
Architecture Design Decisions in Distributed Teams: An Assessment of
Tool Support

Mahum Adil1 a, Ilenia Fronza1 b, Outi-Sievi-Korte2 c and Claus Pahl1 d

1Free University of Bozen-Bolzano, Italy
2Tampere University, Finland

fi

Keywords: Architecture Design Decisions (ADD), ADD Tools, Distributed Collaborative Design (DCD), Global
Software Engineering (GSE).

Abstract: Background. Global Software Engineering (GSE) teams develop software artifacts across multiple locations.
Designing and maintaining software in such a setting requires continuous collaboration to record design de-
cisions between distributed teams. The literature presents different architecture design decision (ADD) tools
to support design thinking and decision-making. However, recent studies highlight the challenges of man-
aging ADDs in a distributed environment. Aim. This study aims to present a list of assessment metrics to
evaluate whether existing ADD tools support distributed collaborative design (DCD) in the GSE environment.
Method. We used Goal-Question-Metric (GQM) method and expert survey to define and validate the assess-
ment metrics. Result. Six assessment metrics are presented to evaluate ADD tool support for DCD in the GSE
environment. Conclusion. The tool analysis based on assessment metrics provides insights into the current
practices used for ADD process and its conformance to the distributed environment.

1 INTRODUCTION

Since the global pandemic, many software organiza-
tions have started working in distributed teams at a
larger scale (Matos and França, 2022), which requires
software engineers to understand the importance of
collaboration fully. In a Global Software Engineer-
ing (GSE) setting, software developers work in differ-
ent geographical and temporal boundaries (Herbsleb,
2007), sometimes including different cultures. As a
result, GSE was extensively adopted in unprecedented
circumstances by COVID-19 (Marek et al., 2021).

The existing literature highlights the challenge of
designing software architecture in distributed teams
due to a need for practices to efficiently manage the
distributed nature of the architecture design process
(Adil et al., 2022; Sievi-Korte et al., 2019). The soft-
ware architecture represents architecture design deci-
sions (ADD) (Jansen and Bosch, 2005), which com-
prise software elements evolved in the software de-
velopment life-cycle (Alexeeva et al., 2016). Related

a https://orcid.org/0000-0001-6452-6085
b https://orcid.org/0000-0003-0224-2452
c https://orcid.org/0000-0002-4956-8989
d https://orcid.org/0000-0002-9049-212X

research presented various ADD tools to manage the
design decision process (Bhat et al., 2020). How-
ever, whether these tools support collaboration in dis-
tributed teams while managing software architecture
in a GSE environment is still being determined.

To address this issue, we present a list of as-
sessment metrics to evaluate how ADD tools support
distributed collaborative design (DCD). Five experi-
enced researchers in the field of GSE research val-
idated the definition of the assessment metrics. To
comprehensively review the existing ADD tools, we
used a semi-structured literature review presented by
Bhat et al. (Bhat et al., 2020) to analyze ADD tools
based on the assessment metrics to identify DCD
support in a GSE environment. The evaluation of
the existing ADD tools highlights the current gap in
supporting team collaboration for managing design
thinking and decision-making in a distributed envi-
ronment.

The paper is structured as follows. Section 2
presents background and related work on ADD tools.
Section 3 introduces the research objective, and Sec-
tion 4 presents the research methodology. Section 5
describes the results, which are then discussed in Sec-
tion 6. Section 7 concludes the paper and shares the
future work for the research.

Adil, M., Fronza, I., Sieve-Korte, O. and Pahl, C.
Architecture Design Decisions in Distributed Teams: An Assessment of Tool Support.
DOI: 10.5220/0011848000003467
In Proceedings of the 25th International Conference on Enterprise Information Systems (ICEIS 2023) - Volume 2, pages 65-74
ISBN: 978-989-758-648-4; ISSN: 2184-4992
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

65



2 RELATED WORK AND
BACKGROUND

2.1 Related Work

During the past two decades, collaboration has be-
come a fundamental component of the software de-
sign process (Larsson, 2003), involving several ac-
tivities grouped into three phases: problem analy-
sis, solution design, and product development (Shaw,
1995). These activities are complex and require a
sound knowledge of design principles and, more im-
portantly, their skillful application (Jolak et al., 2020).
Therefore, software design in a collaborative envi-
ronment largely depends on design thinking and de-
cision practices to support knowledge and architec-
tural planning across all teams. Rodriguez et al. pre-
sented a systematic mapping study discussing tools
used in GSE (Portillo-Rodrı́guez et al., 2012). How-
ever, the tools categorized as software design focus on
design diagrams instead of the design decision pro-
cess. A systematic mapping study on architecture de-
cisions discussed different aspects of architecture de-
cisions, such as decisions based on use cases, qual-
ity attributes, or group decisions (Tofan et al., 2014).
However, the approaches discussed in the study are
only proposed solutions and are not validated empir-
ically in a real-time environment. The evolution of
architecture decisions and knowledge management is
presented in (Capilla et al., 2016) and (Bhat et al.,
2020), which address the success, shortcomings, and
acceptance of existing ADD tools in software organi-
zations.

