
SynFine: Boosting Image Segmentation Accuracy Through Synthetic
Data Generation and Surgical Fine-Tuning

Mehdi Mounsif a, Yassine Motie b, Mohamed Benabdelkrim c and Florent Brondolo d

Akkodis Research, France

Keywords: Computer Vision, Transfer Learning, Surgical Fine-Tuning, Synthetic Data Generation, Carbon Capture and
Storage.

Abstract: Carbon Capture and Storage (CCS) has increasingly been suggested as one of the many ways to reduce CO2
concentration in the atmosphere, hence tackling climate change and its consequences. As CCS involves robust
modelling of physico-chemical mechanisms in geological formations, it benefits from CT-scans and accurate
segmentation of rock core samples. Nevertheless, identifying precisely the components of a rock formation can
prove challenging and could benefit from modern segmentation approaches, such as U-Net. In this context, this
work introduces SynFine, a framework that relies on synthetic data generation and surgical fine-tuning to boost
the performance of a model on a target data distribution with a limited number of examples. Specifically, after
a pre-training phase on a source dataset, the SynFine approach identifies and fine-tunes the most responsive
layers regarding the distribution shift. Our experiments show that, beyond an advantageous final performance,
SynFine enables a strong reduction of the number of real-world labelled pairs for a given level of performance.

1 INTRODUCTION

In the recent years, many studies have highlighted the
strong correlation between human activity and global
warming, with CO2 emissions being a major contrib-
utor to these dynamics (IPCC, 2022; Kramer et al.,
2021). As the highly likely environmental modifi-
cations resulting from climate will have significant
impacts on current societies and modern organisa-
tions, multiple institutions and actors have been de-
veloping policies, tools and methods (Kristjánsdóttir
and Kristjánsdóttir, 2021) to try and reduce the an-
thropogenic effects on the greenhouse gases (Ash-
worth et al., 2010; Huaman and Jun, 2014; Wenner-
sten et al., 2015) trapping the sun’s radiation within
the atmosphere. For instance, CCS (Carbon Capture
and Storage) technologies intend on capturing carbon
from emitters, and injecting its liquid form into deep
geological formations. While multiple geographic ar-
eas are already known for their significant storage po-
tential, important efforts have been invested in esti-
mating the potential volume that can be cached in
porous rocks.

a https://orcid.org/0000-0002-2763-3890
b https://orcid.org/0000-0001-6191-6547
c https://orcid.org/0000-0002-0978-3000
d https://orcid.org/0000-0002-9168-8474

For this purpose, understanding the elaborate
physical, chemical and mechanical mechanisms in-
volved during CO2 flooding is of pivotal importance.
It is a complex task that requires accurate modelling
of the rock properties and is often based on the anal-
ysis and processing of CT-scanned volumes of rock
samples. In this context, image segmentation, a task
that consists in assigning a label to every pixel in an
image such that pixels belonging to a similar class
share certain characteristics, such as identifying all
the rock pores of a CT-volume, is a commonly used
approach to estimate rock porosity and adequately
guide the modelling phase. While crucial, segmen-
tation is, however, mostly done by hand and/or via
histogram-based readings, involving user bias and er-
rors, further leading to modelling inaccuracies (Saraf
and Bera, 2021).

In this view, the remarkable technical progresses
in computer vision, in particular through the increas-
ing usage of deep neural networks, has enabled the
scientific community to tackle tasks implying vari-
ous modalities and highly diverse environments. Nev-
ertheless, one of the drawbacks of these approaches
is the significant amount of labelled data required to
train supervised models and ensure their robustness.
This is partially offset by techniques such as transfer
learning which, beyond offering a significant training
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time reduction, enables to reuse features learned from
an initial training task in other domains, making it a
highly relevant strategy in the scope of industrial us-
age, due to potentially complex data gathering and la-
belling processes.

