not be added to the buildings’ attributes. To
calculate the factor of attractiveness in this research,
however, area calculations are necessary. For Lin-
dau, we could then merge POIs with their nearest
buildings- which is usually the case in reality- and
proceed to treat the resulting building as a multipur-
pose. This sequence of processes resulted in the map
shown in Fig 2, where an overall use of each building
in the city of Lindau (Bodensee) can be seen.

3.2 Building Areas / Points of Interest
Areas

Having performed a first clustering of buildings based
on usage, a second layer of clustering is carried out
based on trip purposes and the type of visitors. Ac-
cording to Klinkerhart et al., a specified list of pur-
poses can be created to identify the reason a person
would want to reach a destination as well as the type
of person (i.e., student – customer – worker – etc.).
This table can be matched with open databases on at-
tractiveness factor. An attractiveness factor describes
the rate by which this destination is likely to be chosen
for a trip. Our next step to identify an exact number of
visitors is therefore to multiply this factor by the num-
ber of visitors in the area of the building; assuming the
capacity of 1 person per square metre (pers/sqm).

3.3 Open Data on Charging Stations

In this research we focus on two types of informa-
tion concerning the charging stations in Lindau: geo-
graphical and statistical. Being that geographical in-
formation refers to the location of charging stations;
the statistical information refers to the statistical data
on the usage rate of charging stations. The later is
based on the study by Hecht et al.(Hecht et al., 2020),
classifying the CS based on location and assigning us-
age rates to each class.

From OSM and other public sources we acquire
locations and some of the other parameters of the
charging stations currently available in the area of
study such as charging power, accessibility, opening
hours. However, this data does not contain informa-
tion of their typical utilisation which can be described
mainly by the typical number of charging events per
day. As a starting point we use the classification as
proposed by Hecht et al., who classify charging sta-
tions according to the location and the nominal charg-
ing power. Location classes are “industrial”, “ur-
ban”, “suburban”, “uninhabited”, while classes for
the charging power are “P <= 4kW”, “4kW < P <=
12kW”, “12kW < P <= 25kW”, “25kW < P <=
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100kW” “P < 100kW”). The authors provide utili-
sation profiles for each of these classes by weekday.
For our analysis and considering our area of study, we
will focus on the data for urban-class CSs with 22 kW
(class: “12kW < P <= 25kW”) and use a correcting
factor according to the building classification and the
typical stay time.

3.4 Data on Electric Vehicles Stock
Shares

For the estimation of the number of e-vehicles (BEV
and PHEV) in Lindau we take general statistical val-
ues for Germany into consideration. Official statistics
indicate a market share of 2.6% of BEV (1.3%) and
PHEV (1.3%) of the total number of vehicles in 2022
(Kraftfahrt-Bundesamt, 2022). For the development
of the market share until 2030 several studies have
been conducted, most of them aiming at a total market
share of BEV and PHEV between one-fourth (Detlef
Borscheid and Kraftfahrt-Bundesamt, 2020) and one-
third (Center of automotive management, 2022). For
2025, Borscheid (Detlef Borscheid and Kraftfahrt-
Bundesamt, 2020) assumes a stock share of about
11%.

Thus, for our study, we assume a stock share of
BEV and PHEV vehicles of 11% for 2025. For 2030,
we assume 30% stock share.

4 METHODOLOGY

The aim of the applied methodology is to prepare
a model that could further on be used for differ-
ent contextual locations and for more precise calcu-
lations on the required CS infrastructure for cities
and their optimal locations. The methodology is in-
spired by the overlapping of the work of Klinkerhardt
et.al. (Klinkhardt et al., 2021) and that of Hecht et.al.
(Hecht et al., 2020). Using classified OSM buildings
and POIs data, we can provide an estimation of the
maximum number of people visiting a certain build-
ing during a chosen time interval. This data is then
overlapped with open-data on CS which can be cate-
gorized based on the study from Hecht et al. (Hecht
et al., 2020) and therefore have an average percentage
of occupancy rate during these same time intervals.

4.1 Methodology Logic

Having gathered and aggregated the building data
from OSM, we used the calculation of the building
capacity based on the usage regulations to identify

Figure 3: Buffer of OSM available CS.

the buildings with the highest capacity. The assump-
tion taken at this point is that during rush hours these
buildings will be at full capacity. In the work of
Klinkhardt et al, attractiveness factor databases were
used as a solution against this assumption and to cal-
culate a concrete number of visitors. This attractive-
ness factor can differ based on the use of the space
but also based on more case-specific factors such as
the brand name for commercial buildings for exam-
ple. Sources for attractiveness factors were found to
be proprietary, as opposed to common architectural
recommendations for sqm/pers. For the purpose of
this research, which is to investigate the reliability of
open-data in conducting such a study; the attractive-
ness factor has been substituted by the building ca-
pacity. These recommendation tables and tools such
as found in the Neufert’s book (Neufert et al., 2012)
can help determine the standard sqm/pers based on
which a maximum floor building capacity could be
calculated. The assumption then made is that the floor
area is at full capacity during the simulation inter-
val. The next layers to be overlapped are the num-
ber of EVs arriving to each destination and the CS
data layer. Assuming all visitors arrive with personal
vehicles to the destination, and taking the EVs stock
shares mentioned in subsection 3.6 into considera-
tion, we can use the following equation to estimate
the maximum number of EVs (nev). Number of ve-
hicles being nv, number of EVs is nev , and building
capacity is b, if we assume the building is at full ca-
pacity we would have (nv) = (b) and since in 2022 the
share of EV in Germany was 2.6 nev = 2.6/100∗ (nv)
then nev = 2.6/100∗b.
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Figure 4: Automation Framework.