2.2 Historical Review of ADD Tools

To analyze the evolution and the shift of focus on
collaboration in the design decision-making process,
we reviewed the ADD tools given in Bhat et al.,
(Bhat et al., 2020) semi-structured systematic map-
ping study, and we distinguished three generations
(2006-2019). The first-generation ADD tools focus
on capturing architecture elements and visualization
processes. The second-generation ADD tools are
solution-based research focused on existing limita-
tions in the field. The third-generation ADD tools
are advanced automated ADD practices that support
the idea of the collaborative design decision process.
Moreover, later sections in the study will detail how
we structured our research approach to compare these
tools with regard to GSE objectively.

The Architecture Design Decision Support System
(ADDSS) (Capilla et al., 2006) is a research web-
based tool to capture, manage, and store architecture

decisions. ADDSS captures architecture decisions
following an iterative software development process
to store the architecture knowledge evolution for soft-
ware architects to build possible solutions. However,
the tool does not support any communication model
to update the team regarding updates in requirements,
design decisions, or architecture stored in the tool.
ADD Visualization (Lee and Kruchten, 2008b) is a
research-based visualization tool to represent design
decisions to inspect the system’s architecture graphi-
cally. The tool supports four views to provide a de-
pendency list of design, design decisions visualiza-
tion, design decision history, and the impact of de-
sign decisions. However, the view of the tool is solely
based on the architect, which restricts any communi-
cation process within the team.

Decisionstick is based on ADD visualization to
support three approaches to capture ADD, such as
formal identification and elicitation, from existing
project documentation and source code annotation
(Lee and Kruchten, 2008a). The authors validated
the feasibility of the tool with practitioners, whereas
no further work was done to enhance the tool. De-
cision Management tool integrates design decisions
with modeling (Unified Modeling Language - UML)
tool (Konemann, 2009). The idea is to update the
modeling diagrams based on the design decisions
continuously; however, the tool was not validated in
the real-time environment. Ontology Driven Visual-
ization (ODV) supports practitioners in ADD process
(De Boer et al., 2009): the authors used table and ma-
trix representation of ADD with quality attribute to
support product quality evaluation. However, the tool
only shows the negative or positive effect of the qual-
ity criteria on the architectural decision with no com-
munication process with the software quality analyst
to understand the impact of the decision on the soft-
ware system.

Second Generation (2010-2014). The cus-
tomized ADD model-based tool Architectural De-
sign Decisions Management support (ADDMS) (Chen
et al., 2010) manages and organizes architecture
knowledge for the team working on the project. Some
extensions for the tool have been proposed (Chen and
Babar, 2010); however, validation was performed in
a controlled environment. The service-oriented ar-
chitecture design tool Rationale Visualization (Shahin
et al., 2010) allows the user to explore and visual-
ize the ADDs. The tool is integrated using the Com-
pendium tool to store scope, design drivers, and alter-
natives for each design decision. The tool was pro-
posed to support collaboration; however, no commu-
nication process was used.

Traceability between software architecture and

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

66



other software artifacts is another solution given in
research to main software evolution. The Language
for integrated software architecture (LISA) toolkit is
a research-based solution to build a semi-automatic
traceability network between ADDs and software im-
plementation (Buchgeher and Weinreich, 2011). The
tool captures traceability in three steps. First, the de-
veloper selects the design decision; then, the devel-
oper builds the ADD record to specify implementa-
tion elements. Finally, a third review serves to en-
sure compatibility with the software system. The
web-based tool Repertory grid technique (RGT) (To-
fan and Galster, 2014) focuses on the collaborative
design decision process. The tool is available on-
line and focuses on three aspects of architecture de-
cisions; to capture, analyze, and make group deci-
sions on ADDs. Design Practice STream (DPS) DPS
(Nakakoji et al., 2011) supports real-time annotation
of video meetings to help new team member(s) to join
existing projects and build an understanding of ex-
isting ADDS. Architectural Development Using Ar-
chitectural Knowledge (ADUAK) is a web-based re-
search tool proposed by Dhaya and Zayaraz (Dhaya
and Zayaraz, 2012) to explore design patterns by us-
ing architecture knowledge of the system to enhance
ADD process.