In this context, this paper introduces SynFine, a
framework that enables the reduction of real-world la-
belled data needed for a given level of performance
through the usage of synthetic data and surgical fine-
tuning, a branch of transfer learning that focuses on
specific parameters and challenges the common prac-
tice of training only the last layer. In particular, be-
yond shedding light on the strong synergy that can ex-
ist between transfer learning and synthetic data gen-
eration in an industrial scope, the contributions of this
work are the following:

• Validating the surgical fine-tuning of a transfer
learning approach for segmentation tasks on a
dataset composed of corrupted images

• Providing a domain-driven example of procedural
data generation

• Experimentally evaluating the SynFine method
relevance regarding synthetic data generation and
empirically proving that significant benefits, in
particular labelling cost reduction, can be ob-
tained in this setting

2 RELATED WORKS

Accurate modelling of rock physics is a promising
and dynamic research direction (Ibrahim et al., 2021)
that could potentially lead to significant workflow im-
provements in the geo-science industry and, in partic-
ular, CCS applications (Saraf and Bera, 2021). How-
ever, while notable progresses have been recently pre-
sented (Wang et al., 2018) in this particularly complex
field, it is still typically approached using traditional
statistical methods and could arguably benefit from
the use of contemporary deep learning ideas.

Surveying modern AI technical landscape, the re-
markable results and the highly diverse modalities
tackled by models are undeniable (Devlin et al., 2018;
Nichol et al., 2021) and hint at the possibilities of
these approaches to extend to a wide array of do-
mains, among which rock-physics modelling. One of
the main limitations of learning-based models is ac-
cess to qualitative and labelled data in sufficient vol-
ume, which can be challenging and incur heavy costs
in practice (Everingham et al., 2015; Wu et al., 2021;
Christiano et al., 2017).

Given these constraints, transfer learning (Oquab
et al., 2014) has been one of the most popular strate-

gies employed to train more robust models and re-
duce overfitting on modestly sized dataset. While this
paradigm has been used through multiple domains
(Razavian et al., 2014), it relies essentially on an un-
changed workflow to adapt pre-trained features to tar-
get distributions. Specifically, multiple works (Kirk-
patrick et al., 2017; Lee et al., 2019) demonstrate ad-
vantageous performances when the classifying layers
of a model are fine-tuned while the rest of the param-
eters are frozen (Sener et al., 2016; Kirichenko et al.,
2022). These strategies implement straightforward
mechanisms to prevent the loss of information and
have been extended with softer methods that involve
weight regularization and network pruning (Myung
et al., 2022). More recently, strong focus has been
directed towards few-shots adaptation (Shen et al.,
2021), general robustness (Andreassen et al., 2021)
and model adaptation (Varsavsky et al., 2020), such
as (Lee et al., 2022) on which this work heavily builds
and that introduces the idea of specific layer respon-
siveness given the shift between the initial and target
distribution.

The SynFine method presented in this work sug-
gests that this fine-tuning paradigm can be particu-
larly relevant in the context of synthetic data gen-
eration (Nikolenko, 2021). Indeed, as opposed to
currently available manually-labelled datasets, which
may lack support for fine-grained features and mostly
implement masks as rough patches (Lin et al., 2014)
due to the minutiae required, it is possible to generate
pixel-perfect image-mask pairs through simulation
and/or 3D modelling (Khan et al., 2019; Qiu et al.,
2017). This accuracy has encouraged many works to
rely on 3D pipelines as in (Johnson-Roberson et al.,
2016), where the authors show that using a relat-
able synthetic dataset several orders of magnitudes
more voluminous than its real counterpart enabled
their model to reach a higher score on the real-world
validation set. While this underlines the relevance of
pre-training on synthetic dataset, the work proposed
in this report suggests that potentially superior bene-
fits can be reached through the introduction of specific
fine-tuning strategies.

3 METHOD

As mentioned, the SynFine framework is heavily
geared towards industrial considerations and, as such,
suggests that the combined usage of surgical fine-
tuning and synthetic datasets when real-world data is
scarce or costly to produce is a relevant solution. In
this view, this section first presents the general Syn-
Fine pipeline and explains the stages required by this
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method. Then, it provides detail regarding the data
generation process which may present some particu-
larities depending on the application context. Finally,
it introduces the RGN (Ratio Norm Gradient) metric
that can provide guidance regarding layer sensibility
to fine-tuning and overall contribution to the model
performance in the downstream task.