Some more sophisticated models such that created
by the ”Ver-Bau” tool work on the same basis but in-
clude however more case specific factors such as the
time of day, etc. The Ver-Bau tool was used, for ex-
ample, to determine the needed number of parking
slots attributed to the commercial building Lindau-
park (Engstler et al., 2021).To expand the model by
specifying when building are visited based on open
data, in the case of Germany or Austria, standard load
profiles of buildings can be used. These provide infor-
mation on the distribution of electricity demand gen-
erated by the economic activity. A classification of
POIs with regard of this demand profile, can help to
identify the moments in which the POI is going to be
more visited.

Allocating the buildings with the highest number
of EVs reaching them, we can investigate the sur-
rounding CSs which are, in our case study, catego-
rized as urban CS.From the literature review and more
specifically based on the work of Hecht et al. (Hecht
et al., 2020), we can conclude that on average an ur-
ban CS is occupied and used 20% of the working
time. Time is therefore our point of intersection be-
tween the number of EVs in a destination and the CS
demand. For a building (A) in the time interval of 5
hours between 12 to 17h, the number nev is stationed
in front of the building each hour. We know from
charging behaviour studies, that an EV stationed in
front of a building for a certain duration, will occupy
the CS for the same duration; regardless of the time
needed to complete a charging profile. Looking at the
time of the study, it is possible then to assume that a
CS is occupied by the same vehicle. In the 400m rec-
ommended buffer, an Urban Charging Station (UCS)
is stationed, which is occupied 20% of the time; ap-
proximately 1h of the 5-hour study time. Since the
number nev is taken as a constant for each hour, UCS
is then fulfilling 20% of the demand in the span of
these 5 hours.

4.2 Methodology Application

Taking the characteristics of the city of Lindau (Bo-
densee) as inputs, we started the process of applying
our logic and visualizing the results on the map us-
ing QGIS. Because the whole process of downloading
and analyzing the OSM data manually is time con-
suming and difficult to replicate, we started to auto-
mate the process via PyQGIS. PyQGIS is the python
interface for QGIS which allows us to build a modular
standalone data processing pipeline, with the work-
flow as explained in Fig.4. The only dependency is a
valid, platform independent, QGIS (in our case QGIS
LTR 3.22.x). The CLI interface expects two input pa-
rameters: the name of the are to be processed, and a
directory path to save the output data. To begin, the
“Downloader”-Module tries to find the corresponding
OSM-ID of the given area name. It sends a POST-
Request to the Overpass Interpreter Endpoint with the
following query:

[out:json][timeout:900];
relation["boundary"="administrative"]
["name"="{0}"]["type"="boundary"];
(._;>;);
out body;

This query searches for all administrative bound-
aries with the given name. The result of that
query contains information about the administra-
tive level of the boundary area, which can then be
split up by searching for boundaries with a higher
OSM administrative level (smaller real-world area)
to avoid maxing out the run-time of the API. Be-
cause each OSM building is referenced to be within
a boundary, we can query for all buildings in the
resulting boundaries. After downloading all build-
ings in .osm formats, we continue to merge them
back together into one file. At first, we convert
each downloaded “.osm” file into two shapefiles: a
polygon and a point, by using the “ogr2ogr” CLI
tool. Using the “native:mergevectorlayers” algo-
rithm, the “LayerMerger”-module merges all poly-
gon files and all point files into corresponding joint
files. Moving forward, the “LayerCleaner”-Module
first deletes duplicated geometries by using a cus-
tom algorithm, that iterates over each feature, saves
its ID into a list; if an ID is already included in the
list, the feature gets discarded. Otherwise, the fea-
ture gets copied into a new in-memory layer. Si-
multaneously every attribute column is checked to
find completely empty attributes across the whole
data set. These attributes get then deleted by
the ”layer.dataProvider().deleteAttributes()” function.
The “LayerCleaner”-Module finishes by saving the
newly created in memory layer as a shapefile on disk.
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Table 1: Percentage of fulfilment of CS of the overall charging demand in the AOS.