To promote the importance of non-functional re-
quirements during the architecture design process,
Architech (Ameller et al., 2012) suggests alterna-
tive ADDs to satisfy non-functional requirements
stated for the software system. The research-based
tool Architectural Design Decision Support Frame-
work (ADvISE) (Lytra et al., 2013) is based on the
QOC (Question, Option, Criteria) approach to model
ADDs, track possible issues, and build the solution.
Software Architecture Warehouse (SAW) is a web-
based research tool (Nowak and Pautasso, 2013), suit-
able for distributed collaborative design decision pro-
cess. However, the tool does not support integration
with existing architecture knowledge tools and does
not comply with system and software architecture
standards (e.g., ISO 40210). Decision Architect de-
veloped by Manteuffel et al., (Manteuffel et al., 2014)
is a plug-in for Sparx System Enterprise Architect to
manage design decisions and design rationale for all
the developers involved in the project.

Third Generation (2015-2019). To synchronize
architecture decision-related knowledge with design
documentation, the Eclipse plug-in DecDoc (Hesse
et al., 2016) helps a team to capture ADDS and col-
laborate on design documentation by reflecting on the
decision-making process and enhance the knowledge
for building solutions. Similarly, Ontology-based rec-
ommender (Bhat et al., 2017), based on DBpedia on-

tology, automatically identifies architecture elements
from software design documentation and proposes
a list of possible solutions to enhance the decision-
making process. Since the ontology-based recom-
mender is part of DBpedia ontology, the accuracy of
the recommendation can be affected by it. Quiver is a
web-based design decision recommender (Gopalakr-
ishnan and Biswal, 2017) that captures and stores ref-
erence architecture knowledge and architecture arti-
facts to provide recommendations for design deci-
sions. However, the tool has not been validated to un-
derstand the accuracy of its recommendations. Evolu-
tion Visualization for Architecture (EVA) (Nam et al.,
2018) visualizes architecture evolution from multiple
facets. The tool enhances team collaboration as the
developers can visualize the software architecture and
explore the impact of design decisions on the software
product. However, empirical analysis has yet to be
done to check the performance of the tool in a real-
environment.

Recently, researchers shared studies to show the
importance of choosing experienced developers with
architectural expertise to address any possible short-
comings in software systems (Bhat et al., 2018). To
support the idea, the expert recommendation system
ADeX (Amelie - Decision Explorer) (Bhat et al., 2019)
provides a list of experts based on their expertise in
the field. The tool uses a bottom-up approach to auto-
matically detect and generate specific views on archi-
tecture knowledge to support the collaborative design
decision-making process.

3 RESEARCH OBJECTIVE

This study presents a list of assessment metrics to
evaluate whether the existing ADD tools support
DCD in the GSE environment. This evaluation will
help identify the possible gap in existing tools for
managing collaborative design thinking and decision-
making process in distributed teams. The aim of the
study is presented through the three levels of the Goal-
Question-Metrics (GQM) measurement model (Basili
et al., 2014) where:

1. Goal: to evaluate whether existing ADD tools
support DCD in the GSE environment.

2. Question: do ADD tools support the collaborative
design decision for managing software architec-
ture in the GSE environment?

3. Metrics: six assessment metrics are defined to
evaluate existing ADD tools quantitatively.

To verify the goal achievement of the study, we
used the GQM template to provide a structured def-

Architecture Design Decisions in Distributed Teams: An Assessment of Tool Support

67



inition of the measurement (Table 1) by specifying
the purpose (what object and reason of measurement),
perspective (what aspect to evaluate and who will do
it) and context (the environment) characteristics.

Table 1: GQM template for study.

Analyze ADD tools support for
DCD in GSE

For the purpose of Understanding
With respect to Tool
From the viewpoint Researcher
In the context of ADD process

4 RESEARCH METHOD

To identify the assessment metrics, we used the Goal-
Question-Metrics (GQM) measurement model (Basili
et al., 2014) (shown in Figure 1) and an expert sur-
vey to define metrics empirically evaluated by the
GSE field experts. To define the assessment met-
rics, we used the extended taxonomy of GSE (Britto
et al., 2016) and features of GSE tools presented in a
systematic mapping study (Portillo-Rodrı́guez et al.,
2012). To validate metrics, we identified GSE authors
based on the excellent articles published in the field
on Google Scholar. Through the search, we contacted
14 experts working in the ADD/GSE field via email.
The experts received a detailed document describing
the metrics definition and, for each metric, were asked
to approve, disapprove, or suggest to avoid by using
an online survey. If they disapproved, they were asked
to suggest changes; if they suggested avoiding a met-
ric, they could motivate their answer. We received
five responses in total. All the answers given by the
experts are kept anonymous, and the credentials are
given in Table 2 after their shared consent.

In order to finalize the assessment metrics, all
the experts’ responses were discussed among the re-
searchers of this study. All the researchers simulta-
neously agreed on the name and definition the experts
approved; however, in case the names or definitions of
the assessment metrics were disapproved or suggested
to avoid, the experts shared new names or definitions
to keep it coherent with the GSE taxonomy. Metrics
names and definitions were changed according to the
given suggestions and the researchers’ common con-
sensus.

4.1 Definition of Assessment Metrics

A detailed description of the identified and validated
assessment metrics follows below. The aim is to sep-

Table 2: Expert credentials.