3.1 The SynFine Pipeline

The SynFine framework is inspired by the increas-
ing interest in synthetic data generation approaches.
While the remarkable recent improvements in this
field can not be understated, it is unlikely that sim-
ulations will be able to replicate exactly the complex
and highly non-linear processes and mechanisms un-
derlying the physical world.

However, if real-world data were to be consid-
ered as a corrupted version of data generated through
procedural functions, then it becomes possible to
frame this configuration within the surgical fine-
tuning paradigm. Specifically, following the ideas of
layer sensibilities to distribution shift in the scope of
transfer learning introduced in (Lee et al., 2022), Syn-
Fine, as presented in Figure 1 proposes the following
workflow:
1. Produce an abundant labelled synthetic dataset,

relatable to the target real-world dataset

2. Pre-train a given model on the synthetic data col-
lection

3. Identify the most suitable and sensitive layers re-
garding the distribution shift between the syn-
thetic dataset and the target real-world dataset

4. Apply surgical fine-tuning to maximise the pre-
training benefits and final model performance in a
possibly limited data regime.

3.2 Data Generation

While the SynFine paradigm is completely generic,
there exist practical considerations that may signifi-
cantly influence the data generation stage of the pro-
posed method. In particular, since this phase aims at
generating labelled synthetic data, it is crucial that the
processes setup in this regard provide a way to isolate
the mechanisms that produce the different labels re-
lated to the target dataset. As the current SynFine ap-
proach focuses mostly on expert-knowledge and man-
ually designed pipelines to create labelled variations
of images, as demonstrated in Section 4.1, more theo-
retical and causality-driven methods, for instance re-
lying on conditional generative modelling, will be ex-
plored in further work.

Figure 1: General view of the SynFine framework and the
main workflow steps.

3.3 Surgical Fine-Tuning and Layer
Sensibility Evaluation

As mentioned in Section 2, transfer learning has a
paramount importance in modern deep learning ap-
proaches and applications. While the traditional
workflow consists of an initial fine-tuning of the
last layers and a progressive unfreezing of the ear-
lier blocks, the authors of (Lee et al., 2022) show
that, depending on the distribution shift between the
source and target dataset, this strategy can prove sub-
optimal and lead to lower performances than a surgi-
cal methodology that focuses the fine-tuning on the
most suitable parameters.

Consequently, as suggested in Section 3.1, iden-
tifying layer sensibility is a crucial part of SynFine,
in particular since the alternative approach would re-
quire to evaluate the final performance of each fine-
tuning strategy, which is both inconvenient and in-
efficient. In this view, different metrics can be con-
sidered to compute layer sensibility to the distribu-
tion shift between the synthetic dataset and the real-
world images. Specifically, the proposed pipeline has
been evaluated under the RGN responsiveness strat-
egy, which uses batches of data to estimate per-layer
contribution to the error relative to the layer weights.
Derived in Equation 1, with θi and gi respectively be-
ing the parameters and the gradient of layer i.

RGN(θi) =
gi

||θi||
(1)
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4 EXPERIMENTS

In order to demonstrate the applicability and rele-
vance of the SynFine framework, this section presents
the multiple experiments setup in this view as well
as the data created accordingly, central in this con-
text. Specifically, following details regarding the pro-
cesses used to generate mineral-inspired images and
their segmentation masks, layer sensibility metrics are
explored and the resulting performances for each fine-
tuning strategies are analyzed to confirm the interest
of the SynFine methodology.

For the experiments presented in this section, a
regular 3 blocks U-Net model is implemented in Py-
Torch, with 467k parameters. Training phases rely
on a Adam optimizer, with 2×10−3 learning rate for
the initial pre-training phase and a 3× 10−4 learning
rate for the fine-tuning. Images and masks are down-
sampled to 64×64 patches and a batch size of 32 is
used. Two thousand synthetic images were generated,
which is one order of magnitude more than the real-
world dataset. Finally, training and fine-tuning phases
are both scheduled for 10 epochs.

4.1 Labelled Data Generation

While intrinsically generic, as mentioned in Section
3.2, some practical aspects of the target domain can
imply specific workflows regarding the data genera-
tion pipeline, as exemplified in the following para-
graphs that detail the process of mineral-inspired la-
belled image generation.