Current rate of contribution Rate by 2025 Rate by 2030
Existing CS 20 % 4.7 % 1.7%

The last and biggest processing step is handled by
the “FieldCalculator”-module. Its purpose is to apply
the above-described in the methodology logic and in
Section 3 to calculate the measure and travel purpose
for each building. Based on our current dataset we
could attribute attractiveness factors to certain types
of buildings. For that, we begin with creating new
attribute fields (“fclass t”, “measure”, “trip purp”,
“attr rate”, “buil cap” and “area”) on the polygon
layer by using the “layer provider.addAttributes()”
function. After that the module iterates over
each polygon feature. We begin be determining
the “fclass” by comparing the “leisure”, “office”,
“tourism”, “shop” and “building” fields. Going for-
ward the polygon area in square meters is calcu-
lated and saved in the “area” field by using the
“QGSDistanceArea().measureArea()” function. Af-
ter that the “measure”, “trip purpose” and “attr rate”
are determined by looking up the corresponding
value in relation to the “fclass” in a predefined
“fclass traffic matrix. An extract of that matrix looks
like this:

FCLASS_TRAFFIC_MATRIX = {
’office’: {

’measure’: ’Workplaces’,
’trip_purpose’: ’Business’,
’attraction_rate’: 0.1

}, ... }

We defined for each possible fclass a measure,
trip purpose and attraction rate. The module fin-
ishes by selecting all features in the layer and saving
them to the user-defined output directory as a copy
with the “native:saveselectedfeatures” algorithm. The
“TrafficChargingStationAnalyzer”-module proceeds
then to iterate over OSM mapped charging stations
(downloaded again by the “Downloader”-Module, but
querying this time for “charging stations”), calcu-
lates a 150-meter buffer (native “geometry().buffer()”
function) around it as shown in Fih 3 and sums up the
previously determined building capacity of all build-
ings inside the buffer. Based on the stock shares con-
cluded for EVs (2,6% for 2022, 11% for 2025 and
30% for 2030), the total number of EVs and the charg-
ing station usage is calculated for each year and re-
sults in the percentages demonstrated in Table 1.

As a result, there are two layers, one shapefile with
every building and one shapefile with all charging sta-
tions and their corresponding calculated values. The
pipeline finishes by validating if the output file exists

and then deleting all temporal files. In case something
goes wrong, the pipeline can pick up at a user con-
trollable step so not everything needs to be run again.
Having automated these calculations can demonstrate
the variation in which existing charging stations will
answer to the increased demand.

5 CONCLUSIONS AND FUTURE
WORK

The final goal of our research is the development of
a method for gaining insight into the sufficiency of
CI for EVs, particularly BEV. In this article, we re-
ported about the first results in our pursue for the over-
all goal: a method for determining to which degree
available CI is fulfilling the demands created by EV.

The motivation behind this work stems from the
support of both, the movement towards the traffic
electrification, which subsequently results into a rise
in the use of EVs, the movement towards enhanc-
ing and providing more open-source data that can be
used for social and civil improvements. The presented
methodology therefore provides groundwork for how
planning CS infrastructure could be carried on us-
ing open-source data but also provides an overview
of the challenges that researchers would face in that
attempt. As open-source data would fall short in ac-
curacy, the results acquired through this work don’t
represent, therefore, a real-life estimation but rather
showcases the falling-short of CS infrastructure. In
the current step of our research we are also able to
analyse different scenarios with larger shares of EVs
and/or more CSs in the region.

In our planned future work, this methodology is
enhanced through the acquisition and integration of
more case-specific data such as CS profiles, demo-
graphic data for drivers behaviors and used cars, more
specific data on building uses and, vehicles’ energy
usage and charging behaviour. It is, hence, important
to keep track of the rate of accuracy of the results and
to provide more validation methodologies in the fu-
ture.

More specifically, our planned next steps will par-
ticularly include detailed information about traffic
and vehicles. To go about that, first, additional data
sources needs to be processed and included. Most im-
portantly, Floating Car Data (FCD) and traffic census
data will be used to get insights into the local traffic
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situation by capturing the traffic in the region under
investigation. This particularly includes the number
of cars in the region and the origin-destination rela-
tions they typically exhibit. With this, we are able
to estimate how probable or important a recharging
of a car is, when it arrives (short distance drivers are
less probable to recharge then long-distance drivers).
We expect a more detailed estimation of the CS oc-
cupation. Furthermore, FCD would allow us also to
capture hourly distributions of EV arrivals in order to
estimate the CS occupation by our of day, this also in-
cludes the extension of our building usage model by
opening or typical usage times.

In a next step, also the car types, which are typi-
cal in the region will be included. This information is
used together with the typical travel distances, typical
stay times, energy consumption data for charging pro-
cesses, and a vehicle energy consumption simulation
to finally calculate the actual energy demand for EVs
in the investigated region. This is particularly impor-
tant for estimating the potentials for reinforcement of
CI. Particularly, when information about the power
distribution grid are taken into account.

Another envisioned step is the improvement of the
attractiveness factor by adding a metric describing the
reach of a particular building. Based on the building
use, the reach metric describes from which distance
cars typically arrive as this could essentially differ,
for instance, at a supermarket from a public author-
ity building with supra-regional significance.
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