Country Affiliation Academic
rank

Involved
in GSE
research

Germany Academic Professor Since 2003
Spain Academic Professor Since 2004
Ireland Academic,

Applied
Research

Professor Since 2006

Spain Academic,
Software
industry

Professor Since 2006

Sweden Academic,
Software
industry

Senior
Re-
searcher

Since 2012

arate the main concerns of ADD and DCD in a GSE
setting using the GQM approach.

4.1.1 M1: Synchronous Collaborative Work

The first dimension of consideration is the tool’s sup-
port for team communication and collaboration. To
do so, we check if the tool supports team members
collaborating or communicating simultaneously on a
task. Herein, we used GSE taxonomy (Britto et al.,
2016) to assess whether synchronous collaborative
work is supported by the tool for distributed teams. To
categorize, we used binary values, i.e., Yes when the
synchronous collaboration is supported and No when
the synchronous collaboration is not supported.

4.1.2 M2: Software Development Methodology

The software development methodology is used to un-
derstand the practices incorporated in different sites
to conduct GSE projects. The development method-
ology used in different sites can help to classify the
effort associated with the development and coordina-
tion with each site. We used GSE taxonomy (Britto
et al., 2016) to categorize the two dimensions of soft-
ware development methodology used in the tool as
follows:

• Plan-driven, when the tool requires detailed re-
quirements definition against each team role,
which minimizes the collaboration within the
team.

• Agile, when the tool does not require detailed re-
quirements definition and the team collaboration
is increased to build the solution.

4.1.3 M3: Communication Mode

In GSE projects, the communication between dis-
tributed teams is mediated through different elec-

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

68



Figure 1: Proposed assessment metrics using the GQM measurement (Basili et al., 2014) and expert survey.

tronic communication media. To understand the
mode of communication used in tools, we used a
GSE taxonomy (Britto et al., 2016), and communica-
tion features listed for GSE tools (Portillo-Rodrı́guez
et al., 2012) to categorize three levels of synchronicity
as follows:

• Low, when the tool supports asynchronous com-
munication via, e.g., forum discussion (F), com-
ments on software items (Cmt), or email discus-
sion (E);

• High, when the tool supports synchronous com-
munication via, e.g., audio/ video-conference call
(C) or instant text message (T);

• Balanced when the tool supports both syn-
chronous and asynchronous when needed.

4.1.4 M4: Collaboration Awareness

In GSE projects, it is crucial to collaborate with the
other team members to participate and avoid any pos-
sible conflict (Trainer and Redmiles, 2018) during
ADD process. Here we used the awareness feature
listed for GSE tools (Portillo-Rodrı́guez et al., 2012)
to define collaboration activities as follows:

• Presence awareness, when the tool allows to know
where team members are geographically located
(global awareness) or who is connected in a ses-
sion (session awareness);

• Change awareness, when the tool provides infor-
mation on who is doing a task independently (vi-
sual awareness) or supports asynchronous com-
munication to inform any possible changes in the
project (email awareness).

4.1.5 M5: Control Activities

In distributed teams, it is crucial to monitor the
project’s progress, track any possible issues, and con-

tinuously update the changes in the related docu-
ments. We used the control and coordination feature
listed in GSE tools (Portillo-Rodrı́guez et al., 2012)
to define control activities as:

• Issue tracking (IT), when the tool supports the
identification of any possible issue in the project
and team coordination accordingly.

• Version control (VC), when the tool allows keep-
ing track of changes in the related documents
and coordinating the changes between distributed
teams.

• Build management (BM) when the tool supports
the automated source code of the software project.

4.1.6 M6: Knowledge Management Type

In order to enhance coordination and collaboration
within distributed teams, knowledge management is
used to support knowledge acquisition, sharing, and
distribution for the software development process.
We used the knowledge management features used in
GSE tools (Portillo-Rodrı́guez et al., 2012), covering:

• Wiki, when the tool includes a platform to share
knowledge or seek consult from the rest of the
team;

• Document management system (DMS), when the
tool allows storing all the related documents of the
software project in electronic format with proper
indexing in case of information retrieval.

• Blog, when the tool supports brainstorming ses-
sions to exchange knowledge in a distributed en-
vironment.

Architecture Design Decisions in Distributed Teams: An Assessment of Tool Support

69



5 RESULTS

Table 3 summarizes the analysis of 20 ADD tools
(Bhat et al., 2020) based on the assessment metrics
to evaluate DCD support in GSE environment. We
address the six criteria one by one in the following.

Synchronous Collaborative Work. In order to
manage ADDs in a distributed environment, contin-
uous team communication and collaboration are re-
quired for brainstorming, listing all the possible so-
lutions, and establishing consensus on a final set of
ADDs for the software system (Yang et al., 2021).
In the analysis, we noticed that the support of syn-
chronous collaborative work was captured in 5 of 20
ADD tools discussed in the third generation of tools
mentioned in Section 2. However, most of these
tools lack empirical validation studies to assess per-
formance in a real-time environment.