Complex organic shapes observable in nature can
often be broken down into a non-linear combination
and superposition of simpler patterns. Accordingly,
the processing pipeline designed to implement these
principles, visible in Figure 2, involves tiling multiple
basic shapes while applying per-shape stretches and
random scaling, rotations and offsets. These transfor-
mations are applied to each basic unit and the result-
ing collections of patterns are then blended using a
max-intensity strategy which, contrary to an additive
strategy, prevents saturating the pixels as this seems
to be a notable feature of the target class.

While this first function provides the image back-
ground, the target class pixels can be created by ap-
plying a threshold function to the histogram of a noise
texture as a starting image, consequently generating
large areas without information and specks of clearer
pixels. The application of a gaussian bluring filters
can contribute in diffusing these pixels in wider areas
which can then go through a step function to provide
the desired masks. As feeding seeds to the noise gen-
erator will result in different masks, this approach is

a convenient way to produce a large dataset for rock
segmentation.

4.2 Surgical Fine-Tuning Validation on
Corrupted Dataset

The main ideas of surgical fine-tuning were initially
introduced in the scope of classification tasks. In
these cases, input-level perturbations, among other
types of distribution shift, were shown to strongly af-
fect native performance. In this context, the first step
towards the validation of the SynFine framework was
to evaluate the system behaviour in a segmentation
task with similar input corruptions.

As such, in this early-stage validation phase, no
synthetic data is required since it rather aims at eval-
uating surgical fine-tuning technique in a segmenta-
tion context. In practice, as shown in Figure 3, cor-
rupted data is derived from the initial rock segmenta-
tion dataset through the application of various visual
perturbations.

After the initial training phase on the real dataset,
the RGN sensibility metric, introduced in Section 3.3,
is computed in order to provide guidance to the surgi-
cal fine-tuning phase. In practice, two ways of clus-
tering the model parameters are analyzed due to the
U-Net architecture specificity:

• The sequential view where blocks are considered
independently, that is, all the encoding blocks fol-
lowed by the decoding ones

• The transversal view, relying on a horizontal clus-
tering of blocks the encoding/decoding pairs. In
this case, parameters are gathered depending on
their depth in the model.

Figure 4 displays the sensibility of each parameter
group for both clustering paradigms. As can be seen,
in both cases, the first/higher U-Net block indicates
the highest responsiveness, which is coherent with the
expected results since the perturbations added focus
on input-level features. Since multiple batches of data
are used, the shaded area represent the min-max vari-
ations while the solid line indicates the mean layer
responsiveness value.

Finally, the final fine-tuning results for different
freezing strategies, visible in Figure 5, confirm that
surgical fine-tuning:

• Significantly outperforms naive fine-tuning

• Strongly influences the final model performance
based on the parameters added to the trainable set

• Is also relevant in a segmentation context, despite
the introduction of transversal gradients paths, in-
herent to the U-Net architecture.
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Figure 2: Mineal-inspired image generation process and reference image.

Figure 3: Instance of a real-world input image and multiple corruptions examples.

Figure 4: Layer responsiveness after initial training for
RGN metrics on a corrupted version of the real-world
dataset.

4.3 Transfer from Procedural Data to
Real-World Images

This second experiment focuses on the main use case
for the SynFine framework. Specifically, it considers
the case where an abundant labelled synthetic dataset
is available on which a segmentation model is ini-
tially trained. Then, using layer sensibility evaluation,
the most responsive parameters regarding the distri-
bution shift are identified and fine-tuned on the real-
world rock segmentation dataset. In this view, Figure
6 shows the resulting accuracy levels for various fine-

tuning strategies, along with the RGN sensibility per
layer for both sequential and transversal view. While
a range of final performances can be observed, every
surgical fine-tuning strategy strongly outperforms the
native model accuracy (that is, without fine-tuning) as
well as the naive approach that consists in fine-tuning
only the last layer, as summed up in Table 1.