Software Development Methodology. Agile
practices are used in the software development pro-
cess to support collaborative design decisions for
managing software architecture in a GSE environ-
ment (Camara et al., 2020). However, our analysis no-
ticed that no ADD tool was designed to support agile
practices for software architecture and development
processes.

Communication Mode. The global distance be-
tween distributed teams requires more effort to ease
communication during software design thinking and
decision-making. While the communication chal-
lenges in distributed teams are well discussed in liter-
ature (Hummel et al., 2013; Sievi-Korte et al., 2019),
12 of 20 tools lack support for communication mode
(synchronous and asynchronous) to seek team con-
sensus on the software architecture of the project.

Collaboration Awareness. The ADD process
is a group-based activity requiring continuous coor-
dination among teams to make distributed collabo-
ration effective (Bosch and Bosch-Sijtsema, 2010).
The analysis shows that 11 of 20 ADD tools support
change awareness, which shows how tasks are allo-
cated to each member. Furthermore, 6 of 20 ADD
tools do not support collaboration activities, thereby
restraining distributed team members from instanta-
neously increasing shared understanding of the soft-
ware system.

Control Activities. To monitor the project’s
progress and track any possible issues in distributed
teams, 10 of 20 ADD tools support issue tracking
(IT). This feature is used to centralize the project
repository and prioritizes issues according to sever-
ity. However, distributed teams need to have up-to-
date project documentation to resolve the given is-
sues. This allows the distributed teams to review the

related documents and systematically propose solu-
tions. In this analysis, only 6 of 20 tools support issue
tracking (IT) and version control (VC) to coordinate
related changes with distributed teams.

Knowledge Management Type. To support
knowledge acquisition, sharing, and distribution in
distributed teams, 15 of 20 ADD tools used a docu-
ment management system (DMS) to store the related
documents. However, these tools offer limited inte-
gration capabilities and collaboration features for dis-
tributed environments.

6 DISCUSSION

This section discusses the results of this work to ad-
dress the possible barriers of DCD in a distributed en-
vironment. It is important to note that some of the
findings discussed here reflect known concerns, such
as communication and collaboration barriers in GSE
(Noll et al., 2011) and benefits of using agile practices
in GSE (Jalali and Wohlin, 2012), but are valuable
here to provide a comprehensive perspective. Hence,
this study acknowledges the existing gaps in the field.

The following observations concern the focus of
the reviewed tools and specific features that are con-
sequently well or insufficiently supported.

Active software process model. The results pre-
sented in Table 3 show that the plan-driven software
process model is actively supported in all generations
of ADD tools. We found that 16 of 20 tools follow the
plan-driven method since the process activities were
predefined and the project tasks were executed in a se-
quential task-specific manner. As a result, this feature
limits the collaboration within the team to discuss any
design-related issues. In order to increase collabora-
tion in distributed teams, the agile software process
should be used within ADD tools to emphasize the
importance of team communication and coordination
practices for successful projects (Séguin et al., 2012).

Research based tools are in majority. Regarding
the current support of ADD tools for the collaborative
design decision process, we found that 13 of 20 tools
were prototypes developed by researchers, while two
tools shared the prototype on online repositories (e.g.,
gitHub) and can be used without any license payment.
Five of the 20 tools are commercial tools developed
by practitioners as part of a software product, and the
license can be obtained through payment. The results
show that most tools are research-based projects, so
validating their effectiveness in real-time is challeng-
ing.

Communication process is not well supported.
The support for the communication process in tools

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

70



Table 3: ADD tools analysis using the proposed assessment metrics.

Name Sync. col-
lab. work

Software dev.
methodology

Communic.
mode

Collaboration
awareness

Control activ-
ities

Knowledge
manage. type

ADDSS No Plan-driven NA NA VC DMS
ADD Visual-
ization

No NA NA Change: Vi-
sual

IT, VC DMS

Decision
Stickies

No Plan-driven Low: F Change: Vi-
sual

IT, VC DMS

Decision
management
tool

No Plan-driven NA Change: Vi-
sual

IT Wiki

ODV No Plan-driven NA Change: Vi-
sual

BM NA

ADDMS No NA Low: F Change: Vi-
sual, email

IT DMS

Rationale vi-
sualization

No Plan-driven NA Change: Vi-
sual

IT DMS

LISA No NA Low: F Change: Vi-
sual

IT, BM NA

RGT Yes Plan-driven Low: Cmt Presence:
Session

IT DMS

DPS No NA NA NA IT NA
ADUAK No Plan-driven NA NA IT DMS
ArchiTech No Plan-driven NA Change: Vi-

sual
IT DMS

ADvISE No Plan-driven NA NA IT, BM DMS
SAW Yes Plan-driven Low: F, Cmt Presence:

Session
IT DMS

Decision Ar-
chitect

No Plan-driven NA Change: Vi-
sual

IT, VC DMS

DecDoc Yes Plan-driven Low: Cmt Change: Vi-
sual

IT, VC DMS

Ontology-
based recom-
mender

No Plan-driven Low: Cmt Change: Vi-
sual

IT DMS

Quiver No Plan-driven NA NA IT NA
EVA Yes Plan-driven Low: F, Cmt Change: Vi-

sual
IT, VC DMS

ADeX Yes Plan-driven NA NA IT, VC DMS

was another focus point for the study since it encour-
ages continuous information flow within distributed
teams. (Alexeeva et al., 2016). According to our anal-
ysis, 7 out of 20 tools supported low asynchronous
communication to track any issue or changes done
in architecture presentation. Furthermore, no tool
supported high synchronous or balanced communica-
tion process. This leads to a research gap regarding
how to support the communication process to control
the progress of tasks, track issues and collaborate for
decision-making while working in a distributed envi-
ronment.

Few tools exist for collaborative design decision.
To improve architecture presentation and DCD pro-
cess, 5 out of 20 tools support team collaboration to

be continuously aware of the activities performed by
team members. This activity is tightly coupled with
the communication process used in the tool. In these
five tools, the communication support consisted of fo-
rum discussions and comments on software items to
inform the possible changes in the project. Further-
more, only 2 of these five tools support the session
awareness to know who is currently connected within
the team. This is another research gap that needs to be
addressed by researchers and practitioners, as work-
ing in distributed teams is a new normal software de-
velopment process.

Architecture Design Decisions in Distributed Teams: An Assessment of Tool Support

71



6.1 Threats to Validity

We analyzed possible threats to validity following the
guidelines provided by Wohlin et al. (Wohlin et al.,
2012) to mitigate any research bias. Concerning the
presented results, this study poses research limitations
as we only investigated the tools mentioned in Bhat et
al., (Bhat et al., 2020). Some existing tools that have
not been included here may have been published after
the related research. However, to limit this threat, we
searched systematic mapping studies and literature re-
views through research sources published after 2020
focused on the same area of research. Apart from the
tools mentioned in this study, we may have excluded
some commercial tools since many commercial tools
are not presented through research publications.

Concerning construct validity, a possible threat re-
lates to how the expert survey results are obtained. To
avoid any threats to construct validity, we contacted
the experts in the field to share their opinion on the
assessment metrics through an anonymous survey to
ensure data confidentiality and avoid evaluation ap-
prehension. During the survey, we noticed that ex-
perts suggested different terms to what was given to
them in the initial document. As a result, it helped to
avoid any influence of the authors of this paper on the
proposed assessment metrics.

External validity concerns the ability to generalize
the results for a specific setting. The proposed assess-
ment metrics can be used by other researchers in the
GSE field, focusing on tool support for a broader per-
spective of ADD process in a distributed environment.

7 CONCLUSIONS AND FUTURE
WORK

While tool support for architecture design for dis-
tributed development in a global software engineer-
ing context exists, recent years have emphasized the
need to specifically consider distributed collaborative
design (DCD)(Yang et al., 2021).

In this paper, we comprehensively reviewed ADD
tools in terms of their support for DCD in distributed
environments by building on a semi-structured liter-
ature review presented by Bhat et al. (Bhat et al.,
2020) to identify the tools. To do so, we identified,
defined, and validated six assessment metrics with the
support of experts of GSE. Based on the assessment
metrics analysis, existing ADD tools are not designed
to incorporate agile practices for the software design
decision process. Furthermore, among the consid-
ered tools, only five support collaborative practices to
manage software architecture in a distributed environ-

ment. This shows the need for synchronous collabo-
rative work to model ADDs and support DCD in ex-
isting tools, showing the need for additional research
to prevent knowledge vaporization.

In the future, we aim to go beyond this tool review
by conducting a systematic mapping study to analyze
ADD approaches and tools to discover which design
thinking and decision-making practices are currently
used in software organizations. Based on the results,
our long-term goal is to design an ADD tool that over-
comes the identified limitations to enhance the collab-
orative design in distributed teams.

REFERENCES

Adil, M., Fronza, I., and Pahl, C. (2022). Software design
and modeling practices in an online software engi-
neering course: The learners’ perspective. In CSEDU
(2), pages 667–674.

Alexeeva, Z., Perez-Palacin, D., and Mirandola, R.
(2016). Design decision documentation: A literature
overview. In European Conference on Software Archi-
tecture, pages 84–101. Springer.

Ameller, D., Collell, O., and Franch, X. (2012). Architech:
Tool support for nfr-guided architectural decision-
making. In 2012 20th IEEE International Require-
ments Engineering Conference (RE), pages 315–316.
IEEE.