It is however less trivial to interpret the RGN sen-
sitivity measure, in particular in the Sequential con-
figuration. Specifically, while the highest RGN scor-
ing layer does indeed signal the most responsive pa-
rameters in both cases and follows the general shape
of the surgical fine-tuning performance, the relation
between RGN values and final scores of the Down-
Block 1, 2 and UpBlock 0 is not entirely clear and
will be further investigated in subsequent works.

Table 1: Surgical fine-tuning approaches performance in-
crease with native model and naive fine-tuning.

Accuracy
relative to DownBlock 0 Trans. High

Native performance 26.6±0.20 28.5±0.27
Naive fine-tuning 35.9±0.20 37.8±0.28
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Figure 5: Accuracy comparison for different surgical fine-tuning target for both the sequential and horizontal clustering. From
left to right, DownBlock 0-3, UpBlock 0-1 and the three depth levels of the transversal view.

Figure 6: RGN layer responsiveness in a synthetic-to-real transfer for both parameters clustering paradigms.

4.4 Synthetic Advantages

The previous sections have provided experimental ev-
idence of the relevance of surgical fine-tuning strate-
gies for segmentation tasks and confirmed that cor-
rectly selecting which model parameters should be
frozen during the optimization phase depending on
the distribution shift can yield non-negligible increase
in performance, contrary to naive approaches.

It is, however, also interesting to view the SynFine
framework in the context of dataset creation. Indeed,
experiments presented in Sections 4.2 and 4.3 focus
on final performance for a given dataset size and vol-
ume. Nevertheless, in the rock segmentation configu-
ration for instance, an operating company could very
likely be aiming at minimizing the number of samples
required to reach a given level of performance. In this
paradigm, the per-sample efficiency is paramount and
the SynFine approach can provide significant advan-
tage, as can be seen in Figure 7. Specifically, three
approaches are compared:

• A straightforward strategy, named Baseline and
shown in violet, which does not rely on any form
of transfer learning

• A naive transfer learning approach that fine-tunes
only the last layer, labelled Traditional FT and dis-
played in blue

• Surgical FT, the responsiveness-driven surgical
fine-tuning approach, in red.

As can be observed, the SynFine method displays
a higher initial accuracy on the target dataset and
shows that, in this configuration, labelled samples
yield a more advantageous increase in performance
than with other methods, thus underlining the strong
interest of this approach in domains where data can be
simulated but labelling is expensive. While the base-
line performance gets close to the surgical fine-tuning
when approaching the full dataset, it is likely that the
gap could be more important if the images considered
were more complex and will be explored in further
works.

ICPRAM 2023 - 12th International Conference on Pattern Recognition Applications and Methods

570



Figure 7: Segmentation accuracy comparison for multiple fine-tuning strategies against a baseline process for increasing
dataset size (x-axis).

5 CONCLUSIONS

In this work, the SynFine framework, an empirical
approach for maximizing transfer learning benefits
for segmentation tasks in the scope of synthetic data
generation is introduced. Through multiple experi-
ments, displaying synthetic data generation strategies
for real-world data distributions in different contexts,
it has been shown that there exist significant advan-
tages regarding performance when leveraging surgi-
cal fine-tuning. Additionally, this work provides local
evidence that the SynFine framework can prove con-
siderably more cost-effective than a naive approach,
which is a central aspect in many real-world indus-
tries and applications. In particular, the improvements
induced by the SynFine method could impulse sig-
nificant advantages regarding CCS modelling and, in
fine, deployment.

While having direct practical implications, the ini-
tial results presented in this work also open a vast ar-
ray of perspectives. Among other considerations, it
would be insightful to understand how to design syn-
thetic data that triggers essentially intermediate U-Net
blocks or levels, since most of the sensibility in our
experiments was concentrated within the first block.
This understanding could further be leveraged to help
formulate a more theoretical compatibility measure
between the target real-world dataset and the synthet-
ically produced, which is lacking from the current ap-
proach.

Finally, regarding the synthetic data generation,
while the presented strategy relies on expert knowl-
edge to mass-produce labelled data, the increasing ca-
pabilities of generative models, in particular within
the diffusion scope, and their ability to produce
conditionally-driven images could also be considered
to complement or completely replace the procedural
approaches presented in this work and also provide
more accessibility for domain of higher complexity.
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