Basili, V., Trendowicz, A., Kowalczyk, M., Heidrich, J.,
Seaman, C., Mnch, J., and Rombach, D. (2014).
Aligning Organizations Through Measurement: The
GQM+Strategies Approach. Springer Publishing
Company, Incorporated.

Bhat, M., Shumaiev, K., Biesdorf, A., Hohenstein, U., Has-
sel, M., and Matthes, F. (2017). An ontology-based
approach for software architecture recommendations.
AMCIS 2017.

Bhat, M., Shumaiev, K., Hohenstein, U., Biesdorf, A., and
Matthes, F. (2020). The evolution of architectural de-
cision making as a key focus area of software archi-
tecture research: A semi-systematic literature study.
In 2020 IEEE International Conference on Software
Architecture (ICSA), pages 69–80.

Bhat, M., Shumaiev, K., Koch, K., Hohenstein, U., Bies-
dorf, A., and Matthes, F. (2018). An expert recom-
mendation system for design decision making: Who
should be involved in making a design decision? In
2018 IEEE International Conference on Software Ar-
chitecture (ICSA), pages 85–8509. IEEE.

Bhat, M., Tinnes, C., Shumaiev, K., Biesdorf, A., Hohen-
stein, U., and Matthes, F. (2019). Adex: A tool
for automatic curation of design decision knowledge
for architectural decision recommendations. In 2019
IEEE International Conference on Software Architec-
ture Companion (ICSA-C), pages 158–161.

Bosch, J. and Bosch-Sijtsema, P. (2010). Coordination be-
tween global agile teams: From process to architec-

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

72



ture. In Agility Across Time and Space, pages 217–
233. Springer.

Britto, R., Wohlin, C., and Mendes, E. (2016). An ex-
tended global software engineering taxonomy. Jour-
nal of Software Engineering Research and Develop-
ment, 4(1):1–24.

Buchgeher, G. and Weinreich, R. (2011). Automatic tracing
of decisions to architecture and implementation. In
2011 Ninth Working IEEE/IFIP Conference on Soft-
ware Architecture, pages 46–55. IEEE.

Camara, R., Alves, A., Monte, I., and Marinho, M. (2020).
Agile global software development: A systematic lit-
erature review. In Proceedings of the 34th Brazilian
Symposium on Software Engineering, pages 31–40.

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., and Babar,
M. A. (2016). 10 years of software architecture
knowledge management: Practice and future. Jour-
nal of Systems and Software, 116:191–205.

Capilla, R., Nava, F., Pérez, S., and Dueñas, J. C. (2006). A
web-based tool for managing architectural design de-
cisions. ACM SIGSOFT software engineering notes,
31(5):4–es.

Chen, L. and Babar, M. A. (2010). Supporting customizable
architectural design decision management. In 2010
17th IEEE International Conference and Workshops
on Engineering of Computer Based Systems, pages
232–240.

Chen, L., Babar, M. A., and Liang, H. (2010). Model-
centered customizable architectural design decisions
management. In 2010 21st Australian Software Engi-
neering Conference, pages 23–32. IEEE.

De Boer, R. C., Lago, P., Telea, A., and Van Vliet, H.
(2009). Ontology-driven visualization of architectural
design decisions. In 2009 Joint Working IEEE/IFIP
Conference on Software Architecture & European
Conference on Software Architecture, pages 51–60.
IEEE.

Dhaya, C. and Zayaraz, G. (2012). Development of mul-
tiple architectural designs using aduak. In 2012 In-
ternational Conference on Communication and Signal
Processing, pages 93–97. IEEE.

Gopalakrishnan, A. and Biswal, A. C. (2017). Quiver—an
intelligent decision support system for software archi-
tecture and design. In 2017 International Conference
On Smart Technologies For Smart Nation (SmartTech-
Con), pages 1286–1291. IEEE.

Herbsleb, J. D. (2007). Global software engineering: The
future of socio-technical coordination. In Future
of Software Engineering (FOSE’07), pages 188–198.
IEEE.

Hesse, T.-M., Kuehlwein, A., and Roehm, T. (2016). Dec-
doc: A tool for documenting design decisions collab-
oratively and incrementally. In 2016 1st International
Workshop on Decision Making in Software ARCHitec-
ture (MARCH), pages 30–37. IEEE.

Hummel, M., Rosenkranz, C., and Holten, R. (2013).
The role of communication in agile systems develop-
ment. Business & Information Systems Engineering,
5(5):343–355.

Jalali, S. and Wohlin, C. (2012). Global software engineer-
ing and agile practices: a systematic review. Journal
of software: Evolution and Process, 24(6):643–659.

Jansen, A. and Bosch, J. (2005). Software architecture as
a set of architectural design decisions. In 5th Work-
ing IEEE/IFIP Conference on Software Architecture
(WICSA’05), pages 109–120. IEEE.

Jolak, R., Savary-Leblanc, M., Dalibor, M., Wortmann,
A., Hebig, R., Vincur, J., Polasek, I., Le Pallec, X.,
Gérard, S., and Chaudron, M. R. (2020). Software en-
gineering whispers: The effect of textual vs. graphical
software design descriptions on software design com-
munication. Empirical Software Engineering, 25(6).

Konemann, P. (2009). Integrating decision management
with uml modeling concepts and tools. In 2009 Joint
Working IEEE/IFIP Conference on Software Architec-
ture & European Conference on Software Architec-
ture, pages 297–300. IEEE.

Larsson, A. (2003). Making sense of collaboration: The
challenge of thinking together in global design teams.
In Proc. of the 2003 Intl. ACM SIGGROUP Confer-
ence on Supporting Group Work.

Lee, L. and Kruchten, P. (2008a). Customizing the cap-
ture of software architectural design decisions. In
2008 Canadian Conference on Electrical and Com-
puter Engineering, pages 000693–000698. IEEE.

Lee, L. and Kruchten, P. (2008b). A tool to visualize archi-
tectural design decisions. In International Conference
on the Quality of Software Architectures, pages 43–54.
Springer.

Lytra, I., Tran, H., and Zdun, U. (2013). Supporting consis-
tency between architectural design decisions and com-
ponent models through reusable architectural knowl-
edge transformations. In European Conference on
Software Architecture, pages 224–239. Springer.

Manteuffel, C., Tofan, D., Koziolek, H., Goldschmidt, T.,
and Avgeriou, P. (2014). Industrial implementation
of a documentation framework for architectural deci-
sions. In 2014 IEEE/IFIP Conference on Software Ar-
chitecture, pages 225–234. IEEE.

Marek, K., Wińska, E., and Dabrowski, W. (2021). The
state of agile software development teams during the
covid-19 pandemic. In International Conference on
Lean and Agile Software Development, pages 24–39.
Springer.

Matos, J. and França, C. (2022). Pandemic agility: Towards
a theory on adapting to working from home. In Pro-
ceedings of the 15th International Conference on Co-
operative and Human Aspects of Software Engineer-
ing, pages 66–75.

Nakakoji, K., Yamamoto, Y., Matsubara, N., and Shirai, Y.
(2011). Toward unweaving streams of thought for re-
flection in professional software design. IEEE soft-
ware, 29(1):34–38.

Nam, D., Lee, Y. K., and Medvidovic, N. (2018). Eva: A
tool for visualizing software architectural evolution.
In Proceedings of the 40th international conference
on software engineering: companion proceeedings,
pages 53–56.

Architecture Design Decisions in Distributed Teams: An Assessment of Tool Support

73



Noll, J., Beecham, S., and Richardson, I. (2011). Global
software development and collaboration: barriers and
solutions. ACM inroads, 1(3):66–78.

Nowak, M. and Pautasso, C. (2013). Team situational
awareness and architectural decision making with the
software architecture warehouse. In European Con-
ference on Software Architecture, pages 146–161.
Springer.

Portillo-Rodrı́guez, J., Vizcaı́no, A., Piattini, M., and
Beecham, S. (2012). Tools used in global software
engineering: A systematic mapping review. Informa-
tion and Software Technology, 54(7):663–685.

Séguin, N., Tremblay, G., and Bagane, H. (2012). Ag-
ile principles as software engineering principles: An
analysis. In International Conference on Agile Soft-
ware Development, pages 1–15. Springer.

Shahin, M., Liang, P., and Khayyambashi, M. R. (2010).
Improving understandability of architecture design
through visualization of architectural design decision.
In Proceedings of the 2010 ICSE Workshop on Shar-
ing and Reusing Architectural Knowledge, pages 88–
95.

Shaw, M. (1995). Making choices: A comparison of styles
for software architecture. IEEE Software, 12(6).

Sievi-Korte, O., Richardson, I., and Beecham, S. (2019).
Software architecture design in global software devel-
opment: An empirical study. Journal of Systems and
Software, 158:110400.

Tofan, D. and Galster, M. (2014). Capturing and making
architectural decisions: an open source online tool.
In Proceedings of the 2014 European Conference on
Software Architecture Workshops, pages 1–4.

Tofan, D., Galster, M., Avgeriou, P., and Schuitema, W.
(2014). Past and future of software architectural
decisions–a systematic mapping study. Information
and Software Technology, 56(8):850–872.

Trainer, E. H. and Redmiles, D. F. (2018). Bridging the gap
between awareness and trust in globally distributed
software teams. Journal of Systems and Software,
144:328–341.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

Yang, Z., Xiang, W., You, W., and Sun, L. (2021). The influ-
ence of distributed collaboration in design processes:
an analysis of design activity on information, problem,
and solution. International Journal of Technology and
Design Education, 31(3):587–609.

ICEIS 2023 - 25th International Conference on Enterprise Information Systems

74


